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SUMMARY

Aims: Automated hippocampal segmentation is an important issue in many neuroscience

studies. Methods: We presented and evaluated a novel segmentation method that utilized

a manifold learning technique under the multiatlas-based segmentation scenario. A mani-

fold representation of local patches for each voxel was achieved by applying an Isomap algo-

rithm, which can then be used to obtain spatially local weights of atlases for label fusion.

The obtained atlas weights potentially depended on all pairwise similarities of the popula-

tion, which is in contrast to most existing label fusion methods that only rely on similarities

between the target image and the atlases. The performance of the proposed method was

evaluated for hippocampal segmentation and compared with two representative local

weighted label fusion methods, that is, local majority voting and local weighted inverse dis-

tance voting, on an in-house dataset of 28 healthy adolescents (age range: 10–17 years) and

two ADNI datasets of 100 participants (age range: 60–89 years). We also implemented hip-

pocampal volumetric analysis and evaluated segmentation performance using atlases from

a different dataset. Results: The median Dice similarities obtained by our proposed method

were approximately 0.90 for healthy subjects and above 0.88 for two mixed diagnostic

groups of ADNI subjects. Conclusion: The experimental results demonstrated that the pro-

posed method could obtain consistent and significant improvements over label fusion strat-

egies that are implemented in the original space.

Introduction

Accurate segmentation of subcortical structures from brain mag-

netic resonance (MR) images plays an increasingly important role

in many medical applications. For example, the hippocampus, a

deep-brain structure known for its involvement in learning and

memory, is damaged in many psychiatric disorders, such as tem-

poral lobe epilepsy [1], schizophrenia [2], and Alzheimer’s disease

(AD) [3,4]. The size and morphology of the hippocampus

constitutes a valuable tool in clinical diagnosis, treatment, and

assessment of these diseases. The current gold standard for hippo-

campus segmentation is manual delineation by experts. However,

manual segmentation is extremely time-consuming and is subject

to inter- and intrarater differences [5], thus limiting its clinical

application. Therefore, automated segmentation techniques are

desirable, particularly when the dataset is large.
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Multiatlas-based segmentation is currently one of the most

accurate automatic approaches [6–8]. In this method, an atlas is

defined as an image with manual labels. The segmentation starts

by registering each intensity atlas image to the target image and

then warping the corresponding label image to the target space

using the same transformation. Each warped label image is

regarded as candidate segmentation for the target image. Subse-

quently, label fusion is implemented by integrating all candidate

segmentations into the definitive segmentation for the target. Sev-

eral label fusion methods were developed to further improve the

quality of multiatlas-based segmentation. One class of label fusion

methods is based on Simultaneous Truth and Performance Level

Estimation (STAPLE) framework, which does not use the intensi-

ties of the atlases after registration [9–12]. Another class of combi-

nation strategy is based on ad hoc voting. The simplest form is

majority voting, where the final label is determined to be the one

in which most segmentations agree [13]. Recently, it was demon-

strated that weighted label fusion approaches using global [14],

local [15,16], and nonlocal [17] intensity similarity metrics are

successful in practice. The criterion of weighted voting is to assign

larger weights to the atlases that are more similar with the target

image. Atlas weights derived from local or nonlocal similarity out-

performed the global-based methods [14,17,18]. Additionally,

more sophisticated fusion methods were proposed, such as joint

label fusion, which models the pairwise dependency between the

atlases as the joint probability of the two atlases producing the

same segmentation error, that can be used to reduce the influence

of redundancy information on the atlas dataset [19,20].

