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Summary. Covariate-specific time-dependent ROC curves are often used to evaluate the diagnostic accuracy of a biomarker
with time-to-event outcomes, when certain covariates have an impact on the test accuracy. In many medical studies, measure-
ments of biomarkers are subject to missingness due to high cost or limitation of technology. This article considers estimation
of covariate-specific time-dependent ROC curves in the presence of missing biomarkers. To incorporate the covariate effect,
we assume a proportional hazards model for the failure time given the biomarker and the covariates, and a semiparametric
location model for the biomarker given the covariates. In the presence of missing biomarkers, we propose a simple weighted
estimator for the ROC curves where the weights are inversely proportional to the selection probability. We also propose
an augmented weighted estimator which utilizes information from the subjects with missing biomarkers. The augmented
weighted estimator enjoys the double-robustness property in the sense that the estimator remains consistent if either the
missing data process or the conditional distribution of the missing data given the observed data is correctly specified. We
derive the large sample properties of the proposed estimators and evaluate their finite sample performance using numerical
studies. The proposed approaches are illustrated using the US Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.

Key words: Augmented estimator; Location model; Missing data; Proportional hazards model; Survival analysis;
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1. Introduction

Receiver Operating Characteristic (ROC) curve is a com-
mon tool for evaluating diagnostic accuracy of a continuous
biomarker by plotting true positive rate (TPR) against false
positive rate (FPR) at various threshold values (Metz, 1978).
When covariates have an impact on the predictive accuracy
of a biomarker, it is important to adjust for the covariate
effects to ensure generalizability of the results to other differ-
ent populations. Therefore, covariate-specific ROC curves are
widely used for evaluation of diagnostic accuracy of biomark-
ers within specific subgroups (Liu and Zhou, 2011).

In prospective cohort studies, information on biomarkers
and disease status is often collected over time. Therefore, eval-
uation of biomarker accuracy with event time outcomes has
attracted much interest, see Pepe, Zheng, and Jin (2008) for
comprehensive reviews. With event time outcomes, subjects
are classified as cases or controls depending on their survival
status, and the biomarker accuracy can be evaluated at var-
ious time points of interest. Heagerty and Zheng (2005) dis-
cussed several definitions of time-dependent TPR and FPR,
where instantaneous failures or cumulative failures are con-
sidered to define the cases, and dynamic survivors or a fixed
group of survivors are considered to define the controls.

In this manuscript, we consider two types of covariate-
specific time-dependent ROC curves: the Incident/Dynamic
(I/D) ROC and the Cumulative/Dynamic (C/D) ROC
(Heagerty and Zheng, 2005). Let Z be a single marker or a

combination of multiple markers, and X be a vector of covari-
ates that affect the failure time T . Without loss of generality,
we assume larger values of Z are associated with greater risks.
The covariate-specific incident TPR, cumulative TPR and dy-
namic FPR at cutoff point c are defined respectively as

TPRI(c; t, x) = P(Z > c|T = t, X = x),

TPRC(c; t, x) = P(Z > c|T ≤ t, X = x),

FPRD(c; t, x) = P(Z > c|T > t, X = x).

The I/D ROC curve and the C/D ROC curve are defined as

ROCI/D(p; t, x) = TPRI{[FPRD]
−1(p; t, x); t, x}, and

ROCC/D(p; t, x) = TPRC{[FPRD]
−1(p; t, x); t, x},

where p ∈ (0, 1). The I/D ROC curve is used to distinguish
subjects failing at time t from those failing after time t,
whereas the C/D ROC is used to distinguish subjects failing
by time t from those failing after time t. Various approaches
have been proposed to estimate the covariate-specific time-
dependent ROC curves in the literature. For example, Cai
et al. (2006) used generalized linear model concepts to char-
acterize the shape of the ROC curve, allowing covariates to
impact accuracy directly. Zheng and Heagerty (2004) modeled
the marker distribution for cases and controls as a function of
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disease status, covariates and disease onset time (cases only),
and calculated the induced covariate-specific ROC curves.
Song and Zhou (2008) adopted a joint model which assumes
that the failure time depends on the biomarker and the co-
variates through a regression model, and that the biomarker
depends on the covariates through a location model.

The existing methods on estimating time-dependent ROC
functions, with or without covariate adjustment, are mostly
developed for settings with complete observations. However,
in practice, values of biomarkers are not always observed due
to limitations in measuring technology or inhibitive measur-
ing cost. Despite the popularity of the time-dependent ROC
modeling, the problem of missing biomarkers has not been
well studied. In a related but different setting, Liu, Cai, and
Zheng (2012) proposed an inverse probability weighting ap-
proach to estimate the predictive values of biomarkers under
the case-cohort sampling design, where all cases and a ran-
dom subset of the full cohort are selected (Prentice, 1986).
They evaluated the accuracy of biomarkers in the absence of
covariates. In addition, the weight used to adjust for the se-
lection bias is proportional to the sampling fraction, which is
assumed known.

To complement the existing work, we consider estimation
of covariate-specific time-dependent ROC curves when the
missingness process needs to be estimated. To incorporate co-
variate effects, we consider a joint modeling approach where
the failure time depends on the biomarker and the covariates
through a proportional hazards model, and the biomarker
depends on the covariates through a semiparametric loca-
tion model (Song and Zhou, 2008). To handle the missing
biomarkers, we propose an inverse probability weighted esti-
mator, where individual contributions are weighted inversely
proportional to their selection probabilities. In real data ap-
plications, the missingness process is rarely known. To imple-
ment the inverse probability weighted estimator, we suggest
a parametric approach for the estimation of the missingness
process. However, the estimator may result in a large bias, if
the model for the missingness process is misspecified. Using
the projection method proposed by Robins, Rotnitzky, and
Zhao (1994), we further propose a fully augmented weighted
estimator, in which both the proportional hazards model and
the semiparametric location model are augmented. The re-
sulting augmented estimator enjoys the so-called “double ro-
bustness” property Robins et al. (1994) in the sense that the
estimator remains consistent if either the missing data pro-
cess or the conditional distribution of the biomarkers given
the observed data is correctly specified.

The rest of this article is organized as follows. In Section 2,
we propose the simple weighted estimators, which require cor-
rect specification of the missing data process. In Section 3, we
describe the fully augmented estimators, which incorporate
information from subjects with incomplete data. In Section
4, we develop large sample properties of the proposed estima-
tors. An extensive simulation study is conducted in Section
5. We illustrate the proposed approach using an Alzheimer’s
disease study in Section 6. General discussion is included in
Section 7.

2. Simple Weighted Estimators

For subject i = 1, . . . , n, let Ti, Ci, and Ri = min(Ti, Ci) de-
note the failure time, censoring time, and observed time. Let

δi = I(Ti ≤ Ci) denote the censoring indicator. Let Xi be a
p-dimensional vector of covariates and Zi a biomarker value
for subject i. We write Qi = (Zi, X

T
i )T . For simplicity, we as-

sume that Ci and Ti are independent given Qi. When multiple
biomarkers are available, we combine them into a compos-
ite score for disease prediction, and thus Zi could represent
a combination of multiple markers. We assume the combi-
nation is pre-specified and if one component is missing, the
composite score Zi is considered as missing.

