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Abstract

Machine learning techniques, along with imaging markers extracted from structural magnetic resonance images, have been
shown to increase the accuracy to differentiate patients with Alzheimer’s disease (AD) from normal elderly controls. Several
forms of anatomical features, such as cortical volume, shape, and thickness, have demonstrated discriminative capability.
These approaches rely on accurate non-linear image transformation, which could invite several nuisance factors, such as
dependency on transformation parameters and the degree of anatomical abnormality, and an unpredictable influence of
residual registration errors. In this study, we tested a simple method to extract disease-related anatomical features, which is
suitable for initial stratification of the heterogeneous patient populations often encountered in clinical data. The method
employed gray-level invariant features, which were extracted from linearly transformed images, to characterize AD-specific
anatomical features. The intensity information from a disease-specific spatial masking, which was linearly registered to each
patient, was used to capture the anatomical features. We implemented a two-step feature selection for anatomic
recognition. First, a statistic-based feature selection was implemented to extract AD-related anatomical features while
excluding non-significant features. Then, seven knowledge-based ROIs were used to capture the local discriminative powers
of selected voxels within areas that were sensitive to AD or mild cognitive impairment (MCI). The discriminative capability of
the proposed feature was measured by its performance in differentiating AD or MCI from normal elderly controls (NC) using
a support vector machine. The statistic-based feature selection, together with the knowledge-based masks, provided a
promising solution for capturing anatomical features of the brain efficiently. For the analysis of clinical populations, which
are inherently heterogeneous, this approach could stratify the large amount of data rapidly and could be combined with
more detailed subsequent analyses based on non-linear transformation.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegener-

ative dementia, which causes the gradual loss of cognitive

functions. A definite diagnosis of AD can only be made through

autopsy findings, such as amyloid deposition and neurofibrillary

tangles [1,2]. In practice, the diagnosis of AD is based on clinical

criteria [3]. In addition, findings from neuroimaging technologies,

such as magnetic resonance imaging (MRI) [4], positron emission

tomography (PET) [5,6], or single-photon emission computed

tomography [7] could further increase the diagnostic accuracy of

AD [8]. Among these modalities, structural MRI has been

recognized as a marker for neuronal injury, which could be

detected as volume loss [9], cortical thinning [10], or changes in

shape [11] seen in a set of anatomical structures such as the medial

temporal area, the posterior cingulate area, the thalamus, and

other cortical areas.

One promising extension of these findings in anatomical MRI is

the use in the analysis of large clinical data, in which a large

amount of anatomical MRIs of an elderly population, collected

through multiple institutes, could be used to evaluate the

possibility of AD or to evaluate the future risk for developing

dementia, on an individual basis [12]. A range of studies have

demonstrated that morphometric features extracted from struc-

tural MRI, along with machine-learning techniques, could be used

to classify a single subject as a member of a particular clinical

category [13–17]. One group of these studies considers voxel-

based tissue probability maps directly as features in the classifi-

cation [17–20]. Another group focuses on regional characteristics,

such as volume, shape, thickness within one single anatomical

structure, or the multivariate description over the whole-brain

parcels obtained using automated segmentation tools [21–25]. The

third group first characterizes the shape of an ROI as a series of

parameters, such as spherical harmonics or log-Jacobian determi-

nants from tensor-based morphometry, and then utilizes the

parameters as features [26,27]. Some other studies have focused

on the combination of multiple modalities, including MRI, PET,

and cerebrospinal fluid (CSF), and have yielded good classification

accuracies [28–30].

The studies mentioned above are often coupled with highly

accurate non-rigid registration that, although proven to be

effective, is also known to invite several nuisance factors, such as

transformation parameter dependency, computational complexity,

and uncertainty in the range of applicability with respect to the

degree of anatomical abnormality; the transformation accuracy

may vary depending on the anatomical difference between the

atlas and patients. For example, in a routine voxel-based pipeline,

there are parameters that control the elasticity and smoothness of

the deformation field used for transforming target images to a

standard space. The choice of these parameters is usually pre-fixed

regardless of anatomical differences between the groups. The

statistical analysis based on the large number of voxels (typically

more than one million) also poses a serious challenge for

subsequent correlation analyses with diagnosis and other types of

clinical information. A scheme to contract anatomical features to a

much more manageable size seems essential [12,31].