It is worth noting that the label fusion methods mentioned

above were conducted in original high-dimensional space (on the

order of the number of image/patch voxels). However, not all

dimensions are useful for image analysis. Learning the low-

dimensional representation of high-dimensional data can reduce

the complexity and improve the interpretability of image data

[21]. Manifold learning assumes that images are points on a low-

dimensional manifold embedded in a high-dimensional space and

provide a possibility to obtain the underlying manifold. First, a

graph representation of the image data was obtained, where each

vertex of the graph represents an image, and each edge represents

similarity between the images. Then, an embedded manifold rep-

resentation was derived from the graph matrix. Manifold learning

has been useful in many medical imaging applications [22], such

as segmentation [23], registration [24,25], and classification

[21,26,27]. In the multiatlas segmentation scenario, manifold

learning has been successfully applied in atlas selection, that is, to

select atlases that are near the target image on the learning mani-

fold to implement segmentation [28–33]. In their work, the geo-

desic distances used to construct the graph were based on global

image similarities.

Herein, we proposed a multiatlas segmentation scheme that

employs manifold learning to determine spatially local weights for

label fusion in a low-dimensional coordinate space. A local search

strategy was adopted to select a candidate patch for each atlas.

Then, the manifold coordinates of local patches were achieved by

applying a manifold learning algorithm. Finally, label fusion was

conducted in the low-dimensional space. The performance of the

proposed method has been evaluated on one in-house dataset and

two ADNI datasets using leave-one-out cross-validations. We also

investigated the influences of different parameters and then com-

pared the results with two widely used label fusion methods, that

is, local majority voting (LMV, the majority voting fusion strategy

based on local patches) and local weighted inverse distance voting

(LWINV), which we implemented in the original high-dimen-

sional space. In addition, we implemented hippocampal volumet-

ric analysis and evaluated segmentation performance using atlases

from different datasets.

Materials and Methods

Datasets

We utilized three datasets in this study. First, we applied our

method to segment the hippocampus in 28 healthy adolescents.

Second, we demonstrated the ability of our method to address

pathological variability using two ADNI datasets.

In-House Dataset

This dataset contains sagittal T1-weighted MR images of 28

healthy adolescents (15 boys, 13 girls) with an average age of

13.8 years (age range: 10–17 years). All the MR images were

acquired using a 3.0T Siemens Tim Trio MRI scanner in the Imag-

ing Center for Brain Research, Beijing Normal University. The

imaging parameters were as follows: repetition time

[TR] = 2530 ms, echo time [TE] = 3.39 ms, flip angle = 7°, slice

thickness = 1 mm, field of view = 256 9 256 mm2, matrix

size = 256 9 256, and number of slices = 176.

All scans were corrected for intensity inhomogeneity by the N3

algorithm [34] and then aligned to the MNI152 template space

using a linear transformation. Subsequently, the hippocampus

was manually delineated in stereotaxic space by two blinded rat-

ers according to previously described protocols [35]. The manual

labeling was performed using ITK-SNAP software (http://

www.itksnap.org). A subset of five images was randomly chosen

to perform reliability tests. The interrater reliability in terms of

Dice overlap was 0.89. Approximately 3 months later, one rater

repeated the hippocampal boundary tracing to access intrarater

reliability, which was 0.91.

ADNI 1.5T Dataset and ADNI 3.0T Dataset

These images were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu/). The

detailed information of ADNI is shown in the Appendix. Many

previous studies have used the Medtronic Surgical Navigation

Technologies (SNT) semi-automated segmentations provided by

ADNI as benchmarks for validation [8,36]. However, over- and

underestimation and even misalignments of the entire hippo-

campal segmentation were found in the SNT segmentations

when inspected by an expert manual rater [37]. Thus, we

selected all 100 subjects for whom the manual hippocampal

masks were provided by EADC project (www.hippocampal-pro-

tocol.net). The sample consisted of 58 1.5T and 42 3.0T images,

and they were used as two datasets. There were four diagnosis

groups in this sample, including normal controls (NC), mild

cognitive impairment (MCI), late MCI (LMCI), and patients
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with AD. The demographic information of these subjects is

listed in Table 1.

