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Abstract—Structural magnetic resonance imaging (sMRI) has been widely used for computer-aided diagnosis of neurodegenerative

disorders, e.g., Alzheimer’s disease (AD), due to its sensitivity to morphological changes caused by brain atrophy. Recently, a few deep

learning methods (e.g., convolutional neural networks, CNNs) have been proposed to learn task-oriented features from sMRI for AD

diagnosis, and achieved superior performance than the conventional learning-based methods using hand-crafted features. However,

these existing CNN-based methods still require the pre-determination of informative locations in sMRI. That is, the stage of

discriminative atrophy localization is isolated to the latter stages of feature extraction and classifier construction. In this paper, we

propose a hierarchical fully convolutional network (H-FCN) to automatically identify discriminative local patches and regions in the

whole brain sMRI, upon which multi-scale feature representations are then jointly learned and fused to construct hierarchical

classification models for AD diagnosis. Our proposed H-FCN method was evaluated on a large cohort of subjects from two

independent datasets (i.e., ADNI-1 and ADNI-2), demonstrating good performance on joint discriminative atrophy localization

and brain disease diagnosis.

Index Terms—Computer-aided alzheimer’s disease diagnosis, fully convolutional networks, discriminative atrophy localization,

weakly-supervised learning, structural MRI
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1 INTRODUCTION

ALZHEIMER’S disease (AD), characterized by the pro-
gressive impairment of cognitive functions, is the

most prevalent neurodegenerative disorder that ulti-
mately leads to irreversible loss of neurons [1]. Brain
atrophy associated with dementia is an important bio-
marker of AD and its progression, especially considering
that the atrophic process occurs even earlier than the
appearance of amnestic symptoms [2]. Structural mag-
netic resonance imaging (sMRI) can non-invasively cap-
ture profound brain changes induced by the atrophic
process [3], based on which various computer-aided
diagnosis (CAD) approaches [4], [5], [6] have been pro-
posed for the early diagnosis of AD as well as its pro-
dromal stage, i.e., mild cognitive impairment (MCI).

Existing sMRI-based CAD methods usually contain
three fundamental components [4], i.e., 1) pre-determina-
tion of regions-of-interest (ROIs), 2) extraction of imaging
features, and 3) construction of classification models.
Depending on the scales of pre-defined ROIs in sMRI for

subsequent feature extraction and classifier construction,
these methods can be further divided into three catego-
ries, i.e., 1) voxel-level, 2) region-level, and 3) patch-level
morphological pattern analysis methods. Specifically,
voxel-based methods [7], [8], [9], [10], [11] attempt to
identify voxel-wise disease-associated microstructures
for AD classification. This kind of methods typically suf-
fers from the challenge of over-fitting, due to the very
high (e.g., millions) dimensionality of features/voxels
compared with the relatively small (e.g., tens or hun-
dreds) number of subjects/images for model training. In
contrast, region-based methods [12], [13], [14], [15], [16],
[17], [18] extract quantitative features from pre-
segmented brain regions to construct classifiers for iden-
tifying patients from normal controls (NCs). Intuitively,
this kind of methods focuses only on empirically-defined
brain regions, and thus may fail to cover all possible
pathological locations in the whole brain. To capture
brain changes in local regions for the early diagnosis of
AD, patch-based methods [19], [20], [21], [22], [23] adopt
an intermediate scale (between the voxel-level and
region-level) of feature representations for sMRI to con-
struct classifiers. However, a critical issue for such
patch-level pattern analysis is how to identify and com-
bine discriminative local patches from sMRI [22].

On the other hand, the conventional voxel-, region-, and
patch-based CAD methods have several common disadvan-
tages. 1) Feature representations defined solely at a single
(i.e., region- or patch-) level are inadequate in characterizing
global structural information of the whole brain sMRI at the
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subject-level. 2) Hand-crafted features are independent of,
and may not be well coordinated with, subsequent classi-
fiers, thus potentially leading to sub-optimal diagnostic
performance.

In recent years, deep convolutional neural networks
(CNNs) are showing increasingly successful applications
in various medical image computing tasks [24], [25],
[26], [27], [28], [29], [30]. Capitalizing on task-oriented,
high-nonlinear feature extraction for classifier constr-
uction, CNNs have also been applied to developing
advanced CAD methods for brain disease diagnosis [31],
[32], [33], [34]. However, considering that the early stage
of AD could only cause subtle structural changes in the
brain, it is difficult to train a conventional end-to-end
CNN model without any guidance for AD classification.
Therefore, relying on domain knowledge and experts’
experience, most existing CNN-based methods empirically
pre-determine informative regions (e.g., hippocampus
[31], [33]) or patches (e.g., located by certain anatomical
landmark detector [34]) in sMRI to construct diagnostic
models. That is, the stage of discriminative localization [35]
of brain atrophy is methodologically independent of the
latter stages of feature extraction and classifier construc-
tion, which may hamper the effectiveness of the deep
neural networks in brain disease diagnosis.