In a previous study, a residual-based measurement using an

atlas grid was reported, which could successfully capture

anatomical features of various types of neurodegenerative diseases

[32]. This approach was named the Gross feature recognition of

Anatomical Images based on Atlas grid (GAIA), which is a highly

time-efficient method for the image recognition and does not rely

on non-linear transformation. In this approach, an atlas with more

than 200 pre-defined structures was linearly superimposed on a

target image and the intensities of the defined structures were

measured. The intensity rankings of the defined structures were

then used as anatomical features. Anatomical alterations beyond

the normal range would lead to gross misregistraion and abnormal

intensities of the defined structures, which was captured as an

anatomical feature. Although utilization of the pre-defined atlas

grid (i.e., anatomical structure parcellation map) is an effective way

for dimensional reduction [33], one of the limitations of GAIA is

reduced sensitivity to localized anatomical alterations that only

affect part of a pre-defined structure [34].

In our study, we extended the GAIA approach to voxel-based

feature recognition, in which, instead of applying a pre-defined

atlas grid for feature extraction and reduction, we employed data-

specific and knowledge-based masks. These masks were created

based on voxel-based statistics results and the Disease-Specific

Anatomical Filtering method [35]. Because GAIA relies on image

intensities, standardization of voxel intensity values across different

images is one of the technical challenges. To standardize the

intensity of MRI images, histogram equalization, in which the

tonal distribution of an input image and a template are

mathematically matched, is often used [36]. However, the spatial

relationship between pixels in the target image and the template is

disregarded in this approach, which sometimes leads to artifacts

caused by the increased contrast-to-noise ratio in low-intensity

areas. Therefore, for voxel-based analysis, we introduced the local

binary pattern (LBP), which has been widely used in various

applications and has been proven robust to monotonic gray-level

changes, and is also computationally efficient [37,38]. A frequent

application of LBP is facial recognition attributed to its invariance

to illumination changes in facial pictures. Similarly, cross-scanner

variability in MRI images can also be characterized as a

monotonic change, where the ranking value of the average

intensity in a particular anatomical tissue would not change over

subjects. For instance, in T1-weighted images, the intensities of

gray matter pixels are always lower than those of white matter

pixels in an image retrieved from any scanner.

A total of 363 multicenter subjects from the ADNI database

were recruited in the present study in order to validate the

feasibility of using gray-level invariant features for classification. A

machine-learning tool, namely, a support vector machine (SVM)

[13–17] was utilized to investigate the discriminative capability of

the proposed features extracted from those subjects. Specifically,

SVM was trained on a subgroup of subjects with clinically-labeled

features, and then was tested by cross-validation using another

subgroup of subjects with features blinded from their labels [39].

Feature selection based on statistical methods was implemented to

LBP-TOP (three orthogonal planes) maps to exclude disease-

unrelated features and accelerate the training procedure. In

addition, seven pre-defined custom masks were designed to

investigate the discriminative powers of local features within areas

that are sensitive to AD, including the hippocampus, amygdala,

the parahippocampal gyrus, the entorhinal area, the temporal

lobe, the lateral ventricle, and an overall mask that combined the

six masks. The selected features, along with the knowledge-based

masks, present a possible approach to build disease-specific filters,

particularly on a linear transformation basis.

Method

Data description
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). The data were analyzed anonymously, using

publicly available secondary data from the ADNI study; therefore,
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no ethics statement is required for this work. The ADNI was

launched in 2003 by the National Institute on Aging (NIA), the

National Institute of Biomedical Imaging and Bioengineering

(NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies, and non-profit organizations, as a

$60 million, five-year public-private partnership. The primary goal

of ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD). The

determination of sensitive and specific markers of very early AD

progression is intended to aid researchers and clinicians in

developing new treatments and monitoring their effectiveness, as

well as lessening the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California –

San Francisco. ADNI is the result of the efforts of many co-

investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 subjects, but ADNI has been followed by ADNI-GO

and ADNI-2. To date, these three protocols have recruited over

1500 adults, ages 55 to 90, to participate in the research, consisting

of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow-up duration of each

group is specified in the protocols for ADNI-1, ADNI-2, and

ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-

GO had the option to be followed in ADNI-2. For up-to-date

information, see www.adni-info.org.