We assume the failure time Ti satisfies the proportional
hazards model

λi(t) = λ0(t) exp(β0Zi + γ0
T Xi), (1)

where λ0(t) is an unspecified baseline hazard function, and
θ0 = (β0, γ0

T )T is a (p + 1)-dimensional parameter. Let Vi be
the missingness indicator taking 1 if Zi is observed and 0 oth-
erwise. Let Wi = (Ri, Xi, δi) denote the observed data. We as-
sume Zi is missing at random in that π(Wi) = P(Vi = 1 | Wi) =
P(Vi = 1 | Ri, Xi, Zi, δi). That is, given the observed data Wi,
the probability of observing Zi is conditionally independent
of Zi.

Following the Bayes’ theorem, we write TPR and FPR as

TPRC(c; t, x) =
∫ ∞

c
{1 − S(t|u, x)}dP(Z ≤ u|X = x)∫ ∞

−∞{1 − S(t|u, x)}dP(Z ≤ u|X = x)
, (2)

TPRI(c; t, x) =
∫ ∞

c
{f (t|u, x)}dP(Z ≤ u|X = x)∫ ∞

−∞{f (t|u, x)}dP(Z ≤ u|X = x)
, (3)

FPRD(c; t, x) =
∫ ∞

c
{S(t|u, x)}dP(Z ≤ u|X = x)∫ ∞

−∞{S(t|u, x)}dP(Z ≤ u|X = x)
, (4)

where S(t|u, x) = P(T > t|Z = u, X = x) is the conditional sur-
vival function, and f (t|u, x) = −dS(t|u, x)/dt is the condi-
tional density function. To estimate TPR and FPR, we
need estimators for S(t|z, x), f (t|z, x) and P(Z ≤ z | X =
x). Under the proportional hazards model, the survival
function is S(t | z, x) = exp{−�0(t) exp(β0z + γ0

T x)}, where

�0(t) = ∫ t

0
λ0(s)ds, and the density function is f (t|z, x) =

λ0(t) exp(β0z + γ0
T x)S(t | z, x).

A variety of methods have been proposed to handle miss-
ing covariates in the proportional hazards model, see Paik
and Tsai (1997), Chen and Little (1999), Wang and Chen
(2001), Wang, Xie, and Prentice (2001), Qi, Wang, and Pren-
tice (2005), Luo, Tsai, and Xu (2009), Xu et al. (2009). To
fix the idea, we focus on the inverse probability weighted es-
timating equation approach proposed by Qi et al. (2005), and
indicate that other approaches can be applied as well. Let
Ni(t) = δiI(Ri ≤ t) and Yi(t) = I(Ri ≥ t) be the counting pro-
cess and the at-risk process for subject i. The simple weighted
estimating equation in Qi et al. (2005) is given as

Uθ(θ) = 1

n

n∑
i=1

Vi

π(Wi)

∫ τ

0

{
Qi − S(1)(θ, t)

S(0)(θ, t)

}
dNi(t),

where for k=0, 1, 2, S(k)(θ, t)=n−1
∑n

i=1
Vi

π(Wi)
Yi(t)Q

⊗k
i exp(θTQi),

with a⊗0 = 1, a⊗1 = a and a⊗2 = aaT , and τ is the end of
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the study period. The simple weighted estimator θ̂ can be
obtained by solving Uθ(θ) = 0.

Since S(t|z, x) and f (t|z, x) are functions of both θ

and �0(t), we also need to estimate �0(t). By the
property of the counting process, we have E(dNi(t) |
Ft−) = Yi(t) exp(θT

0Qi)λ0(t)dt, where Ft is the σ-field gener-
ated by {(Ni(u), Yi(u)) : 0 ≤ u ≤ t, i = 1, . . . , n}. Therefore, the
weighted estimator for λ0(t)dt = d�0(t) with the plug-in esti-

mator θ̂ is given by

d�̂0(t; θ̂) = 1

n

∑n

i=1
{Vi/π(Wi)}dNi(t)

S(0)(̂θ, t)
. (5)

With the plug-in estimators θ̂ and d�̂0(t; θ̂), we can esti-

mate S(t|z, x) and f (t|z, x) by Ŝ(t|z, x) = exp{−�̂0(t) exp(β̂z +
γ̂T x)}, and f̂ (t|z, x)dt = d�̂0(t) exp(β̂z + γ̂T x)Ŝ(t|z, x).

To estimate P(Z ≤ z | X = x), we further assume a linear
regression model,

Zi = α0
T Xi + εi, (6)

where εi is a zero-mean random variable with unknown dis-
tribution function H(·) and α0 is a p-dimensional parameter.
The model is equivalent to the semiparametric location model
P(Zi ≤ z|Xi = x) = H(z − α0

T x) considered by Song and Zhou
(2008). The estimator α̂ can be obtained by solving the esti-
mating equation Uα(α) = 0, where

Uα(α) = 1

n

n∑
i=1

Vi

π(Wi)
(Zi − αT Xi)Xi.

The unknown distribution function H(z) is estimated by the
weighted estimator

Ĥ(z) = 1

n

n∑
i=1

ViI(Zi − α̂T Xi ≤ z)

π(Wi)
,

and thus P(Z ≤ z | X = x) is estimated by Ĥ(z − α̂T x).
Plugging the estimators for S(t|z, x), f (t|z, x) and

P(Z ≤ z | X = x) into equations (2)–(4) leads to estimators

T̂PRC(c; t, x), T̂PRI(c; t, x), F̂PRD(c; t, x). For example,

T̂PRC(c; t, x) =
∑n

i=1
Vi/π(Wi)

[
1 − Ŝ{t|Zi − α̂T (Xi − x), x}

]
I{Zi − α̂T (Xi − x) > c}∑n

i=1
Vi/π(Wi)

[
1 − Ŝ{t|Zi − α̂T (Xi − x), x}

] .

The resulting ROC estimators are denoted by R̂OCI/D(p; t, x)

and R̂OCC/D(p; t, x).
In practice, the selection probability π(Wi) is often un-

known. To implement the simple weighted estimators, we
postulate a parametric model, say πi(φ0) = π(Wi;φ0), to

characterize the missing data process, where φ0 is a fi-
nite dimensional parameter. Let �(φ) denote the result-
ing log likelihood, that is, �(φ) = ∑n

i=1
Vi log πi(φ) + (1 −

Vi) log{1 − πi(φ)}. Then the score function for φ is Uφ(φ) =
n−1

∑n

i=1
Uφ,i(φ), where

Uφ,i(φ) = Vi − πi(φ)

πi(φ){1 − πi(φ)}
∂πi(φ)

∂φ
.

Let S(k)(θ, φ, t) = 1
n

∑n

i=1
Vi

πi(φ)
Yi(t)Q

⊗k
i exp(θT Qi), k = 0, 1, 2.

The estimators (̂θP , φ̂) can be obtained by simultaneously
solving the estimating equations (Uθ(θ, φ)T , Uφ(φ)T )T = 0,
where

Uθ(θ, φ) = 1

n

n∑
i=1

Vi

π(Wi;φ)

∫ τ

0

{
Qi − S(1)(θ, φ, t)

S(0)(θ, φ, t)

}
dNi(t).