In this paper, we propose a deep learning frame-
work to unify discriminative atrophy localization with feat-
ure extraction and classifier construction for sMRI-based
AD diagnosis. Specifically, a hierarchical fully convolutional
network (H-FCN) is proposed to automatically and hierar-
chically identify both patch- and region-level discriminative
locations in whole brain sMRI, upon which multi-scale (i.e.,
patch-, region-, and subject-level) feature representations
are jointly learned and fused in a data-driven manner to
construct hierarchical classification models. Based on the
automatically-identified discriminative locations in sMRI,
we further prune the initial H-FCN architecture to reduce
learnable parameters and finally boost the diagnostic per-
formance. A schematic diagram of our H-FCN method is
shown in Fig. 1. In the experiments, our proposed method
was trained and evaluated on two independent datasets
(i.e., ADNI-1 and ADNI-2) for multiple AD-related

diagnosis tasks, including AD classification, and MCI con-
version prediction. Experimental results demonstrate that
our proposed H-FCN method can not only effectively iden-
tify AD-related discriminative atrophy locations in sMRI,
but also yield superior diagnostic performance compared
with the state-of-the-art methods.

The rest of the paper is organized as follows. In Section 2,
we briefly review previous studies on sMRI-based CAD
methods for AD diagnosis. In Sections 3 and 4, we introduce
the studied datasets and our proposed H-FCN method,
respectively. In Section 5, our proposed H-FCN method is
evaluated and compared with the state-of-the-art methods.
In addition, the components and parameters of our network
are analyzed in detail. In Section 6, we discuss the relation-
ship between our proposed method and previous studies
and analyze the main limitations of the current study. The
paper is finally concluded in Section 7.

2 RELATED WORK

In this section, we briefly review previous work on sMRI-
based CAD methods for AD diagnosis, including the con-
ventional learning-based and deep-learning-based methods.

2.1 Conventional Learning-Based Methods

In terms of the scales of adopted feature representations, the
voxel-, region-, and patch-based methods are representative
categories of sMRI-based CAD methods in the literature.

Typically, voxel-based methods extract voxel-wise
imaging features from the whole brain sMRI to construct
classifiers for distinguishing patients from normal con-
trols. For example, Kl€oppel et al. [8] used gray matter
(GM) density map of the whole brain, generated by
voxel-based morphometry (VBM) [36], to train a linear
support vector machine (SVM) [37] for identifying sMRI
scans of AD. Hinrichs et al. [9] integrated a spatial regu-
larizer into the linear programming boosting (LPboost-
ing) model [38] for AD classification using GM density
map. Li et al. [10] extracted both volumetric and geomet-
ric measures at each vertex on the cortical surface to con-
struct a linear SVM for discriminating MCI from NC.
The voxel-level morphological pattern analysis usually

Fig. 1. Illustration of our hierarchical fully convolutional network (H-FCN), which includes four components: 1) location proposals, 2) patch-level sub-
networks, 3) region-level sub-networks, and 4) subject-level sub-network.
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has to face the challenge of high-dimensional features,
especially for the volumetric sMRI with millions of vox-
els. Hence, dimensionality reduction approaches [39],
[40], [41] are desirable for dealing with the potential
over-fitting issue caused by the high-dimensional, voxel-
level feature representations. In another word, the diag-
nostic performance of voxel-based methods may largely
rely on dimensionality reduction.

Region-based methods employ imaging features extra-
cted from brain regions, while these regions are usually
pre-determined based on biological prior knowledge or
anatomical brain atlases [42]. For example, Magnin
et al. [43] and Zhang et al. [14] parcellated the whole brain
into several non-overlapping regions by non-linearly align-
ing each individual sMRI onto an anatomically labeled
atlas, and then extracted regional features to train the SVM
classifiers for AD diagnosis. Fan et al. [12] adopted the
watershed algorithm [44] to group sMRI voxels into an
adaptive set of brain regions, from which regional volumet-
ric features were extracted to perform SVM-based AD clas-
sification. Koikkalainen et al. [45] and Liu et al. [17]
spatially normalized each individual sMRI onto multiple
atlases, and then extracted regional features in each atlas
space to construct ensemble classification models for
AD/MCI diagnosis. Wang et al. [13] and Sørensen et al. [16]
performed AD diagnosis based on sMRI hippocampal fea-
tures, considering that the influence of the AD pathological
process on the hippocampus has been biologically vali-
dated. Also, several studies performed AD diagnosis based
on the fusion of complementary information provided by
the hippocampus and other brain regions in sMRI. For
example, in [46], features extracted from the hippocampus
and posterior cingulate cortex were combined to learn SVM
classifiers for AD/MCI diagnosis. In [47], the classifiers
trained independently based on hippocampal and CSF
features were combined, followed by another classifier to
further refine the diagnostic performance.