The raw images were oriented along the anterior and posterior

commissures line (AC-PC), and then manual hippocampal

labeling was performed by expert tracers according to the Harmo-

nized Hippocampal Protocol (http://hippocampal-protocol.net/

SOPs/LINK_PAGE/HarmonizedProtocol_ACPC_UserManual_biblio.

pdf). The image resolution is 1 9 1 9 1 mm3. For each participant,

an N3 bias field correction was used. All MR images were trans-

formed intoMNI152 template space by linear registration.

Local Manifold Learning Method

The flow chart of local manifold learning (LML)-based segmenta-

tion method is schematically illustrated in Figure 1. We first

selected a subset of atlases in the MNI152 space and linearly

warped the atlases to the target image (based on cropped images

around the hippocampus). Subsequently, a local patch search

strategy was performed to obtain the most similar patch with the

target patch for each atlas. Next, low-dimensional embedding of

patches was implemented using manifold learning. Finally, the

label of the target voxel was identified by fusing atlas labels in the

low-dimensional space.

Atlas Selection and Registration

Because using the most similar atlases with the target image T can

improve the segmentation accuracy [6], a subset of n atlases (A1,

A2, . . ., An) was selected based on the sum of the squared intensity

differences (SSD) between the atlases and the target image as sug-

gested by Aljabar et al. [6]. The selection was performed in the

MNI152 template space. Each selected atlas MR image was line-

arly registered to the target image and then transformed the corre-

sponding hippocampal label image using the same transformation

matrix with nearest neighbor interpolation. The image affine reg-

istration was performed using the FLIRT tool [38].

Local Patch Search

A local patch search strategy was conducted to reduce the

influence of registration error as suggested by the literature

[19]. We selected the local patch search strategy rather than

nonlocal mean patch strategy [17] because the nonlocal

method employs all patches within the searching neighborhood

and causes a computational burden in the next manifold learn-

ing step. A patch was defined as a cube centered on the loca-

tion in consideration (radius was denoted as R). A search

volume (SV) was defined as a cube around the target voxel

(radius was denoted as S). A total number of (2S + 1)3 patches

in the SV for each atlas were computed for its similarity with

the target patch Pt. The intensity vector obtained from each

patch was normalized first. Then, the most similar atlas patch

P̂a was selected for each warped atlas as follows:

P̂a ¼ argmin
i2SV

IðPtÞ � IðPaðiÞÞk k2 (1)

where I(x) represents the normalized intensity vector of patch

x.

Patch-Based Manifold Embedding

For each voxel of the target image, manifold learning was imple-

mented with an Isomap algorithm [39]. The Isomap is a com-

monly used nonlinear dimensional reduction method, which

attempts to estimate the intrinsic geometry of the underlying

manifold based on pairwise distances derived from high-dimen-

sional data. In this study, we assumed that a total number of n + 1

patches (i.e., the target patch and n atlas patches) were lying on a

manifold with dimensionality d embedded in the D ¼ 2Rþ 1ð Þ3
dimension space, where d � D. The similarity for each pair of

patches was coded by the L2 or Euclidean distance derived from

the voxel intensities as follows:

Sði; jÞ ¼ IðPiÞ � IðPjÞ
�� ��; 1� i; j� nþ 1ð Þ (2)

where I(P) represents the intensity vector of patch P. Then, a

neighborhood graph, G, was constructed by linking each patch

to its K nearest neighbors (KNN). This graph allows an approxi-

mate calculation of the geodesic distance DG i; jð Þ between all

pairs of patches computed as the shortest path distance connect-

ing patches, i and j, in the neighborhood graph, G. Subse-

quently, Isomap uses classical multidimensional scaling to obtain

the d-dimensional coordinates, which is implemented by mini-

mizing the reconstruction error as follows:

RðYÞ ¼
Xnþ1

i¼1

Xnþ1

j¼1

ðDGði; jÞ2 � yi � yj
�� ��2Þ (3)

where yi is the corresponding newly defined low-dimensional

coordinate vector of patch i, and Y represents a set of {y1, y2, ...,

yn+1}.