The corresponding estimator for d�0(t) is given by

d�̂P
0 (t; θ̂P , φ̂) = 1

n

∑n

i=1
{Vi/π(Wi, φ̂)}dNi(t)

S(0)(̂θP , φ̂, t)
. (7)

The resulting estimators of S(t|z, x), f (t|z, x) are denoted by

ŜP(t|z, x) and f̂P(t|z, x).
Similarly, α̂P can be obtained by solving (Uα(α, φ)T ,

Uφ(φ)T )T = 0, where

Uα(α, φ) = 1

n

n∑
i=1

Vi

πi(φ)
(Zi − αT Xi)Xi,

and the resulting estimator for H(z) is denoted by ĤP(z).

Plugging ŜP(t|z, x), f̂P(t|z, x) and ĤP(z) into equations (2)–(4)

leads to estimators T̂PRC
P
, T̂PRI

P
, and F̂PRD

P
. For example,

T̂PRC
P

can be written as

T̂PRC
P
(c; t, x) =

∑n

i=1
Vi/πi(φ̂)

[
1 − ŜP {t|Zi − α̂T

P(Xi − x), x}
]
I{Zi − α̂T

P(Xi − x) > c}∑n

i=1
Vi/πi(φ̂)

[
1 − ŜP {t|Zi − α̂T

P(Xi − x), x}
] .

The resulting estimators for ROC functions are denoted by

R̂OC
P

I/D(p; t, x) and R̂OC
P

C/D(p; t, x).

3. Fully Augmented Weighted Estimators

While the parametric method in Section 2 provides a flexible
scheme for modeling the missing data process, the consistency

of the ROC estimators still hinges on the correct specification
of the model for π(Wi). Moreover, the weighted estimating
equation approach in Section 2 only utilizes the subjects with
complete measurements, which may result in a loss of infor-
mation. To address these issues, we develop fully augmented
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weighted estimators of ROC. The key idea is to project the
corresponding estimating equations constructed in Section 2
onto the orthogonal complement of the tangent space for the
nuisance missing data process, and then construct new esti-
mating equations by removing redundant information Robins
et al. (1994).

For theoretical presentation, for now we assume π(Wi) and
f (Zi|Xi) are given. Following Qi et al. (2005), we estimate θ

by solving the following augmented estimating equations

UA(θ) = 1

n

n∑
i=1

Vi

π(Wi)

∫ τ

0

{
Qi − S

(1)
A (θ, t)

S
(0)
A (θ, t)

}
dNi(t)

+ 1

n

n∑
i=1

AA
i (θ), (8)

where for k = 0, 1, 2,

S
(k)
A (θ, t) = 1

n

n∑
i=1

[
Vi

π(Wi)
Yi(t)Q

⊗k
i exp(θT Qi)

+
(

1 − Vi

π(Wi)

)
Yi(t)E{Q⊗k

i exp(θT Qi) | Wi}
]
,

(9)

AA
i (θ) =

(
1 − Vi

π(Wi)

)∫ τ

0

[
E{QidNi(t) | Wi}

− S
(1)
A (θ, t)

S
(0)
A (θ, t)

E{dNi(t) | Wi}
]
. (10)

Note that the subjects with missing biomarkers contribute to
UA(θ) in two ways, one through the augmentation term AA

i (θ)

and the other through the risk set weighted average S
(k)
A (θ, t).

It is easily seen that, if π is correctly specified, equation (8) is
unbiased even if f (Zi|Wi) is mis-specified. On the other hand,
if f (Zi|Wi) is mis-specified, equation (8) is also unbiased even
if π is incorrectly specified. Therefore, the augmented estima-
tor θ̂A, obtained by solving UA(θ) = 0, enjoys the so-called
“double robustness” property (Robins et al., 1994; Wang and
Chen, 2001). In addition, under proportional hazards model,
it can be shown that

f (Zi|Wi) = exp{δi(β0Zi + γT
0 Xi)} exp{−�0(Ri) exp(β0Zi + γT

0 Xi)}f (Zi|Xi)∫
[exp{δi(β0Zi + γT

0 Xi)} exp{−�0(Ri) exp(β0Zi + γT
0 Xi)}f (Zi|Xi)]dZi

,

where f (Zi|Xi) follows the semiparametric location model (6).
We assume validity of the proportional hazards model and
allow for arbitrary error distribution in the location model.
Therefore, in our context, θ̂A is doubly robust in the sense
that it is consistent if either π(Wi) or f (Zi|Xi) is correctly
specified.

To construct doubly robust estimators of ROC functions,
we develop augmented weighted estimators of d�0(t), α and
H(z), respectively. Following the same principle, we give the
following augmented estimator of d�0(t):

d�̂A
0 (t; θ̂A) = 1

n

∑n

i=1
dNi(t)

S
(0)
A (̂θA, t)

. (11)

In contrast to the simple weighted estimator d�̂0(t; θ̂) in (5),

d�̂A
0 (t; θ̂A) has an augmentation term S

(k)
A (θ, t) that incor-

porates information from incomplete observations. In addi-
tion, in (11), the counting processes dNi(t) are averaged over
all subjects, whereas in (5), dNi(t) are averaged over sub-
jects with complete observations. In Web Appendix B, we
show that d�̂A

0 (t; θ̂A) also has the double robustness prop-

erty. By plugging in d�̂A
0 (t; θ̂A) and θ̂A, the resulting estima-

tors of S(t|z, x) and f (t|z, x)dt are denoted by ŜA(t|z, x) and

f̂A(t|z, x)dt.
Similarly, the augmented weighted estimating equation for

α is

UA
α (α) = 1

n

n∑
i=1

[
Vi

π(Wi)
(Zi − αT Xi)Xi

+
(

1 − Vi

π(Wi)

)
E{(Zi − αT Xi)Xi | Wi}

]
. (12)

Let α̂A denote the root of UA
α (α) = 0, and FZ(z | Wi) =

E{I(Zi ≤ z) | Wi}. The distribution function H(z) is estimated
by the augmented estimator

ĤA(z) = 1

n

n∑
i=1

{
Vi

π(Wi)
I(Zi − α̂T

AXi ≤ z)

+
(

1 − Vi

π(Wi)

)
FZ(z + α̂T

AXi | Wi)

}
. (13)

Plugging ŜA(t|z, x), f̂A(t|z, x) and ĤA(z) into equations

(2)–(4) leads to estimators T̃PRC(c; t, x), T̃PRI(c; t, x) and

F̃PRD(c; t, x). For example, letting Li = Zi − α̂T
A(Xi − x), we

write F̃PRD(c; t, x) as

∑n

i=1
Vi

π(Wi)
ŜA(t|Li, x)I(Li > c) + ∑n

i=1

{
1 − Vi

π(Wi)

}∫ ∞
c

ŜA(t|u, x)dFZ{u − α̂T
A(x − Xi) | Wi}∑n

i=1
Vi

π(Wi)
ŜA(t|Li, x) + ∑n

i=1

{
1 − Vi

π(Wi)

}∫ ∞
−∞ ŜA(t|u, x)dFZ{u − α̂T

A(x − Xi) | Wi}
.