It is worth mentioning that the early stage of AD would
induce subtle structural changes in local brain regions,
instead of isolated voxels or the whole brain [9], [22].
Accordingly, several previous studies proposed to perform
AD diagnosis by using imaging features defined at the
patch-level, i.e., an intermediate scale between the voxel-
level and region-level. For example, Liu et al. [21] extracted
both the patch-wise GM density maps and spatial-correla-
tion features to develop a hierarchical classification model
for AD/MCI diagnosis. Tong et al. [22] adopted local inten-
sity patches as features to develop a multiple instance
learning (MIL) model [48] for AD classification and MCI
conversion prediction. Zhang et al. [23] first detected ana-
tomical landmarks in sMRI, and then extracted morpho-
logical features from the local patches centered at these
landmarks to perform SVM-based AD/MCI classification.
The pre-selection and combination of local patches to cap-
ture global information of the whole brain sMRI is always a
key step in these existing patch-based methods.

2.2 Deep-Learning-Based Methods

The conventional learning-based methods adopt hand-
crafted features (e.g., GM density map [8], [9], cortical
thickness [10], or hippocampal shape measurements [13])

to construct classifiers, which may yield sub-optimal diag-
nostic performance due to potential heterogeneities between
independently-extracted features and subsequent classifiers.

Recently, CNN-based methods have been proposed to
extract high-level region/patch-wise features in a data-
driven manner for brain disease diagnosis. For example,
Li et al. [31] and Khvostikov et al. [33] pre-extracted hippo-
campal region to train CNNs using sMRI and multi-modal
neuroimaging data, respectively. Liu et al. [34] extracted
local image patches centered at multiple pre-defined ana-
tomical landmarks to develop the CNN-based models for
AD classification and MCI conversion prediction.

Apart from CNNs, some other deep learning methodolo-
gies have also been applied to developing CADmethods for
AD diagnosis. For example, deep Boltzmann machine [49]
was used by Suk et al. [50] to learn shared feature represen-
tations between patches extracted from sMRI and positron
emission tomography (PET) images, based on which an
ensemble SVM classifier was further trained for AD/MCI
classification. Liu et al. [51] extracted hand-crafted features
from pre-segmented brain regions, and further fed these
low-level features into stacked auto-encoders [52] for pro-
ducing higher-level features for AD classification. Lu
et al. [53] developed a multi-scale deep neural network for
early diagnosis of AD, where low-level patch-wise features
extracted from PET images were used as network input.

However, similar to the conventional learning-based
methods, these existing deep-learning-based methods still
require the pre-determination of the ROIs prior to network
training. That is, localization of discriminative brain regions
in sMR images is still independent of feature extraction and
classifier construction, which may hamper the correspond-
ing diagnostic performance.

3 MATERIALS

In this section, we introduce the sMRI datasets as well as the
image pre-processing pipeline used in our study.

3.1 Studied Datasets

Two public datasets downloaded from Alzheimer’s Disease
Neuroimaging Initiative1 (i.e., ADNI-1 and ADNI-2) [54]
were studied in this paper. Note, subjects that appear in
both ADNI-1 and ADNI-2 were removed from ADNI-2. The
demographic information of subjects in both ADNI-1 and
ADNI-2 is presented in Table 1.

ADNI-1. The baseline ADNI-1 dataset consists of 1.5T
T1-weighted MR images acquired from totally 821 subjects.
These subjects were divided into three categories (i.e., NC,
MCI, and AD) in terms of the standard clinical criteria,
including mini-mental state examination scores and clinical
dementia rating. According to whether MCI subjects would
convert to AD within 36 months after the baseline evalua-
tion, the MCI subjects were further specified as stable MCI
(sMCI) subjects that were always diagnosed as MCI at all
time points (0-96 months), or progressive MCI (pMCI) sub-
jects that finally converted to AD within 36 months after the
baseline. To sum up, the baseline ADNI-1 dataset contains
229 NC, 226 sMCI, 167 pMCI, and 199 AD subjects.

1. http://adni.loni.usc.edu
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ADNI-2. The baseline ADNI-2 dataset include 3T T1-
weighted sMRI data acquired from 636 subjects. According
to the same clinical criteria as those used for ADNI-1, the
637 subjects were further separated as 200 NC, 239 sMCI, 38
pMCI, and 159 AD subjects.