Table 1 Demographic information of the 100 ADNI subjects

ADNI 1.5T dataset ADNI 3.0T dataset

NC LMCI MCI AD NC LMCI MCI AD

Subject size 17 8 13 20 12 5 8 17

Age 74.5 (6.9) 71.3 (6.5) 74.1 (8.3) 74.4 (8.3) 76.3 (6.7) 77.0 (6.8) 75.7 (8.5) 73.4 (8.3)

Males/females 9/8 3/5 9/4 10/10 7/5 4/1 4/4 10/7

MMSE 28.9 (1.1) 26.5 (3.2) 27.1 (2.3) 23.4 (2.5) 29 (1.0) 26.5 (2.6) 25.9 (3.3) 19.3 (5.0)

NC, normal control; MCI, mild cognitive impairment; LMCI, late MCI; AD, Alzheimer’s disease.
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Segmentation by Label Fusion

Finally, the label fusion step was performed in the low-dimen-

sional space. The weight of each atlas patch was estimated based

on its local appearance similarity with the target patch. A label

fusion strategy similar to the local weighted inverse distance

(LWINV) method [14] was employed as follows:

wi ¼
jyt � yij jj2� ��beta

Z
; i ¼ 1;2; . . .;n (4)

where yt and yi are the low-dimensional coordinates of the tar-

get patch and atlas patch, respectively, beta is a model parameter

controlling the weight distribution, and Z is a normalization

constant. While in the LWINV, yt and yi in this formula repre-

sent the intensity vector of the target patch and atlas patch,

respectively. Once the weight, wi, of each atlas patch was deter-

mined, the final label of the target voxel was assigned as the

one with the maximum voting probability:

l̂ ¼ argmax
l2 1;...;Lf g

Xn
i¼1

wi � PiðlÞ (5)

where L represents the number of all possible labels (L = 2 in

this work) and Pi(l) = 1 when the label of the atlas i is l (other-

wise Pi(l) = 0).

Experiments and Results

We chose a widely used evaluation metric, Dice similarity coeffi-

cient (DSC), between the manual label, S1, and the automatic seg-

mentation, S2, to quantitatively assess the performance of

segmentation as follows:

Dice S1; S2ð Þ ¼ 2
V S1 \ S2ð Þ

V S1ð Þ þ V S2ð Þ (6)

where S1 ∩ S2 represents the overlapping volume between

two segmented regions and V(x) is the volume of a segmen-

tation x. The Dice index ranges from 0 to 1, and a higher

value indicates better segmentation. In the experiments, the

leave-one-out cross-validation technique was adopted, and

for each target image, we chose the top 20 similar atlases

based on SSD [40]. To reduce the computational burden,

the images were cropped around the hippocampus. More-

Figure 1 Processing pipeline of labeling one target voxel by the proposed local manifold learning segmentation method. The red box in the target image

represents the target patch, and the blue boxes in the atlas images represent the search volume region for extracting atlas patches.
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over, the intensities were linearly rescaled to the interval [0,

100]. The image selection and registration were based on

the cropped images.

Choosing the Parameters

The influence of model parameters on segmentation accuracy was

studied via leave-one-out cross-validation on the left hippocam-

pus of the in-house dataset according to the parameter tuning

method described in [41]. Our method has five free parameters:

K, the number of neighbors in KNN to construct a neighborhood

graph; d, the embedding low dimension; beta, the parameter con-

trolling the weight distribution; S, the radius of the local searching

window; and R, the radius of the local patch. The DSC values over

varying model parameters are presented in Figure 2. When study-

ing the impact of a certain parameter on segmentation accuracy,

the other parameters were held fixed. For example, we first

selected the search patch radius S among {0, 1, 2, 3, 4, 5}, with

the other parameters conservatively set as K = 5, d = 3, beta = 5,

and R = 2. The performance begins to converge when S = 3 or

more. Due to the greater time needed for local patch search

with larger searching radii, we chose S = 3 in this study.