The resulting estimators for ROC functions are denoted by

R̃OCI/D(p; t, x) and R̃OCC/D(p; t, x).
Our estimation procedures are fully augmented in the

sense that the estimating equations and estimators UA(θ),

d�̂A
0 (t; θ̂A), UA

α (α), ĤA(z) are all augmented. This ensures the
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double robustness of {̂θA, α̂A, ĤA(z), �̂A
0 (t; θ̂A)}. Therefore the

resulting estimators of ROC functions are also doubly robust.
One problem with the augmented estimators is that it does
not guarantee the TPR and FPR functions are monotone, be-
cause of some negative weighting of the data points induced
by the (1 − Vi/πi) term (Alonzo and Pepe, 2005). Our nu-
merical studies show that the augmented estimators do not
show dramatic deviation from monotonicity, therefore, the
non-monotonicity is not a major concern in this manuscript.

The above augmented estimation approach assumes π(Wi),
�0(t) and f (Zi|Xi) are given, while all of them are usually un-
known in practice. Qi et al. (2005) proposed a nonparametric
approach to estimate the unknown functions. However, their
approach is not applicable in the presence of high dimensional
Xi due to the curse of dimensionality. In this manuscript, we
consider a parametric approach to estimate those functions.
As illustrated in Section 2, we can postulate a parametric
model for π(Wi), say πi(φ0) = π(Wi;φ0). Similarly, we assume
a parametric distribution for the error term εi in the semipara-
metric location model for Zi|Xi. Note that this assumption is
not needed for the simple weighted estimator ĤP , because
it has the form of a weighted empirical estimator. On the
contrary, the augmented estimator ĤA involves estimation of
f (Zi|Wi), thus further assumption is required. ĤA remains
consistent if either one of the two parametric models for π

and f (Zi | Xi) is correctly specified.
Assume that the parametric distribution for εi is indexed

by η0, and let Sc(Zi|Xi; η, α) = ∂

∂η
log f (Zi|Xi; η, α) denote

the score function for η. The expression of the augmented
estimator also requires an estimator for d�0(t), and we

denote it by d�̃0(t, φ). The choice of d�̃0(t, φ) will be
discussed later. Let χ0 = (θ0, α0, φ0, η0). As a result of

replacing �0(t) with �̃0(t, φ), E(· | Wi) in (9), (10), and

(12) is denoted by Ẽ(· | Wi;χ), and the estimated S
(k)
A (θ, t)

in (9) is denoted by S̃
(k)
A (χ, t). Details about calculation of

Ẽ(· | Wi;χ) can be found in Web Appendix E. Let UAP(χ) =
(UAP

θ (χ)T , UAP
α (α, φ, η)T , UAP

η (α, φ, η)T , Uφ(φ)T )T , where

UAP
θ (χ) = 1

n

n∑
i=1

Vi

π(Wi, φ)

∫ τ

0

{
Qi − S̃

(1)
A (χ, t)

S̃
(0)
A (χ, t)

}
dNi(t)

+ 1

n

n∑
i=1

(
1 − Vi

π(Wi, φ)

)∫ τ

0

{
Ẽ{QidNi(t)|Wi;χ}

− S̃
(1)
A (χ, t)

S̃
(0)
A (χ, t)

Ẽ{dNi(t) | Wi;χ}
}

,

UAP
α (α, φ, η) = 1

n

n∑
i=1

[
Vi

π(Wi, φ)
(Zi − αT Xi)Xi

+
(

1 − Vi

π(Wi, φ)

)
Ẽ{(Zi − αT Xi)Xi | Wi;χ}

]
,

UAP
η (α, φ, η) = 1

n

n∑
i=1

{
Vi

π(Wi, φ)
Sc(Zi|Xi; η, α)

+
(

1 − Vi

π(Wi, φ)

)
Ẽ{Sc(Zi|Xi; η, α) | Wi}

}
.

The parameters χ can be estimated by solving UAP(χ) = 0,

and the resulting estimators are denoted by (̂θAP, α̂AP, φ̂, η̂).
Similarly, the augmented estimator of d�0(t) is given by

d�̂AP
0 (t; θ̂AP, φ̂, η̂) = 1

n

∑n

i=1
dNi(t)

S
(0)
A (̂θAP, φ̂, η̂, t)

.

where S
(0)
A (θ, φ, η, t) is given in equation (9) with parame-

terized π(Wi) and f (Zi|Xi). Let F̂Z(z | Wi;χ) = Ê{I(Zi < z) |
Wi;χ}, which is obtained with the plug-in estimator η̂. The
augmented estimator of H(z) is given by

ĤAP(z) = 1

n

n∑
i=1

{
Vi

π(Wi, φ̂)
I(Zi − α̂T

APXi ≤ z)

+
(

1 − Vi

π(Wi, φ̂)

)
F̂Z(z + α̂T

APXi | Wi;χ)

}
.

Recall that the estimators �̂AP
0 , ĤAP, and φ̂, η̂ depend on

the choice of d�̃0 in Ẽ(· | Wi;χ). One choice is the simple
weighted estimator given in (7). However, if π(Wi, φ) is mis-
specified, the simple weighted estimator can deviate from the
truth, which leads to incorrect estimation of Ẽ and biased esti-
mation of (�0, H, φ, η). To address this issue, we estimate the
parameters based on an EM-type iterative algorithm following
similar ideas of Wang and Chen (2001) and Zheng, Barlow,

and Cutter (2005). First, we calculate the estimators �̂AP
0 ,

ĤAP, φ̂ and η̂ with the initial estimator d�̃0(t) in (7). Second,

we update �̃0(t) using �̂AP
0 (t) obtained from the previous iter-

ation and recalculate all the estimators with �̃0(t) = �̂AP
0 (t).

Third, repeat the second step until certain convergence crite-
rion is met. With a slight abuse of notation, we still denote
the estimators obtained from this iterative algorithm by �̂AP

0 ,

ĤAP, φ̂ and η̂.
With the plug-in estimators �̂AP

0 , ĤAP, φ̂, and η̂, we denote

the corresponding ROC estimators by R̃OC
P

I/D(p; t, x, π(φ̂), η̂)

and R̃OC
P

C/D(p; t, x, π(φ̂), η̂). We show in the next section that

R̃OC
P

I/D and R̃OC
P

C/D are doubly robust, and they are asymp-

totically equivalent to R̃OCI/D and R̃OCC/D respectively. This
implies that estimation of π(Wi) and f (Zi|Xi) does not affect

the asymptotic distribution of R̃OC
P

I/D and R̃OC
P

C/D.

4. Inference in Large Samples

In this section, we outline theoretical results for the proposed
estimators. As shown in Section 2, the ROC functions de-
pend on both θ and �0(t). The asymptotics of the estimators
for θ have been established under various missing data pro-
cesses (Wang and Chen, 2001; Qi et al., 2005; Luo et al., 2009;
Xu et al., 2009). However, to the best of our knowledge, the
asymptotics of �0(t) in the presence of missing data remain
largely unexplored. As a byproduct of our asymptotic results,
we derive the limiting distributions of a variety of estima-
tors for �0(t). Therefore, our results complement the existing
works in the literature.
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In Lemmas 1 and 3 in Web Appendix B, we establish the
large sample properties of �̂0(t; θ̂) and �̂P

0 (t; θ̂P , φ̂). In Lemmas

2 and 4, we establish the large sample properties of α̂, Ĥ(z −
α̂T x) and α̂P , ĤP(z − α̂T

Px). Let Z and X be the supports of
Z and X, respectively. The following theorems establish the
asymptotic properties of the simple weighted estimators.

