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Abstract

Combining multi-modality brain data for disease diagnosis commonly leads to improved 

performance. A challenge in using multi-modality data is that the data are commonly incomplete; 

namely, some modality might be missing for some subjects. In this work, we proposed a deep 

learning based framework for estimating multi-modality imaging data. Our method takes the form 

of convolutional neural networks, where the input and output are two volumetric modalities. The 

network contains a large number of trainable parameters that capture the relationship between 

input and output modalities. When trained on subjects with all modalities, the network can 

estimate the output modality given the input modality. We evaluated our method on the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, where the input and output 

modalities are MRI and PET images, respectively. Results showed that our method significantly 

outperformed prior methods.

1 Introduction

Alzheimer’s disease (AD) is a common neuro-degenerative disease for which we still lack 

effective treatment. It has been shown that early detection and intervention at its prodromal 

stage, such as the mild cognitive impairment (MCI) stage, are effective in delaying the onset 

of AD. Developments in neuroimaging techniques, such as the magnetic resonance imaging 

(MRI) and positron emission tomography (PET) techniques, coupled with advanced 

computational methods, have led to accurate prediction of AD and MCI [1].

A key challenge in employing computational methods for disease diagnosis is that the 

neuroimaging data usually consist of multiple modalities, but they could be incomplete in 

the sense that not all subjects have all data modalities. The accuracy of disease diagnosis 

might be improved if the missing data could be estimated. However, the relationship 

between different data modalities is complicated and nonlinear. Thus, a highly sophisticated 

model is required for the collaborative completion of neuroimaging data.
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Deep convolutional neural networks (CNNs) are a type of multi-layer, fully trainable models 

that are capable of capturing highly nonlinear mappings between inputs and outputs [2]. 

These models were originally motivated from computer vision problems and thus are 

intrinsically suitable for image-related applications. Deep CNNs have been successfully 

applied to a variety of applications, including image classification [2,3], segmentation [4], 

and denoising [5].

In this work, we propose to use deep CNNs for completing and integrating multi-modality 

neuroimaging data. Specifically, we designed a 3-dimensional (3-D) CNN architecture that 

takes one volumetric data modality as input and another volumetric data modality as its 

output. When trained end-to-end on subjects with both data modalities, the network captures 

the nonlinear relationship between two data modalities. This allows us to predict and 

estimate the output data modality given the input modality.

We applied our 3-D CNN model to predict the missing PET patterns from the MRI data. We 

trained our model on subjects with both PET and MRI data, where the MRI data were used 

as input and the PET data were used as output. The trained network contains a large number 

of parameters that encode the nonlinear relationship between MRI and PET data. We used 

the trained network to estimate the PET patterns for subjects with only MRI data. Results 

showed that our method outperformed prior methods on disease diagnosis.

2 Material and Methods

2.1 Data Preprocessing

The data used in this work were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. For each subject, the T1-weighted MRI was processed by 

correcting the intensity inhomogeneity followed by skull-stripping and cerebellum 

removing. In addition, each MRI was segmented into gray matter, white matter and 

cerebrospinal fluid and was further spatially normalized into a template space. In this work, 

the gray matter tissue density maps were used. The PET images were also obtained from 

ADNI, and they were rigidly aligned to the respective MR images. The gray matter tissue 

density maps and the PET images were further smoothed using a Gaussian kernel (with unit 

standard deviation) to improve the signal-to-noise ratio. To reduce the computational cost, 

we downsampled both the gray matter tissue density maps and PET images to 64 × 64 × 64 

voxels.

We used data for 830 subjects in the ADNI baseline data set. This data set was acquired 

from 198 AD patients, 403 MCI patients, which include 167 pMCI patients (who will 

progress to AD in 18 months) and 236 sMCI patients (whose symptom were stable and will 

not progress to AD in 18 months), and 229 healthy normal controls (NC). Out of these 830 

subjects, more than half of them (432) do not have PET images. Thus, accurate completion 

of PET images for these subjects would improve the accuracy of disease diagnosis.

2.2 3-D Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep models that are able to capture 

highly nonlinear relationships between input and output [2]. In image classification tasks, 
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two types of layers, i.e., convolutional layer and subsampling layer, are usually stacked 

alternatingly. The convolutional layer applies trainable filers to feature maps in the previous 

layer, while the subsampling layer is used to reduce the resolution of feature maps.

CNNs have been primarily applied to 2-D images such as visual object recognition [2,3] and 

segmentation [6]. In [4,5], 2-D CNNs have been extended to segment and restore 3-D 

images. In [7], 3-D CNNs have been applied to process spatiotemporal video data. Similar to 

the 2-D case, 3-D CNNs perform nonlinear mapping by computing convolutions with 3-D 

filters.

Formally, let the value at position (x, y, z) on the jth feature map in the ith layer be . 