The key eligibility criteria used in ADNI was detailed at http://

www.adniinfo.org/Scientists/ADNIGrant/ProtocolSummary.

aspx. Briefly, subjects with mini-mental state examination

(MMSE) [40] scores between 20–26 (inclusive), a clinical dementia

rating (CDR) [41] of 0.5 or 1.0, and who met the NINCDS/

ADRDA criteria [42] for probable AD and were diagnosed as AD.

The diagnosis of MCI was made if the subjects had MMSE scores

between 24–30 (inclusive), a memory complaint, had objective

memory loss measured by education-adjusted scores on the

Wechsler Memory Scale Logical Memory II [43], a CDR of

0.5, the absence of significant levels of impairment in other

cognitive domains, essentially preserved activities of daily living,

and an absence of dementia. Normal controls followed the criteria:

MMSE scores between 24 and 30 (inclusive), a CDR of 0, non-

depressed, non-MCI, and non-demented. The age range of

normal subjects is roughly matched to that of MCI and AD

subjects. Therefore, there should be a minimal enrollment of

normal subjects under the age of 70.

A total of 363 subjects from the ADNI1 (1.5T) database, with

corresponding baseline MRIs, were used in this study. Structural

MRIs were acquired from 1.5 T scanners across 51 centers with a

protocol individualized for each scanner, as defined in http://

adni.loni.usc.edu/. Images were downloaded from https://ida.

loni.usc.edu/ in NiFTI formats with geometry distortion corrected

and B1 correction. The individuals analyzed in this study included:

80 patients with probable AD (38 males, 42 females,

age6SD = 77.165.5 years; MMSE6SD = 23.161.9), 141 pa-

tients with MCI (80 males, 61 females, age6SD = 75.766.4 years;

MMSE6SD = 27.061.6), and 142 normal elderly controls (73

males, 69 females, age6SD = 76.567.2 years;

MMSE6SD = 29.260.93). All subjects studied in this work were

followed up for three years and all MCI patients were clinically

stable during their last visits (month 36). The demographics and

characteristics of the selected population are shown in Table 1,

together with their between-group differences in age, MMSE and

sex.

Preprocessing
The structural MRI images were first skull-stripped using a

Matlab suite called SPM8 [44]. To be specific, a brain mask was

obtained for each subject by combining three individual tissue

probability maps, including white matter, gray matter, and

cerebrospinal fluid (CSF), obtained from the unified segmentation

module incorporated in SPM. The mask was then superimposed

on the original image to clean up tissues outside the brain, such as

the skull, skin, and neck. Skull-stripped images were then co-

registered (linear transformed) to a template, namely EVE [45],

using 12 degrees of freedom (DOF) affine [46] to standardize each

individual to the Montreal Neurological Institute (MNI) space

[47]. To obtain an unbiased co-registration, 12 degrees of freedom

affine were employed with cost function setting to mutual

information (MI), which was proved robust to inter-subject

intensity variations [48]. After the co-registration, spatial locations

and global brain sizes, which were considered as covariates in

analyzing the disease-specific features, were normalized for all

these subjects.

Gray-level invariant features
LBP operator was used to represent the gray-level invariant

features of the original image with low computational complexity.

It described the local structure by thresholding the intensities of a

set of P neighboring pixels set(IP) with the intensity of its center

Table 1. The demographics and characteristics of the selected population.

Group Number Sex Age MMSE Number of scanning protocols

AD 80 38M/42F 77.165.5 [57–89] 23.161.9 [20–26] 42

MCI 141 80M/61F 75.566.4 [57–90] 27.061.6 [24–30] 47

NC 142 73M/69F 76.567.2 [57–92] 29.260.9 [25–30] 50

Differences

AD vs. NC / P = 0.675 p.0.05 p,0.0001

MCI vs. NC / P = 0.404 p.0.05 p,0.0001

The between-group differences in age and MMSE were assessed with the student’s t-test. The differences in gender were evaluated by a two-sided Pearson Chi-Square
test.
doi:10.1371/journal.pone.0105563.t001
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pixel IC, and then represented the feature as a binary code, as

explained in (1). A demonstration of its gray-level invariance is

shown in Fig 1, where LBP is applied to 2D phantom MRIs with

multiple monotonic gray-level changes. MRI images shown in the

first row of Fig 1 were simulated by BrainWeb [49] by setting the

simulated Flip Angle to 10, 20, and 40 respectively. The second

row shows corresponding LBP maps, which, as expected, differed

little from each other. The reason for using phantom images is to

guarantee that all images were exactly in the same coordinate.