Theorem 1. Under conditions (A1)–(A9) in Web Appen-

dix A, given (x, t) ∈ X × [0, τ], n1/2{T̂PRC(·; t, x) − TPRC(·;
t, x)}, n1/2{T̂PRI(·; t, x)−TPRI(·; t, x)} and n1/2{F̂PRD(·; t, x) −
FPRD(·; t, x)} converge weakly to zero-mean Gaussian pro-
cesses on Z with covariances given in Web Appendix

C. Moreover, n1/2{R̂OCI/D(·; t, x) − ROCI/D(·; t, x)} and

n1/2{R̂OCC/D(·; t, x) − ROCC/D(·; t, x)} converge weakly to
zero-mean Gaussian processes on [p, q] with covariances given
in Web Appendix C and p, q defined in Web Appendix A.

Theorem 2. Under conditions (A1)–(A10) in Web Ap-
pendix A, if π(W ;φ0) is correctly specified, then given (x, t) ∈
X×[0, τ], n1/2{T̂PRC

P
(·; t, x)−TPRC(·; t, x)}, n1/2{T̂PRI

P
(·;

t, x)−TPRI(·; t, x)} and n1/2{F̂PRD
P
(·; t, x) − FPRD(·; t, x)}

converge weakly to zero-mean Gaussian processes with co-

variances given in Web Appendix C. n1/2{R̂OC
P

I/D(·; t, x) −
ROCI/D(·; t, x)} and n1/2{R̂OC

P

C/D(·; t, x) − ROCC/D(·; t, x)}
converge weakly to zero-mean Gaussian processes on [p, q]
with covariances given in Web Appendix C and p, q defined
in Web Appendix A.

Theorem 2 shows that simple weighted ROC estimators
with estimated selection probabilities remain consistent, pro-
vided the selection probability model πi(φ0) is correctly spec-
ified.

In Lemmas 5 and 6 in Web Appendix B, we establish the
asymptotic properties and the double robustness properties
of the augmented estimators �̂A(t; θ̂A), α̂A and ĤA(z). The
following theorem establishes the asymptotic properties of the
resulting ROC estimators. For theoretical presentation, we
assume π and f (Zi|Wi) are known.

Theorem 3. Under conditions (A1)–(A9) in Web Appen-

dix A, given (x, t) ∈ X × [0, τ], n1/2{T̃PRC(·; t, x) − TPRC(·;
t, x)}, n1/2{T̃PRI(·; t, x) − TPRI(·; t, x)} and n1/2{F̃PRD(·;
t, x) − FPRD(·; t, x)} converge weakly to zero-mean Gaussian
processes on Z with covariances given in Web Appendix C.

As a result, given (x, t) ∈ X × [0, τ], n1/2{R̃OCI/D(·; t, x) −
ROCI/D(·; t, x)} and n1/2{R̃OCC/D(·; t, x) − ROCC/D(·; t, x)}
converge weakly to zero-mean Gaussian processes on [p, q]
with covariances given in Web Appendix C and p, q defined
in Web Appendix A.

In Web Appendix B, we show that �̂AP
0 (t; θ̂AP, φ̂, η̂)

and ĤAP(z − α̂T
APx; φ̂, η̂) are asymptotically equivalent to

�̂A
0 (t; θ̂A) and ĤA(z − α̂T

Ax) respectively. The following theo-
rem summarizes the asymptotic properties of the augmented
ROC estimators with estimated π and f (Zi|Xi).

Theorem 4. Under conditions (A1)–(A14) in Web Ap-
pendix A, given (x, t) ∈ X × [0, τ], if both π(Wi) and

f (Zi|Xi) are correctly specified, T̃PR
P

C
(·; t, x, π(φ̂), η̂),

T̃PR
P

I
(·; t, x, π(φ̂), η̂) and F̃PR

P

D
(·; t, x, π(φ̂), η̂) are asymptoti-

cally equivalent to T̃PRC(·; t, x), T̃PRI(·; t, x) and F̃PRD(·; t, x)
on Z, respectively. In addition, R̃OC

P

I/D(·; t, x, π(φ̂), η̂) and

R̃OC
P

C/D(·; t, x, π(φ̂), η̂) are asymptotically equivalent to

R̃OCI/D(·; t, x) and R̃OCC/D(·; t, x) on [p, q], respectively.

Theorem 4 implies that estimation of π(Wi) and f (Zi | Xi)
does not affect the asymptotic properties of the augmented
estimators. This is because the derivatives of the estimating
equations such as UAP

θ (χ) with respective to η and φ con-
verge to zero in probability. By the Taylor expansion, the
error of estimating η and φ is asymptotically ignorable. Note
that, this property requires correct specification of both π(Wi)
and f (Zi | Xi). In practice, it is of interest to study the vari-
ance formula when one component is misspecified. In Web
Appendix D, we briefly discuss the asymptotics of the aug-
mented estimators under misspecified models.

Although we have derived the asymptotic distributions of
the proposed estimators, it is intractable to obtain the explicit
analytic expressions for the variance-covariance processes. To
alleviate this difficulty, we approximate the limiting distri-
butions using resampling techniques, as proposed and used
by Parzen, Wei, and Ying (1994), Cai and Pepe (2002), and
others. Details about the variance estimation procedure can
be found in Web Appendix E.

5. Simulation Study

We conduct extensive simulation studies to compare the per-
formance of the augmented weighted estimators with that of
the simple weighted estimators and the estimators from the
complete-case analysis. The sample size is n = 500 and the
number of simulation replications is 300. The covariate Xi1 is
generated from uniform (−1, 1), and Xi2 is generated from a
Bernoulli distribution with mean 0.5. The biomarker Zi is gen-
erated from a normal distribution with mean −Xi1 − 0.5Xi2

and variance 1, that is, αT
0 = (−1, −0.5). The failure time Ti is

generated according to the proportional hazards model, with
θT
0 = (1.5, 1.5, 1.5), and λ0(t) = 0.1, which results in a median

survival time of 4. The censoring time Ci followed a uniform
distribution with the upper limit selected to yield a censoring
rate of 40%.

We evaluate the following estimators for the ROC func-
tions: (1) the estimators based on the full-cohort, (2) the esti-
mators from the complete-case analysis (CC), (3) the simple
weighted estimator with the true π, denoted as SWE-π, (4)
the simple weighted estimator with the estimated π, denoted
as SWE-π̂, (5) the augmented weighted estimator with true π

and true f (Z|X), denoted as AWE-π-fZ|X, (6) the augmented
weighted estimator with estimated π and estimated f (Z|X),

denoted as AWE-π̂-f̂Z|X, and (7) the augmented weighted es-

timator with misspecified f (Z|X), denoted as AWE-π̂-f̂Z|X1 ,
where a misspecified model Zi = αXi1 + εi, εi ∼ N(0, σ2) is
used to model Zi|Xi. Both cumulative and incident ROC
curves are evaluated at t = 5, X1 = 0, X2 = 1, and FPR
= 0.1, 0.3, 0.5. We consider two sets of simulation scenarios,
with different missingness probabilities for the biomarker Zi.