Then the 3-D convolution is given by

(1)

where σ(·) is the sigmoid function, bij is the bias, m indexes the set of feature maps in the (i 

− 1)th layer connected to the current feature map, Pi, Qi and Ri are the sizes of the 3-D 

kernel along three spatial dimensions respectively,  is the (p, q, r)th value of the filter 

connected to the mth feature map in the previous layer. Note that Eq. (1) describes a generic 

3-D convolution operation and can be applied to any layer of a 3-D CNN architecture with 

any number of feature maps.

Subsampling layers are commonly used in recognition and classification tasks. In these 

layers, the resolution of feature maps is reduced by pooling over local neighborhood, 

thereby enhancing invariance to distortions on the inputs. In this work, our primary focus is 

data completion instead of recognition. Thus, subsampling layers were not used.

2.3 3-D CNN for Imaging Data Completion

Based on the 3-D convolution described above, a variety of CNN architectures can be 

devised. In the following, we describe a 3-D CNN architecture, shown in Fig. 1, for PET 

image completion. The data for training this CNN model consist of patches extracted from 

subjects having both PET and MRI images. The input patch size was determined by the size 

of output patch in the output layer, since each convolution operation reduces the size of 

feature map along each dimension by a factor related to the size of filter. In this work, the 

size of output patches was set to 3 × 3 × 3. We randomly selected a large number of patches 

from each 3-D MRI volume, and the corresponding PET image patches were also obtained. 

Patches that cross the boundary or are located completely within background were removed. 

The total number of patches extracted from each volume was 50, 000 so that the entire 

volume is largely covered.

In the CNN architecture, we first applied 3-D convolution with a filter size of 7 × 7 × 7 on 

the input patch and construct 10 feature maps in the first hidden layer. The second hidden 

layer is again a 3-D convolution layer with 10 feature maps fully connected to all the feature 

maps in the previous layer. The output layer contains only one feature map, which is the 
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corresponding PET image patch. In addition, the filter size for mapping the feature maps of 

the last hidden layer to the output was set to 1 to reduce the computational cost. In total, the 

number of trainable parameters for this network is 37, 761. The latent nonlinear relationship 

between the MRI and PET images was encoded into the large number of parameters in the 

network. This CNN architecture was selected based on a balance between the representation 

power and the computational cost of training the network. A network with more layers and 

feature maps might be able to represent the training data better, but the computational cost 

of training more complex networks is prohibitive.

In this work, the CNS package [8] was used to implement the CNN architecture. The 

weights of this network were updated by error back-propagation using stochastic gradient 

descent algorithm. The learning rate was fixed to 10−2 in all the experiments, and other 

parameters were set to the default values given in the CNS package [8]. The network was 

trained for multiple epochs, where each epoch involves training the network by each 

example once. In this paper, we trained the network for 10 epochs since the performance 

seems to have converged after 10 epochs and the training was very time-consuming. In 

particular, we have 398 × 50, 000 = 19.9 million training patches. Each epoch took about 48 

hours if all the patches were used on a Tesla K20c GPU with 2,496 cores.

3 Results and Discussion

3.1 Experimental Setup

In the experiments, we focused on evaluating our 3-D CNN model for missing PET data 

completion. We used several controlled experiments to compare the predicted and the true 

PET image data. We did not employ advanced feature extraction and classification methods 

to compare the completed and true data, but rather used a set of standard methods to make 

the comparison straightforward. We consider three binary-class classification tasks (i.e., AD 

vs. NC, MCI vs. NC, and sMCI vs. pMCI) in this paper, where MCI includes both pMCI 

and sMCI.

We compared our method with two other commonly used missing data estimation methods, 

namely, K-nearest neighbor (KNN) and Zero methods [9]. The experiments in this work 

consist of two steps. The first step is to complete the missing PET data using CNN, KNN, or 

Zero methods. The second step then evaluate the classification performance based on 

reconstructed data using the ℓ2-norm regularized logistic regression classifiers for all 

methods. In the experiments, we trained the classifiers by randomly selecting 2/3 of the 

samples and performed an evaluation using the remaining 1/3 as test data in the second step. 

To obtain robust performance estimates, we repeated the random partition 30 times and 

reported the statistics computed over these 30 trials. Note that no class information was used 

in our CNN training. Thus, we built one CNN model and applied it for all 30 random trials. 

We performed feature selection by removing voxels that have zero value for all subjects. 

Since the number of samples was not balanced between classes, we used the area under the 

ROC curve (AUC) as the performance measure to evaluate different methods in this study.
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3.2 Evaluation on Subjects with Both MRI and PET

We first evaluated whether the predicted PET data were similar to the true PET data. In the 

data set used for this study, there were 398 subjects with both MRI and PET images. We 

randomly sampled 1/2 of these 398 subjects for training the 3-D CNN model. Then the 

model was used to predict the PET images of the remaining 1/2 subjects. Since we had true 

PET images for the test subjects, we were able to compare the true and the predicted PET 

images both visually and quantitatively.

We first visually examined the predicted PET patterns with the ground truth data for each 

subject. Figure 2 shows the predicted and the ground truth data slice by slice for two 

subjects. We can observe that the predicted PET patterns are similar to the ground truth. 