LBP~
Xp{1

p~0

sign(Ip{Ic)2p, sign(x)~
1, x§0

0, xv0

�
ð1Þ

Rotation invariant LBP was an extended version of the original

operator with robustness to image rotation [50]. Given that affine

has been applied to exclude the rotation influence, traditional LBP

operator was deemed competent for feature extraction in the

present study, which resulted in 256 possible labels within a 363

neighborhood. In this case, the intensity of the LBP map ranged

from 0–255 in a 2D image. A straightforward 3D LBP form,

namely LBP-TOP (three orthogonal planes), was proposed in a

previous study to describe spatiotemporal signals of facial

expression by simply concatenating features extracted from three

orthogonal 2D planes [51]. In the present study, LBP-TOP

operator traversed all 363 neighborhoods in every 2D slice

varying separately along axial, coronal, and sagittal orientations, as

shown in Fig 2. Thus, every pixel p was potentially represented by

a 3D vector [LBPxp LBPyp LBPzp], denoting the LBP value

separately on the y-z, x-z, and x-y planes.

Furthermore, three types of features were evaluated in this study

for comparison, including Type 1 images without any intensity

adjustment, Type 2 histogram-equalized images, and the proposed

Type 3 LBP-TOP maps. Note that all features were based on

images transformed to a standard space through affine co-

registration.

Two-step feature selection
Feature selection is known as a process of selecting an important

subset of features for model construction in machine-learning. In

our study, a feature vector, which was used to represent the

anatomical attribute of a brain, recorded the voxel intensities of its

LBP maps. However, not all voxels encoded useful information for

Figure 1. A 2D LBP test on simulated MRIs. The first row displays the MRI images and the second row displays their corresponding LBP maps.
Images scanned with different flip angles are shown in columns.
doi:10.1371/journal.pone.0105563.g001
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the recognition of certain anatomical features. The most relevant

voxels could be retained according to several criteria; for example,

voxels behaved significantly statistically differently between the

normal group and the disease group, or voxels located in certain

areas associated with previous pathological evidence.

The LBP map represented an approximation of the shape of

high-gradient areas, such as boundaries or corners, but also noise

in MRIs. When implementing feature selection directly on LBP

maps, limited numbers of usable features are sometimes

suppressed by imaging noise. Thus, as shown in Fig 2, all LBP

maps were smoothed using a Gaussian filter specifying the full

width half maximum (FWHM) to 4 mm64 mm64 mm. This

preprocessing was then followed by a two-step feature selection

known as data-driven selection and knowledge-driven selection.

The data-driven selection applied a two-sample t-test on a voxel

basis over the entire brain to retain features that showed statistical

differences between the AD/MCI and NC groups. It has been

suggested in the existing literature [35,52,53] that correctly

Figure 2. A brief illustration of the calculation of LBP-TOP value in pixel p in the axial, coronal, and sagittal orientations. Pixel p is
denoted by the red color, with its 363 neighborhood circled by a yellow square in the 2D plane. Bin2Dec is a function for transferring binary code to
decimal values.
doi:10.1371/journal.pone.0105563.g002
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reducing the number of features, can accelerate computation and