Additionally, the search range for other parameters was empiri-

cally chosen as R 2 1;2; 3f g, K 2 2;5; 7; 10f g, d 2 1; 2; 3;4;5f g,
and beta 2 1;2;3;4; 5; 6f g. Finally, we chose a combination of

parameters for LML in the following experiments (S = 3, R = 2,

K = 2, d = 3, and beta = 4).

Comparison With Other Methods

Once the optimal parameters were selected, the proposed LML

method was used to segment the hippocampus in all three data-

sets, and its accuracy was evaluated using a leave-one-out proce-

dure. In each cross-validation step, one image was treated as a

target image, and the top 20 most similar images selected from the

remaining images were used as atlases. This process was repeated

until each image was served as the target image once. The LML

method was also compared with two state-of-the-art label fusion

methods, including LWINV and LMV. The LMV was considered as

a baseline automatic label fusion algorithm in this study, which

implemented the majority voting fusion strategy on local patches.

The LWINV was chosen because it is similar to our LML method,

but they are implemented in different dimensional spaces. For a

fair comparison, the same local patch search process was per-

formed for all three methods, where the patch radius was set to 2

and the search radius was set to 3. Moreover, an identical beta

value (i.e., beta = 4) was used for both the LML and the LWINV

methods. Table 2 lists the median DSC values (and standard devi-

ations) for three datasets and the statistics of the paired t-tests

comparing the LML method with other methods. For all three

datasets, the proposed LML method performed significantly better

than LWINV and LMV (P < 0.001). Note that the segmentation

performance of the in-house dataset was better than the two

ADNI datasets. Moreover, the performance of the ADNI 1.5T data-

set outperformed the ADNI 3.0T dataset. Figure 3 is a 3D view of a

representative hippocampal segmentation result (median DSC

value) for each dataset to qualitatively assess the voxelwise distri-

bution of label errors between automatic and manual segmenta-

tions. Other qualitative results are illustrated in Figure 4, where

the sagittal views for the best, median, and worst results based on

the ADNI 3.0T dataset for all considered algorithms are presented.

The segmentations from LML are more accurate at the boundaries

and have fewer hollows.

Hippocampal Volumetric Analysis

A hippocampal volumetric analysis was performed based on all

ADNI subjects (both 1.5T and 3.0T). Because brains with a large

total intracranial volume (TIV) tend to have larger hippocampi,

the hippocampal volumes were corrected according to the TIVs

estimated by VBM8 (http://dbm.neuro.uni-jena.de/vbm/). This

correction can be simply performed by dividing the hippocampal

volume by the TIV and then multiplying by the mean of TIVs

of all images. The normalized volumes of the left and right

hippocampi by groups of all ADNI subjects are presented in

Figure 5. The volume measurements produced by automatic

methods were all smaller than the reference segmentations.

Consistently, a previous study demonstrated that weighted vot-

ing strategies would produce spatial bias that undersegments

convex structures, such as the hippocampus [42]. However, the

segmentations achieved by our method were the closest to

manual segmentations. In addition, the Bland–Altman diagrams

[43] plotting the hippocampal volume difference between

automatic and manual segmentations for ADNI 1.5T and 3.0T

datasets are presented in Figure 6. These diagrams indicate that

the automatic methods tend to underestimate the hippocampal

Figure 2 Optimal selection of five model parameters using the leave-one-out cross-validation based on left hippocampal segmentation of an in-house

dataset. The optimal combination parameters S = 3, R = 2, K = 2, d = 3, and beta = 4 were selected.
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volumes, particularly for larger hippocampi. The Bland–Altman

plots also demonstrate that our method has the smallest bias

(mean difference) in volume estimation.