Under the first simulation setting, the selection probability
is πi = 0.7δi + 0.3(1 − δi), which results in 46% of missingness.
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Table 1
Simulation results for ROC estimators evaluated at t = 5,

X1 = 0, and X2 = 1 under the first scenario. B is the
empirical bias (×1000); SE is the sample standard error
(×1000); ASE is the average theoretical standard errors

(×1000); CP is the coverage probability of the 95%
confidence interval (×100).

Incident ROC Cumulative ROC

Approach B SE ASE CP B SE ASE CP

v = 0.1
Full cohort 0 17 17 96.7 −1 24 24 94.0
CC −46 18 19 31.5 −4 34 32 93.2
SWE-π 2 24 25 94.9 2 32 34 96.2
SWE-π̂ 1 23 25 96.9 1 32 33 96.9
AWE-π-fZ|X 3 25 23 95.3 4 34 33 93.6

AWE-π̂-f̂Z|X 3 24 23 95.3 4 33 32 94.3

AWE-π̂-f̂Z|X1 3 24 23 93.6 4 33 33 93.2

v = 0.3
Full cohort −1 19 19 96.2 0 14 14 94.9
CC −53 24 25 42.3 −6 20 19 92.6
SWE-π −1 29 29 95.6 0 19 21 95.6
SWE-π̂ −2 27 29 96.9 0 18 20 96.3
AWE-π-fZ|X 1 29 28 94.3 3 21 20 93.1

AWE-π̂-f̂Z|X 1 29 28 95.0 2 21 20 93.1

AWE-π̂-f̂Z|X1 2 30 28 93.2 3 21 21 92.9

v = 0.5
Full cohort 0 13 14 97.1 0 8 8 95.3
CC −38 20 20 55.2 −5 11 11 93.4
SWE-π −1 21 22 94.0 0 10 13 96.9
SWE-π̂ −1 20 22 95.3 0 10 11 95.9
AWE-π-fZ|X 1 22 21 93.2 2 12 12 94.0

AWE-π̂-f̂Z|X 1 21 21 94.3 1 12 11 92.3

AWE-π̂-f̂Z|X1 0 23 21 92.2 1 12 12 94.3

Table 1 exhibits the results for the various estimators under
the first simulation scenario. Bias is the empirical bias. SE
denotes the square root of the sample variance of the esti-
mates. ASE denotes the average of the standard error esti-
mates using methods discussed in Web Appendix E. The 95%
coverage probability is constructed using ASE. For the esti-
mators with π̂, π is estimated as a function of W by fitting
the logistic regression, thus the missing data process is cor-
rectly specified. The complete-case analysis yields large bias
because the selection probability is strongly associated with
the outcome variable δ. All remaining estimators show negligi-
ble bias, which agrees with the consistency properties of SWE
and AWE under the correctly specified missing data model.
Comparing the efficiency of the proposed estimators, we find
that SWE-π̂, AWE-π̂-f̂Z|X, and AWE-π-fZ|X have comparable
efficiency with SWE-π. Note that, although it can be shown
that (̂θP, α̂P, �̂P

0 , ĤP) and (̂θA, α̂A, �̂A
0 , ĤA) have higher effi-

ciency than (̂θ, α̂, �̂, Ĥ), this result may not be generalizable
to the ROC estimators, because TPR and FPR are nonlin-
ear functions of (θ, α, �0, H), and the correlation among the
estimators of (θ, α, �0, H) is difficult to characterize. This ex-
plains why we do not observe a substantial efficiency gain

Table 2
Simulation results for ROC estimators evaluated at t = 5,
X1 = 0, and X2 = 1 under the second scenario. G denotes
(R, X1, X

2
1, δ). B is the empirical bias (×1000); SE is the

sample standard error (×1000); ASE is the average
theoretical standard errors (×1000); CP is the coverage

probability of the 95% confidence interval (×100).

Incident ROC Cumulative ROC

Approach B SE ASE CP B SE ASE CP

v = 0.1
Full cohort 0 17 17 97.1 −1 25 24 93.2
CC 61 28 29 46.6 −112 40 43 20.8
SWE-π −2 30 31 95.6 −5 56 52 91.3
SWE-π̂(δ) −12 22 24 95.1 −165 43 46 5.3
SWE-π̂(G) 1 28 30 96.1 −5 55 47 90.3
AWE-π-fZ|X 6 32 31 95.1 7 57 57 93.7

AWE-π̂(δ)-f̂Z|X 4 25 21 90.8 2 34 36 94.6

AWE-π̂(G)-f̂Z|X 2 30 31 97.6 4 54 57 93.2

AWE-π̂(G)-f̂Z|X1 7 33 32 92.1 8 60 57 90.7

v = 0.3
Full cohort −1 19 19 96.1 0 14 14 95.1

CC 59 27 28 40.2 −46 26 27 61.7
SWE-π −1 33 34 92.2 −2 31 32 94.2
SWE-π̂(δ) −13 25 27 97.5 −87 29 31 12.6
SWE-π̂(G) 1 31 34 94.6 −1 30 27 91.7
AWE-π-fZ|X 6 33 35 96.6 5 31 31 94.2

AWE-π̂(δ)-f̂Z|X 4 27 26 91.8 4 20 22 96.1

AWE-π̂(G)-f̂Z|X 3 34 35 96.6 3 29 32 92.7

AWE-π̂(G)-f̂Z|X1 6 35 36 93.1 7 33 33 92.6

v = 0.5
Full cohort 0 13 14 98.5 0 7 8 96.6
CC 39 18 18 84.5 −18 15 15 84.5
SWE-π 1 24 25 92.7 −1 16 21 95.1
SWE-π̂(δ) −8 19 21 96.6 −42 17 18 34.5
SWE-π̂(G) 1 23 24 95.1 0 16 16 94.2
AWE-π-fZ|X 5 25 26 95.1 3 17 19 95.1

AWE-π̂(δ)-f̂Z|X 3 19 18 91.3 2 10 12 97.1

AWE-π̂(G)-f̂Z|X 3 26 27 94.2 3 16 18 94.7

AWE-π̂(G)-f̂Z|X1 4 26 26 90.2 4 18 20 94.0

of AWE-π-fZ|X over SWE-π. The augmented estimator with

misspecified Z|X, AWE-π̂-f̂Z|X1 , is also unbiased due to its
double robustness property, but it shows larger SE than its
competitors. For unbiased estimators, the estimated standard
errors track the empirical standard errors well, and the cov-
erage probabilities are close to the nominal level.

Under the second simulation setting, the selection proba-
bility is given by πi = 1/{1 + exp(3 − 0.8Ri − 0.5X2

1i − X1i −
0.5δi)}, which results in 42% of missingness. For the pur-
pose of comparison, we report estimators with misspecified
π̂i, where πi is estimated using logistic regression with δi as
covariate only, and also estimators with correctly specified π̂i,
where πi is estimated using logistic regression with covari-
ates Gi = (Ri, X

2
i1, Xi1, δi). The simulation results are summa-

rized in Table 2. Similar to the first setting, the complete-case
analysis leads to biased results. In addition, SWE-π̂(δ) also
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Table 3
Simulation results for TPR and FPR estimators evaluated at t = 5, (X1, X2) = (0, 1) under the second scenario. G denotes
(R, X1, X

2
1, δ). B is the empirical bias (×1000); SE is the sample standard error (×1000); ASE is the average theoretical

standard errors (×1000); CP is the coverage probability of the 95% confidence interval (×100).