improve performance by selecting features with the greatest

discriminative power. In this study, features with significant

differences (p,0.001, uncorrected) between the patient group

and the normal group were selected, only within the training

samples. The second step is known as a knowledge-driven

selection, where priori masks were customized to select disease-

specific areas that were expected to have the greatest positive

contributions to the classification. Note that the second step was

applied to voxels selected by the first-step selection. As shown in

Fig 3, seven binary masks (selected area = 1, background = 0) that

stood in the same coordinates with EVE were built according to

anatomical knowledge for encoding morphometric changes over

groups. It was expected that the boundaries of the masks eased

enough to cover variant types of non-rigid morphometry over

subjects within their corresponding anatomical structures, includ-

ing the amygdala (AMG), the entorhinal area (ENT), the

hippocampus (HIP), the parahippocampal gyrus (PHG), the

temporal lobe (TL), the lateral ventricles (LV), and an overall

mask (OVALL) built by executing an ‘‘OR’’ operation on the six

masks mentioned above. These were the areas that had

consistently certified values for differentiating AD/MCI from

normal states. Specifically for LBP maps, two-step feature selection

was carried out separately on three orthogonal planes, and then,

the three individual parts were concatenated into a single feature

vector (Type 3 feature). Therefore, one selected voxel at

coordinate (x, y, z) satisfied two requirements: 1) voxels showed

significant inter-group differences in intensities at (x, y, z) over all

studied images; 2) intensity = 1 on the binary mask at (x, y, z). Note

that independent selections were carried out with different masks

in the second step. In other words, each mask yielded a particular

feature vector to describe the entire brain. Potentially, AD-specific

filters can be derived from the two-step feature selection specific to

linearly transformed voxels. For comparison, Type 1 and Type 2

features were also extracted from intensity-unadjusted images and

histogram-equalized images, which were then subsequently refined

through similar strategies used for feature selection.

Validation of the proposed feature
The discriminative value of three types of features were studied

and compared in terms of the performances of classifiers

employing these features separately. The feature matrix with

selected features of each training sample listed in rows was sent to

the SVM program [54] with their clinical labels (AD = positive

= 1, NC = negative = 21). SVM, first developed by Vapnik in

1995 [55], was designed for the classification of non-linear and

high-dimensional data. Therefore, it was compatible with image -

based recognition in various biomedical applications. In the

general SVM process, a classifier was trained by mapping the

input m-dimensional feature vectors into l-dimensional space (l.
m) using kernel functions. SVM aimed to find the maximum-

margin hyperplane that represented the largest separation or

margin between the two clinical groups in the feature space. The

boundaries of the hyperplane were represented by the support

vectors, equivalent to the training samples on the margins. After

this process, the trained classifier could be used to map incoming

testing data into the l-dimensional feature space and thereafter

assigned it to the appropriate category. An unbiased estimate of

true classification performance was obtained by employing 10-fold

cross-validation that initially divided all samples to 10 subsets and

then iteratively left one subset out of training for subsequent testing

until each of the 10 subsets were validated. To avoid possible bias,

each cross-validation process was repeated 30 times, and a mean

estimation of classification performance was obtained. Note that t-

test-based feature selection (first-step selection) was also con-

strained in the cross-validation loop; that is, the testing sample was

not part of the two-sample t-test to avoid over-fitting of the

classifier. The classification accuracies of classification models

using different types of features were analyzed and compared in

terms of classification accuracy (percentage of correctly classified

subjects), specificity, sensitivity, receiver operating characteristic

(ROC) curve [56,57], as well as area under ROC curve (AUC),

where AUC = 0.5 stands for completely random predictions and

AUC = 1.0 stands for perfect separation [58]. The computation

time of the proposed model was also studied and compared to the

pipelines using volume, shape, and thickness –based features.

Figure 3. Seven knowledge-based masks customized for capturing AD-specific morphometry. These masks covered areas that have
been consistently demonstrated as sensitive to AD, including the amygdala (AMG), the entorhinal area (ENT), the hippocampus (HIP), the
parahippocampal gyrus (PHG), the temporal lobe (TL), the Lateral ventricle (LV), and a mask that combined the aforementioned six masks (OVALL).
doi:10.1371/journal.pone.0105563.g003
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Results

Biological sensitivity of the gray-level invariant feature
To investigate whether our classification model based on the

LBP and SVM could give appropriate weighting to the known

anatomical structures involved in AD to separate AD or MCI from

NC, the weights of training features derived from the linear SVM

output were mapped onto the template space. Specifically, in every

cross-validation procedure with one subset of samples left out for

training, each variable of the feature vector was assigned a weight

calculated by training on the remnant nine subsets of the samples.