We also computed Cohen’s d effect sizes to test the ability of

each method to detect hippocampal atrophy in the LMCI, MCI,

and AD groups relative to controls (Table 3). Larger values of Co-

hen’s d indicate a greater effect size, where 0.2 indicates a small

effect, 0.5 indicates a medium effect, and >0.8 indicates a large

effect [44]. It was computed as follows:

d ¼ v1 þ v2

s
(7)

where v1 and v2 are the mean volumes of two groups, and s rep-

resents a pooled standard deviation for the data defined as

follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs21 þ n2 � 1ð Þs22

n1 þ n2

s
(8)

where ni and si represent the number of subjects and standard

deviation of volumes in group i. As reported in Table 3, our

method yields the largest effect size among the three automatic

label fusion methods. The effect sizes characterizing the

between-group difference of NC and LMCI are small, and the

effect sizes of NC and MCI, NC, and AD are large. Moreover, it

can be observed that, in general, the left hippocampus yields a

better effect size than the right.

Performance Evaluation Across Different
Datasets

The proposed method was evaluated across two ADNI datasets

acquired with different field strengths. In particular, the 20 most

similar images were selected as atlases from the ADNI 3.0T dataset

to segment each image in the ADNI 1.5T dataset and vice versa. The

results are listed in Table 4. The segmentation accuracy of the ADNI

3.0T images with atlases obtained from ADNI 1.5T images was

similar with atlases obtained from its own dataset. However, the

Figure 3 3D views of hippocampal

segmentation results obtained by local

manifold learning, local weighted inverse

distance voting, and local majority voting for a

representative subject with a median Dice

index from three datasets. Overlapping areas

between manual segmentations (red) and

automatic segmentations (green) are shown in

blue.

Table 2 The performance of hippocampal segmentation on three datasets. Paired t-tests were performed for comparing the LML method with

others. Dice similarity coefficients (median � standard deviation) along with statistical results for both left and right hippocampus are reported

Dataset Method

Left hippocampus Right hippocampus

Dice t-stat P-value Dice t-stat P-value

In-house LMV 0.879 � 0.057 5.2 1.8e-5 0.860 � 0.048 7.8 2.3e-8

LWINV 0.896 � 0.031 4.1 3.4e-4 0.895 � 0.039 3.9 5.2e-4

LML 0.902 � 0.026 – – 0.900 � 0.034 – –

ADNI 1.5T LMV 0.841 � 0.083 9.1 9.1e-13 0.833 � 0.101 8.5 9.5e-12

LWINV 0.886 � 0.040 4.2 1.0e-4 0.886 � 0.044 4.8 1.0e-5

LML 0.891 � 0.033 – – 0.891 � 0.036 – –

ADNI 3.0T LMV 0.817 � 0.087 7.7 1.7e-9 0.819 � 0.080 7.7 1.6e-9

LWINV 0.876 � 0.029 4.5 6.3e-5 0.878 � 0.025 4.2 1.2e-4

LML 0.881 � 0.022 – – 0.882 � 0.019 – –

LWINV, local weighted inverse distance voting; LMV, local majority voting; LML, local manifold learning.
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segmentation performance of the ADNI 1.5T images with 3.0T

atlases was worse than with the 1.5T atlases. This may be because

the ADNI 3.0T dataset had fewer subjects and more variation than

the ADNI 1.5T dataset resulting in a larger error when selecting

atlases.

Computational Complexity

The proposed method was implemented in C++ using the Insight

Toolkit (ITK). The experiments were conducted using a single core

of an Intel core i7-4500 processor at 1.8 GHz with an 8GB of

RAM. After the atlas’s linear registration to the target image, it

took approximately 40 seconds to segment one subject with the

optimized parameter settings.