Incident TPR Cumulative TPR FPR

Approach B SE ASE CP B SE ASE CP B SE ASE CP

z = −1.4
Full cohort 0 20 19 96.1 0 8 7 94.6 0 37 40 96.7
CC −12 25 23 92.9 −39 19 16 28.8 −90 39 38 40.2
SWE-π −1 32 28 93.4 −2 17 20 95.6 −3 49 53 96.7
SWE-π̂(δ) 10 23 21 88.5 −20 16 13 70.1 25 39 40 92.9
SWE-π̂(G) −1 32 27 94.0 −1 18 15 93.4 −4 49 53 93.8
AWE-π-fZ|X 3 32 33 94.0 2 16 21 96.9 −4 49 51 96.1

AWE-π̂(δ)-f̂Z|X 1 26 28 95.6 0 11 14 93.4 −5 47 46 94.0

AWE-π̂(G)-f̂Z|X 1 32 32 95.6 1 16 17 96.1 −4 50 50 95.1

AWE-π̂(G)-f̂Z|X1 5 33 23 92.6 2 17 20 95.8 −3 45 50 97.6

z = −1.1
Full cohort 0 30 28 94.0 0 13 11 92.6 2 38 38 94.6
CC −17 39 34 88.0 −70 31 25 23.3 −83 38 34 34.7
SWE-π −1 48 42 91.8 −3 30 26 91.8 −2 51 51 95.1
SWE-π̂(δ) 15 38 33 88.5 −42 29 21 57.6 30 41 41 90.7
SWE-π̂(G) 0 47 42 90.7 −2 29 24 90.6 −2 49 51 91.3
AWE-π-fZ|X 4 50 50 93.4 3 29 31 94.0 −3 51 49 92.5

AWE-π̂(δ)-f̂Z|X 1 42 44 96.7 2 20 24 97.2 −5 48 45 93.5

AWE-π̂(G)-f̂Z|X 2 49 50 94.6 2 26 26 93.5 −3 51 48 91.8

AWE-π̂(G)-f̂Z|X1 7 49 49 95.3 5 28 29 93.0 0 47 48 95.3

z = −0.8
Full cohort 1 37 37 95.1 1 19 17 91.8 2 29 30 96.1
CC −18 48 44 97.5 −115 43 35 10.8 −63 30 26 35.8
SWE-π 1 58 55 92.4 −4 44 39 90.4 1 43 42 95.1
SWE-π̂(δ) 25 49 45 91.3 −75 42 31 38.5 30 37 37 91.8
SWE-π̂(G) 0 58 55 92.4 −4 43 37 89.6 −2 40 41 92.3
AWE-π-fZ|X 3 61 61 92.4 4 44 43 92.9 −3 43 39 92.4

AWE-π̂(δ)-f̂Z|X −3 52 58 97.2 0 30 37 98.3 −7 37 37 92.9

AWE-π̂(G)-f̂Z|X −1 59 60 92.9 3 41 41 94.0 −5 41 38 90.9

AWE-π̂(G)-f̂Z|X1 5 61 60 94.4 7 44 41 91.2 −4 40 38 92.1

yields substantial bias, while AWE-π̂(δ)-f̂Z|X remains consis-
tent. This agrees with our theoretical results that the simple
weighted estimators rely on the correct specification of the
missing data process, whereas the augmented weighted es-
timators are doubly robust. Similar to the first setting, the
estimators with correctly specified π̂, SWE-π̂(G) and AWE-

π̂(G)-f̂Z|X, have comparable efficiency as SWE-π. The aug-

mented estimator with misspecified Z|X, AWE-π̂(G)-f̂Z|X1 , is
consistent and has slightly larger SE than its competitors.
To further explore the performances of the SWE and AWE,
we compare the estimated TPR and FPR using different ap-
proaches in Table 3. The same conclusion is drawn. In par-
ticular, SWE-π̂(δ) yields substantial bias in TPRI, TPRC and
FPR, while the augmented estimators show small bias for all
these quantities.

Additional simulation results with varying sample sizes,
censoring rates, missing proportions, and a nonconstant base-
line hazard rate can be found in Web Appendix F.

In summary, we find that the AWE is consistent provided
one of the models for π and Z|X is correctly specified. In addi-

tion, AWE achieves similar or higher efficiency than SWE-π,
and its standard errors and confidence intervals can be well
approximated using the resampling methods. These observa-
tions hold for both ROC and TPR, FPR estimation. Based
on our simulation results, we recommend the use of the aug-
mented estimators in practice.

6. Application to the Alzheimers Disease
Neuroimaging Initiative Study

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study is a research investigation designed to develop clinical,
imaging, genetic, and biochemical biomarkers for the early
detection and tracking of Alzheimer’s disease (AD) (quoted
from http://adni.loni.ucla.edu/). The study is supported by
the NIH, private pharmaceutical companies, and nonprofit or-
ganizations. Enrollment target was 800 participants, includ-
ing 400 subjects diagnosed with mild cognitive impairment
(MCI), 200 subjects with early AD and 200 elderly control
subjects. Participants were enrolled on a rolling basis, and
were evaluated every 6 months. One of the major goals of
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Figure 1. Time-dependent ROC curves for neuroimaging biomarkers in the ADNI study. The upper panels are cumulative
ROC curves at t =24, for individuals with X1 = 75, X2 = 1 and X1 = 75, X2 = 0 respectively. The lower panels are incidence
ROC curves at t = 24, for individuals with X1 = 75, X2 = 1 and X1 = 75, X2 = 0 respectively. Solid lines represent the fully
augmented estimator, with 95% point-wise confidence interval in shaded areas. Dashed lines represent the simple weighted
estimator. Dotted lines represent the complete-case estimator.

the ADNI study is to identify biomarkers that are associated
with progression from MCI to AD. Sensitivity and specificity
were considered important statistical techniques for assessing
biomarkers in the disease progression.

We analyze the dataset for the 393 MCI patients, using
onset of AD as the event outcome. The biomarkers include
cognition, genetics, neuroimaging, and cerebrospinal fluid
measures, which are subject to missing values. Patient demo-
graphics, such as age, gender, education and Apolipoprotein E
(ApoE), are completely observed. To illustrate our approach,
we evaluate the diagnostic accuracy of the neuroimaging
biomarkers, while adjusting for age and ApoE. We consider
two neuroimaging biomarkers: hippocampus volume and

ventricular volume, because both hippocampus and ventricle
are primary brain regions that modulate cognitive function.
To avoid overestimation, we use a predefined rule (take the
difference) to combine the two biomarkers after standard-
ization. Using the previously introduced notations, Zi is the
composite score of the baseline neuroimaging biomarkers, X1i

is the baseline age, X2i is the ApoE status, and Ti is the time
to AD since enrollment. Among these 393 MCI patients, 118
had missing neuroimaging biomarkers, resulting in about
30% of missingness.