The average weight for the same variable was then calculated by

averaging the weights produced from 10 iterations of cross-

validations. Fig 4 shows feature weights, which have been

normalized to [0, 1], obtained from three LBP-TOP maps

separately. Synthetically, AD and MCI show similar patterns of

discriminative power over the brain where highly-weighted areas

by SVM are: the hippocampus; the amygdala; the putamen; the

thalamus; the insula; the precuneus; the anterior cingulate gyrus;

the posterior cingulate gyrus; the areas around the lateral

ventricles; and several areas in the temporal lobe.

Discriminative powers of selected features within seven
knowledge-based masks

To bring anatomical knowledge into the present features, seven

custom masks were used as priors for the second-round feature

selection. The classification performance with respect to each

mask was evaluated through 10-fold cross-validation, and the

accuracies are displayed in Fig 5. Taking AUC as the standard

measurement, the discriminative power in AD vs. NC is AMG.

OVALL.HIP.LV.PHG.TL.ENT, whereas MCI vs. NC

showed AMG.LV.HIP.OVALL.PHG.ENT.TL. The be-

tween-mask differences in the classification performance was

evaluated using two-tailed McNemar’s test [59]. As shown in

Table 2, in AD vs. NC, no significant differences (p.0.05) were

found in classification performance among classifiers using

OVALL, AMG, and HIP. In MCI vs. NC, no significant

differences (p.0.05) were found in classification performance

among classifiers using OVALL, AMG, HIP, and LV. Note that

the p-value was converted from the z-scores according to a z-score

lookup table where z.1.960 corresponds to P,0.05. In addition,

the performances of the outputs from first-step selection are also

shown in Fig 5 under the caption ‘‘without mask.’’ In general, the

features that underwent the two-step feature selection performed

better than the features that underwent the first-step selection

alone, in both AD vs. NC and MCI vs. NC.

Comparison of three types of features
Three types of features were trained and tested separately by

SVM through 10-fold cross-validation. Their classification accu-

racies were shown in Table 3 in terms of sensitivity, specificity,

AUC, and accuracy rate. Among all models, the one based on type

3 features performed best in all measurements. In addition, the

results have proven that features directly extracted from

unadjusted gray-scale images from multiple scanners were not

usable since this yielded an ROC curve partly under the random

guess line (a line connecting point [0 0] and point [1 1] in ROC

space). The difference in the performance between type2 and

type3 features was measured with a one-tailed McNemar’s test. A

significant difference was found in differentiating MCI from NC

(p,0.05, z = 14.21), as well as in differentiating AD from NC (p,

0.05, z = 3.87).

Comparison of computation time
The proposed framework was compared with several widely

used pipelines using different tools, such as SPM, FSL, HAM-

MER, AIR, LDDMM, and Freesurfer [44,60–62] (Table 4). No

considerable differences were shown in time consumption for

model training or feature extraction among all methods, compared

to the difference in the time spent on the preprocessing phase. For

example, the duration of model training when managing 400

samples with each sample characterized by a feature vector

containing 2.7e+5 variables (often the selected voxels) lasts for

several minutes, compared with several seconds when managing

the same number of samples with dozens or hundreds of variables

in each feature vector (often the ROI-based features). However,

time spent on non-rigid registration can be what potentially

determines computation time of the whole pipeline, which varies

from seconds to days.

Discussion

Here, we propose an efficient approach to differentiate AD or

MCI from NC, based on multicenter MRI using gray-level

invariant features. Before the discussion of discriminative powers,

biological sensitivities of features were studied as part of the

demonstration of their feasibilities. It can be seen from the results

that top-ranked areas that have greatest discriminative power

include the hippocampus, the amygdala, the anterior/posterior

cingulate gyrus, and several areas in temporal lobe. These areas

agree well with previous findings of gray-matter loss in temporal-

limbic regions, as well as in anatomically associated regions like the

cingulate gyrus, and the precuneus [63–65]. Significant differences

were also seen in other areas that were within or around the lateral

ventricles, possibly related to ventricle enlargement and its joint

influence in some deep gray matter areas like the thalamus and

putamen [66,67]. Since the current study is based on rigid

transformation only, the structural changes shown in the images

encode not only non-rigid information, but also some rigid

information. For example, atrophy of a certain area might pull/

shift its neighboring tissues. Therefore, the selected features might

not be right inside those accepted areas associated with AD.