Discussion and Conclusion

In this work, we present a novel local label fusion strategy for

multiatlas segmentation. Instead of assigning voting weights to

each atlas in the original space, we utilized a manifold learning

technology to build low-dimensional coordinate systems based on

local patches and conducted label fusion in this space. The pro-

posed method was applied to segment the whole hippocampus on

three datasets, including an in-house dataset and two ADNI data-

Figure 4 Sagittal views of hippocampal segmentation results produced by local manifold learning, local weighted inverse distance voting, and local

majority voting for the subjects from the ADNI 3.0T dataset with the best (top), median (middle), and worst Dice index (bottom).

Figure 5 Hippocampal volumes (normalized

by total intracranial volume) by four diagnosis

groups of ADNI subjects.
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sets. We also compared the proposed LML method with previous

label fusion methods. The results demonstrated that our method

could obtain good and robust segmentation results and achieved

better performance than competing methods.

Our work focused on the label fusion step in the multiatlas seg-

mentation framework. Previous label fusion methods based on

STAPLE framework [9–12] or ad hoc voting, such as majority vot-

ing [13], global [14], local [15,16], and nonlocal [17] weighted

label fusion approaches, have demonstrated good segmentation

results. The main difference between our method and other label

fusion methods is that our label fusion is implemented in the low-

dimensional space acquired by manifold learning. In addition,

some studies focus on another other step, that is, image registra-

tion, in the multiatlas segmentation to reduce the need of very

accurate registration, such as atlas selection [6,28], optimization

image registration [8,31,45], and local and nonlocal patch

searches [17,19]. We utilized the local patch search strategy in this

study. We have shown that LML can achieve a significant

improvement of label overlaps with manual segmentation in com-

parison with two representative local label fusion methods, that

is, LMV and LWINV. When constructing the graph model in the

manifold learning step, not only the relations of the target patch

and atlas patches but also the relations between each pair of atlas

patches were considered. Therefore, the weights assigned to each

atlas patch may potentially consider the dependencies among the

atlases, which makes them less susceptible to noise and provides a

more robust measure of similarity. Two recent studies have dem-

onstrated that good segmentation performance can be achieved

by modeling the joint probability of pairwise atlases to reduce

error redundancy produced by atlases in a multiatlas frame

[19,20]. We speculated that manifold learning adopted in this

study could discover some underlying critical structures of image

patches and reduce potential redundant information among them.

This might be used to explain why our method outperforms other

methods that were conducted in the original high-dimensional

space. In addition, it is worth noting the Dice index improvement

had an upper bound approximately determined by the inter-/in-

trarater variability.

Note that it is difficult to directly compare segmentation

results across publications due to differences in the imaging

protocols, segmentation protocols, and image datasets [46].

Some recent hippocampal segmentation methods have reported

DSC values >0.8 [6,47–51]. More recently, several studies have

achieved high DSC values ranging from 0.88 to 0.9

[17,19,20,36]. Only two methods achieved the highest DSC

values above 0.9. Wang et al. used an error correction learn-

ing to improve the performance of multiatlas segmentation

and reported a DSC value of 0.908 for 57 NCs [52]. Hao et al.

used local support vector machine (SVM) to learn classifiers

Figure 6 Bland–Altman plots for ADNI datasets. Hippocampal volumes were normalized by the total intracranial volume. The solid line represents the

mean, and the dashed lines represent �1.96 standard deviations from the mean.

Table 3 Cohen’s d effect sizes between the controls and the other

three diagnosis groups from ADNI subjects

Method

Left hippocampus Right hippocampus

NC-LMCI NC-MCI NC-AD NC-LMCI NC-MCI NC-AD

LMV 0.0944 0.7017 0.7820 0.1608 0.1563 0.6970

LWINV 0.2562 1.6584 1.8842 0.3328 0.9808 1.3297

LML 0.3868 1.7880 1.9097 0.4289 1.1124 1.4134

Manual 0.4345 1.9081 1.4921 0.5475 1.4340 1.2629

NC, normal control; MCI, mild cognitive impairment; LWINV, local

weighted inverse distance voting; LMV, local majority voting; LML, local

manifold learning; LMCI, late MCI; AD, Alzheimer’s disease.
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for a target image voxel in a featured space and achieved a

DSC value of 0.910 for mixed diagnostic groups of 30 ADNI

subjects [53]. Our DSC index was approximately 0.9 for nor-

mal subjects and above 0.88 for the mixed diagnostic groups

of ADNI subjects and demonstrated that our LML method can

yield comparable results to recently published methods.