This demonstrates that our deep learning based method can successfully estimate the 

missing PET data.

To evaluate the proposed data completion method quantitatively, we also compared the 

classification results based on the true and the predicted PET images. In addition, we report 

the classification results based on KNN and Zero methods. The AUC values of the three 

classification tasks based on true PET images and predicted images by three methods are 

given in Table 1.

We can observe from these results that the 3-D CNN model outperforms KNN and Zero 

methods significantly in all three classification tasks. These significant performance 

differences verify that our deep learning method successfully extracts highly nonlinear 

relationship between the MRI and PET images. We can also observe that the results of the 3-

D CNN model is comparable with those of the true PET images. This demonstrates that our 

predicted PET images can potentially be used to improve the accuracy of disease diagnosis. 

Note that the classification performance reported here might be lower than those in the 

current literature on the ADNI data set because (1) we do not employ advanced feature 

extraction and classification methods on the true and completed data, and (2) the number of 

subjects used in the study is relatively small, since we used only these subjects with both 

MRI and PET.

3.3 Evaluation on All Subjects

To further evaluate the effectiveness of our proposed method, we report the prediction 

performance on all 830 subjects, where 398 subjects have both MRI and PET images, and 

the remaining 432 subjects have only MRI images. The 3-D CNN and other data completion 

methods were trained on the 398 subjects, and the trained models were used to complete the 

PET images of the remaining 432 subjects. The classification performance on all 830 

subjects is reported in Table 2. Note that the comparison of classification performance based 

on true data is not applicable in this experiment, since 432 of 830 subjects did not have PET 

images.

We can observe that the 3-D CNN model outperforms KNN and Zero methods for all three 

tasks with three different combinations of PET and MRI modalities. This again demonstrates 

that the proposed 3-D CNN data completion method is more effective than the competing 

methods. We can also observe that the performance was improved when the MRI and PET 
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image features were combined. Overall, these experiments yielded insights on the power of 

the 3-D CNN model in completing missing neuroimaging data, thereby providing practical 

guidelines for employing multi-modality data even when some data modalities are missing. 

These results demonstrated that the estimated PET data could be used to improve the 

accuracy of disease diagnosis.

4 Conclusion and Future Work

We developed a 3-D CNN model for completing and integrating multi-modality 

neuroimaging data. This model takes one volumetric data modality as input and another 

modality as output. The nonlinear relationship between different data modalities is captured 

by a large number of trainable parameters in the network. We applied this model to predict 

the missing PET patterns from the MRI data. Results showed that the predicted PET data 

achieved similar classification performance as the true PET images. Additionally, our data 

completion method significantly outperformed the previous methods.

In this paper, we considered the CNN model for data completion. There are also other deep 

architectures that achieved promising performance on image-related tasks. It would be 

interesting to apply other deep models, such as the deep belief networks, for volumetric 

image data completion. In this work, we employed a CNN model with two hidden layers due 

to the high computational cost of training. We will explore ways of expediting the 

computation and design more complicated deep models in the future.
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Fig. 1. 
The 3-D CNN architecture for imaging data completion used in this work. There are 2 

hidden layers between the input and output layers. Each of the hidden layers contains 10 

feature maps. The total number of trainable parameters in this network is 37, 761.
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Fig. 2. 
Comparison of the predicted and the ground truth PET images on two subjects. Each row 

corresponds to the data (either ground truth or predicted) of one subject, and each column 

corresponds to slice with the same brain position.
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Table 1

Performance comparison of classification tasks using the true and the predicted PET data. The data set 

consists of 398 subjects having both MRI and PET images.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

PET

True data 0.7014 ± 0.0212 0.6823 ± 0.0241 0.8982 ± 0.0224

3-D CNN 0.6947 ± 0.0281 0.6804 ± 0.0267 0.8868 ± 0.0208

KNN 0.6304 ± 0.0248 0.6278 ± 0.0326 0.7421 ± 0.0282

Zero 0.6175 ± 0.0213 0.6124 ± 0.0243 0.6928 ± 0.0225
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Table 2

Performance comparison of classification tasks using the true and the predicted PET images. All 830 subjects 

were used in this experiments, where subjects with no PET images were completed using three methods.

Tasks MCI vs. NC pMCI vs. sMCI AD vs. NC

MRI 0.7439 ± 0.0329 0.7168 ± 0.0253 0.9192 ± 0.0188

PET

3-D CNN 0.7305 ± 0.0315 0.7029 ± 0.0245 0.8762 ± 0.0236

KNN 0.6352 ± 0.0200 0.6133 ± 0.0346 0.7391 ± 0.0304

Zero 0.6102 ± 0.0268 0.5924 ± 0.0331 0.7028 ± 0.0331

MRI + PET

3-D CNN 0.7621 ± 0.0205 0.7244 ± 0.0241 0.9287 ± 0.0207

KNN 0.7231 ± 0.0214 0.6813 ± 0.0312 0.7691 ± 0.0213

Zero 0.7217 ± 0.0290 0.6291 ± 0.0317 0.7003 ± 0.0162
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