We fit logistic regression models to the selection indica-
tor Vi. A model selection procedure is performed with Ti, δi,
X1i, X2i and the quadratic and interaction terms of these vari-
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Table 4
Estimates and SEs for time-dependent TPR and FPR in the ADNI study, evaluated at t = 24, X1 = 75, and X2 = 0, 1

X1 = 75, X2 = 0 X1 = 75, X2 = 1

Approach z = −0.3 z = 0.1 z = 0.5 z = −0.3 z = 0.1 z = 0.5

Incident TPR
CC 0.78 (0.04) 0.49 (0.06) 0.20 (0.04) 0.83 (0.03) 0.54 (0.05) 0.22 (0.03)
SWE-π̂ 0.82 (0.03) 0.52 (0.04) 0.23 (0.04) 0.85 (0.03) 0.56 (0.05) 0.24 (0.04)

AWE-π̂-f̂Z|X 0.82 (0.03) 0.53 (0.04) 0.24 (0.04) 0.87 (0.03) 0.57 (0.05) 0.24 (0.04)

Cumulative TPR
CC 0.81 (0.03) 0.53 (0.06) 0.22 (0.04) 0.85 (0.02) 0.62 (0.05) 0.26 (0.04)
SWE-π̂ 0.84 (0.02) 0.56 (0.04) 0.26 (0.04) 0.87 (0.03) 0.63 (0.05) 0.29 (0.04)

AWE-π̂-f̂Z|X 0.84 (0.02) 0.56 (0.04) 0.26 (0.04) 0.87 (0.03) 0.64 (0.05) 0.30 (0.04)

FPR
CC 0.66 (0.04) 0.31 (0.03) 0.11 (0.02) 0.67 (0.03) 0.35 (0.05) 0.11 (0.03)
SWE-π̂ 0.69 (0.02) 0.34 (0.02) 0.12 (0.02) 0.69 (0.03) 0.36 (0.05) 0.12 (0.02)

AWE-π̂-f̂Z|X 0.69 (0.03) 0.34 (0.02) 0.12 (0.02) 0.70 (0.03) 0.38 (0.05) 0.12 (0.02)

ables as candidate predictors. The best model is selected using
Akaike information criterion, which includes Ti, δi and their
interaction as predictors. We then estimate the ROC curves
using the simple weighted estimator, the augmented weighted
estimator as well as the complete-case analysis, with π̂ esti-
mated from the selected logistic regression model.

The upper panels of Figure 1 exhibit the estimated cumula-
tive ROC curves evaluated at t = 24 months, for individuals of
75 years old with ApoE4 positive and ApoE4 negative respec-
tively. The lower panels of Figure 1 present the correspond-
ing incident ROC curves. It appears that the estimated ROC
curves and the 95% pointwise confidence intervals (CIs) using
three approaches are very close. For clarity of presentation,
we only show the CIs of the augmented estimator. Though the
estimated ROC curves are similar using all three approaches,
the estimated TPR and FPR show some differences. Specifi-
cally, as shown in Table 4, the complete-case estimator yields
lower TPR and FPR than the other two estimators. Because
sensitivity (TPR) and specificity (1 − FPR) are the most clin-
ically relevant quantities in AD research, it is important to
find an estimator that is unbiased in these quantities. We ad-
vocate the use of the augmented weighted estimator, because
it is more robust to model misspecification.

In the following, we summarize the analytical results ob-
tained from the augmented estimator. The cumulative ROC
curves show that the combined marker has moderate capac-
ity for discriminating 75 years old MCI individuals who would
experience AD in the next 24 months from those who would
not. In particular, the estimated AUC is 0.69 (CI: 0.63–0.75)
for the ApoE4 positive group, and 0.66 (CI: 0.61–0.70) for
the ApoE4 negative group. For the incident ROC curves, the
estimated AUC is 0.64 (CI: 0.60–0.68) for the ApoE4 posi-
tive group, and 0.63 (CI: 0.59–0.67) for the ApoE4 negative
group. Figure 2 shows the AUC as a function of time using
different estimators. The C/D AUC is slightly increasing over
time, suggesting that the combined marker has higher accu-
racy in predicting late onset of AD. The difference of C/D

AUC in the two ApoE groups shows the impact of ApoE4 on
the classification accuracy of the biomarkers.

7. Discussion

Missing biomarker problem is commonly encountered in time-
to-event data. Existing methods on estimating the time-
dependent accuracy measures of biomarkers are mainly devel-
oped for complete data. In the presence of missing biomarkers,

Figure 2. AUC as a function of time for neuroimaging
biomarkers in the ADNI study. The upper panel shows the
AUCs for the cumulative ROCs and the lower panel shows
the AUCs for the incidence ROCs. For both panels, the black
curves pertain to individuals with X1 = 75, X2 = 1 and the
gray curves pertain to individuals with X1 = 75, X2 = 0. Solid
lines represent the fully augmented estimator. Dashed lines
represent the simple weighted estimator. Dotted lines repre-
sent the complete-case estimator.
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the naive complete-case analysis may lead to inconsistent and
inefficient estimation. Therefore, it is urgent to develop es-
timation procedures that account for the missingness effect.
The proposed simple weighted estimators correct the bias by
inversely weighting each completely observed subject by its se-
lection probability, and they are shown to be consistent when
the selection probability is correctly specified. Furthermore,
we propose augmented weighted estimators which are robust
against misspecification of the selection probability. Both the-
oretical and numerical results suggest that the augmented
weighted estimator outperforms the complete-case analysis
and the simple weighted estimator, because it remains con-
sistent if either the selection probability or the missing data
given the observed data is correctly specified, and it often has
comparable or improved efficiency than the other estimators.
We suggest the use of the augmented weighted estimators,
especially when the selection probability is unknown.

In addition to studying biomarker accuracy at a given time
point t, it is often of interest to evaluate the biomarker’s
overall predictive accuracy. Heagerty and Zheng (2005) pro-
posed a global summary measure for the time-dependent
ROC curve, which is defined as: C = P(Zj > Zk|Tj < Tk). To
incorporate covariate effect, we extend their definition to
a covariate-specific summary measure: Cx = P(Zj > Zk|Tj <

Tk, Xj = Xk = x). Cx characterizes the probability that, among
subjects with covariate values x, those who fail at an earlier
time have larger marker values. To estimate this summary
measure, we write it as Cx = 2

∫
t
AUCI/D(t | x)f (t | x)S(t |

x)dt, where AUCI/D can be estimated by numerical integra-
tion under the I/D ROC curves, and f (t | x), S(t | x) can be
estimated under both the location model and the proportional
hazards model. We have established augmented estimators for
each component, thus the resulting estimator for Cx also in-
herits the double robustness property.

There are several directions for future research. First, in
this manuscript, we assume the covariates are fully observed.
It would be of interest to extend our method to accommodate
missingness in both biomarkers Zi and covariates Xi, where
Xi can be partitioned into fully observed covariates Xc

i and
covariates subject to missingness Xm

i . Second, we have con-
fined our attention to right censored survival data. In prac-
tice, it might be challenging for clinicians to identify exact
time of disease onset, thus the survival outcomes might be
subject to interval censoring. It is an important extension to
study biomarker accuracy under both missingness in biomark-
ers and interval censoring in survival outcomes. Finally, the
proposed ROC estimation approaches are built on the pro-
portional hazards model. To relax the model assumption, one
can consider more flexible models such as the semiparametric
transformation model. Further investigation is warranted.

8. Supplementary Materials

Web Appendices, Tables referenced in Sections 3, 4, 5, and
the R code implementing the new methods are available with
this paper at the Biometrics website on Wiley Online Library.
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