The results on the in-house dataset achieved a higher DSC value

than those on both ADNI datasets, which was consistent with a

previous finding [36]. This may be caused by several factors. First,

the in-house dataset included only normal subjects, while the

ADNI datasets included four pathological groups that produced a

larger anatomical variability. Second, the manual protocols for

hippocampal segmentation were not similar resulting in a differ-

ent gold standard for the hippocampus. In addition, the segmenta-

tion performances were different between the two ADNI datasets,

where the 1.5T dataset performed better than the 3.0T dataset,

which could be due to fewer subjects and more varied pathologi-

cal distribution in the ADNI 3.0T dataset.

Several strategies can be used to improve the segmentation

accuracy of the proposed LML method. First, using nonlinear reg-

istration instead of linear registration may improve the segmenta-

tion performance as mentioned in the literature [18]. However,

this will increase the computation time, and we have adopted the

local patch search strategy to reduce the influence of registration

errors introduced by the linear registration method. Second, the

segmentation accuracy may be improved using correction learn-

ing to reduce systematic errors produced by our method [52].

Third, the proposed approach may be improved using morpholog-

ical operations to fill in holes in the segmentation results. Fourth,

the use of the nonlocal patch search strategy employing all

patches in the SV may obtain more accurate estimations than the

local patch search strategy [54]. However, the nonlocal search

method may increase the computational cost and also burden the

next manifold embedding step.

Future research will focus on the following aspects. It is

straightforward to extend our algorithm for segmentation prob-

lems with multiple structures simultaneously rather than seg-

ment a single structure processed in this study. In the future,

we plan to apply LML for hippocampal subfields and whole-

brain segmentation. Moreover, we only used the Euclidean

distance to reflect the relation of paired patches in the high-

dimensional space in this study. We will evaluate the effects

of other metrics, such as normalized cross-correlation [55] and

mutual information [56], on low-dimensional embedding. Duc

et al. [28] have compared the effects of different manifold

learning methods, that is, Isomap, Laplacian eigenmaps [57],

and locally linear embedding [58], for atlas selection in multi-

atlas segmentation and found the locally linear embedding

gives the best results. In future work, it would be interesting

to compare these manifold learning techniques on the segmen-

tation results under our proposed framework.
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Appendix

The Alzheimer’s Disease Neuroimaging Initiative

The ADNI was launched in 2003 by the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration

(FDA), private pharmaceutical companies, and nonprofit organi-

zations as a $60 million, 5-year public–private partnership. The

primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological

assessments can be combined to measure the progression of
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mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD). Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and clini-

cians to develop new treatments and monitor their effectiveness

and decrease the time and cost of clinical trials. The Principal

Investigator of this initiative is Michael W. Weiner, MD, VA

Medical Center and University of California, San Francisco.

ADNI is the result of efforts of many coinvestigators from a

broad range of academic institutions and private corporations,

and the subjects have been recruited from over 50 sites across

the United States and Canada. The initial goal of ADNI was to

recruit 800 subjects, but ADNI has been followed by ADNI-GO

and ADNI-2. To date, these three protocols have recruited over

1500 adults (ages 55–90) to participate in the research consist-

ing of cognitively normal older individuals, people with early or

late MCI, and people with early AD. The follow-up duration of

each group is specified in the protocols for ADNI-1, ADNI-2,

and ADNI-GO. Subjects originally recruited for ADNI-1 and

ADNI-GO had the option to be followed in ADNI-2. For up-to-

date information, see www.adni-info.org.
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