To further validate the effectiveness of proposed features,

especially the robustness to cross-scanner variability, the discrim-

inative value was studied by measuring the performance in

differentiating AD/MCI from NC subjects retrieved from multiple

institutes, and then compared with accuracies with respect to

features based on intensity-unadjusted images and histogram-

equalized images based on the same database. Without doubt,

features based on intensity-unadjusted images were practically

useless due to the non-robustness to cross-scanner variability of

training samples. The histogram-equalized image encodes feasible

features for the classification of AD and NC (AUC.0.8). This

method assigned 80.98% of the subjects to the correct category,

although resulting in lower accuracy in terms of all measurements

than proposed features. However, performance with respect to

histogram equalization is less effective in differentiating MCI and

NC (AUC,0.6), compared to the proposed features that produced

AUC.0.6.

Compared with results reported in previous literature using

voxel, volume, and thickness features in AD vs. NC discrimination,

the proposed features (using the top-ranked mask AMG) produced

a sensitivity higher than 81.0% [68], 85.0% [69], and 85.0% [70],

but lower than 86.0% [71]; and a specificity higher than 80.0%

[69], but lower than 95.0% [68], 86.3% [71], and 93.0% [70]. In

MCI vs. NC, the proposed method (using the top-ranked mask

AMG) yielded a sensitivity lower than 73.0% [68], 78.5% [71],
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Figure 4. Average feature weights yielded by linear SVM in differentiating a) AD from NC, and b) MCI from NC. In either a) or b),
average weights separately obtained from three orthogonal planes are displayed in rows, and different slices along the axial orientation are displayed
in columns. The ascending weights are shown from darkness to brightness.
doi:10.1371/journal.pone.0105563.g004
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Figure 5. Classification performances with respect to features selected by seven masks in differentiating a) AD from NC, and b) MCI
from NC. The performances were measured in terms of specificity, sensitivity, and AUC. The ROC curves are also displayed in the blue color with a
smooth fitting line shown in red.
doi:10.1371/journal.pone.0105563.g005
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84.0% [70]; and a specificity higher than 59.6% [71], but lower

than 85.0% [68], and 86.0 [70]. However, the direct comparison

of performance between the proposed method and previous

methods could be only for reference because these approaches

were based on different subgroups of ADNI datasets or variant

strategies of cross-validation. In addition, models in these previous

studies were also trained and tested using different classifiers; for

instance, LP boosting was employed in [69] and LDA was

employed in [70]. Parts of these studies also used a hierarchical

fusion classifier with features from multimodal imaging techniques

[71]. Overall, LBP -based features performed well in AD vs. NC

classification, but was less effective in MCI vs. NC tasks compared

to the approaches based on sophisticated measurements of

multiple brain tissues. A possible explanation is that MCI patients

showed very subtle structural changes that could be captured only

by high-dimensional spatial normalization. We would like to stress

that our approach does not necessarily compete with or replace

more traditional approached based on non-linear transformation.

Although it is obvious that non-linear transformation is needed to

achieve better image registration, non-linear registration also

invites nuisance factors, including dependence on transformation

algorithms, cost functions, and employed parameters. If there is a

large anatomical difference between the atlas and patient images,

there is always a chance to be trapped in a local minima. Because

the cost functions are usually based on image intensities, non-

linear approaches are sensitive to contrast differences, and thus,

potentially to protocol differences. Having only a limited number

of solutions, the linear solutions are more robust against these

factors. It is, therefore, a reasonable approach to test features

extraction based on the linear solution before resorting to the non-

linear solution. This result could form a foundation on which to

judge the efficacy of non-linear solutions; for example, the linear

solution can be used as a benchmark to evaluate the improved

sensitivity and specificity to identify a patient group. Alternatively,

Table 2. The between-mask differences of the classification performance evaluated by a two-tailed McNemar’s test.

AD vs. NC

OVALL AMG ENT HIP PHG TL LV

OVALL -Inf 0.42 19.56 0.03 14.17 21.35 3.56

AMG 0.42 -Inf 18.65 0.48 13.61 18.22 3.27

ENT 19.56 18.65 -Inf 21.68 9.85 1.54 17.19

HIP 0.03 0.48 21.68 -Inf 15.00 20.16 3.56

PHG 14.17 13.61 9.85 15.00 -Inf 5.77 10.73

TL 21.35 18.22 1.54 20.16 5.77 -Inf 18.06

LV 3.56 3.27 17.19 3.56 10.73 18.06 -Inf

MCI vs. NC

OVALL AMG ENT HIP PHG TL LV

OVALL -Inf 3.77 14.10 1.89 11.38 19.92 2.49

AMG 3.77 -Inf 16.24 1.40 14.85 20.97 1.32

ENT 14.10 16.24 -Inf 15.95 3.12 4.10 15.06

HIP 1.89 1.40 15.95 -Inf 12.24 18.82 0.22

PHG 11.38 14.85 3.12 12.24 -Inf 7.03 13.37

TL 19.92 20.97 4.10 18.82 7.03 -Inf 19.65

LV 2.49 1.32 15.06 0.22 13.37 19.65 -Inf

The difference between every two masks was quantified in terms of z-scores. A threshold of z.1.960 was set to find the value beyond the 95% confidence level, which
would be equal to p,0.05. In other words, the value z,1.960 indicates no significant difference. OVALL: combined mask. AMG: amygdala. ENT: entorhinal. HIP:
hippocampus. PHG: parahippocampal gyrus. TL: temporal lobe. LV: lateral ventricle.
doi:10.1371/journal.pone.0105563.t002

Table 3. The classification accuracies with respect three types of features, including type1) intensity-unadjusted image, type2)
histogram-equalized image, and type3) LBP-TOP maps.

accuracy specificity senSitivity auc

AD VS. NC TYPE1 63.09% FAILED FAILED FAILED

TYPE2 80.98% 81.5% 74.5% 0.843

TYPE3 82.84% 82.7% 80.4% 0.874

MCI VS. NC TYPE1 43.27% FAILED FAILED FAILED

TYPE2 52.93% 50.00% 55.20% 0.529

TYPE3 61.53% 63.50% 61.50% 0.642

The performances are shown in in terms of sensitivity, specificity, AUC, and accuracy rate. Specificity, sensitivity and AUC are not shown for failed tests.
doi:10.1371/journal.pone.0105563.t003
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the time-efficient linear solution could be used as pre-processing

for initial stratification and anatomical homogenization, such that

the non-linear solutions would be more reliable. The linear

solution, on the other hand, invites its own complications,

especially in data interpretation. We can no longer assume that

each defined structure in the atlas accurately identifies the target

structure in the subject, and, thus, the measured intensity is not the

intensity of the target structure per se, but reflects the amount of

mis-registration due to anatomical variability. This unique features

extraction approach requires us to design and test an appropriate

statistical approach.

The present method can be used as a tool for fast recognition of

anatomic features with guidance based on the criteria from the

neurological diagnosis. A natural extension of the proposed

method is an automated image categorization tool to assist clinical

decision-making, since it yielded reliable sensitivity and specificity

when differentiating AD from NC. The performance of the

automated categorization could be further improved when

combined with other laboratory data, such as the examination

of cerebrospinal fluid (CSF), or other imaging modalities, such as

PET. Studies based on pathologically diagnosed cases are expected

to play important roles in establishing the usefulness of automated

image categorization in diagnosis and clinical decision-making.

The purpose of our current study was to offer an alternative to a

voxel-based approach to capture valuable anatomical information

results, with respect to AD or MCI based on a linear

transformation. Although the proposed technique was validated

in this study to demonstrate feasible classification, it is still lacking

in framework for the individual risk assessment for eventually

developing AD. In line with this, our future work involves the

development of an AD prediction model from mild cognitive

impairment converters (MCI-c). In addition, the present work is

based on features extracted on LBP-TOP maps only. Thus,

comparative studies of the effectiveness of models that employ

other forms of 3D LBP [72,73] are highly anticipated in the future.

In conclusion, the present approach directly encodes disease-

specific patterns on a voxel-wise basis without non-rigid registra-

tion. Owing to its computational efficiency, along with its

characteristic of gray-level invariance, the proposed approach

could be a useful tool for the analysis of large medical image data

and also could be a supplementary method to more detailed

subsequent analyses based on non-linear transformation
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