3.2 Image Pre-Processing

All sMRI data were processed following a standard pipe-
line, which includes anterior commissure (AC)-posterior
commissure (PC) correction, intensity correction [55], skull
stripping [56], and cerebellum removing. An affine registra-
tion was performed to linearly align each sMRI to the
Colin27 template [57] to remove global linear differences
(including global translation, scale, and rotation differen-
ces), and also to resample all sMRIs to have identical spatial
resolution (i.e., 1� 1� 1mm3).

4 METHOD

In this part, we introduce in detail our proposed H-
FCN method, including the architecture of our network
(Section 4.1), a specific loss function for training the network
(Section 4.2), the network pruning strategy (Section 4.3), and
the implementation details (Section 4.4).

4.1 Architecture

Our proposed hierarchical fully convolutional network is
developed in the linearly-aligned image space. As shown in
Fig. 1, it consists of four sequential components, i.e., 1) loca-
tion proposals, 2) patch-level sub-networks, 3) region-level
sub-networks, and 4) subject-level sub-network.

Briefly, image patches widely distributed over the whole
brain (Section 4.1.1) are fed into the patch-level sub-net-
works (Section 4.1.2) to produce the feature representations
and classification scores for these input patches. The out-
puts of the patch-level sub-networks are grouped/merged
according to the spatial relationship of input patches,
which are then processed by the region-level sub-networks
(Section 4.1.3) to produce the feature representations and
classification scores for each specific region (i.e., a comb-
ination of neighboring patches). Finally, the outputs of
the region-level sub-networks are integrated and processed
by the subject-level sub-network (Section 4.1.4) to yield the
classification score for each subject. The architecture of our
proposed H-FCN is detailed as follows.

4.1.1 Location Proposals

Our proposed H-FCN method adopts a set of local image
patches as the inputs for the network. To generate location
proposals for the extraction of anatomically-consistent image
patches from different subjects, we first need to construct
the voxel-wise anatomical correspondence across all linearly-
aligned sMRIs (with each image corresponding to a specific
subject). To this end, each linearly-aligned sMRI is further
non-linearly registered to the Colin27 template. Based on
the resulting deformation fields, for each voxel in the tem-
plate, we find its corresponding voxel in each linearly-
aligned sMRI, thus building the voxel-wise anatomical corre-
spondence in the linearly-aligned image space.

After that, image voxels widely distributed over the
whole template brain image are used as location proposals
(i.e., yellow squares shown in Fig. 1). We further locate cor-
responding voxels in each linearly-aligned sMRI, and
extract same-sized (e.g., 25� 25� 25) patches centered at
these location proposals to construct our hierarchical net-
work. Notably, the motivation of using location proposals
that are widely distributed over the whole brain is to ensure
that H-FCN can include and then automatically identify all
discriminative locations in a data-driven manner. But,
beyond that, there is no explicit assumption regarding the
specific discriminative power of each location proposal.
This is different from existing region- and patch-based
methods (e.g., [16], [22], [34], [46]) in nature, as those previ-
ous studies select/rank ROIs according to their informative-
ness (usually pre-defined based on domain knowledge).

On the other hand, it is also worth mentioning that prior
knowledge could also be included in our H-FCN model to
reduce the computational complexity and boost the learning
performance. The reason is that prior knowledge can help
efficiently filter out obviously uninformative voxels from
selected location proposals, especially considering that a
volumetric sMR image usually contains millions of voxels.
Therefore, in one of our implementations, we adopt ana-
tomical landmarks defined in the whole brain image [23] as
prior knowledge for generating location proposals. Under
the constraint that the distance between any two landmarks
is no less than 25, the number of location proposals is fur-
ther reduced to 120 to control the number of learnable
parameters. We denote this kind of implementation as with-
priorH-FCN (wH-FCN for short) in this paper.

We also implement another version of H-FCN, where the
template image is directly partitioned into multiple non-
overlapped patches, and their central voxels are then
warped onto the linearly-aligned subject as location pro-
posals. We denote this variant implementation as no-prior
H-FCN (nH-FCN for short). Note that wH-FCN and nH-
FCN share the same number (i.e., 120) of input image
patches, the same patch size (i.e., 25� 25� 25) and similar
network structure. The difference is that they use different
location proposals. Both wH-FCN and nH-FCN make no
explicit assumption regarding the specific discriminative
capacities of the input location proposals, which should be
further determined by the network in a data-driven manner.

4.1.2 Patch-Level Sub-Networks

As the PSN modules shown in Fig. 1, all patch-level sub-
networks developed in our H-FCN (both wH-FCN and

TABLE 1
Demographic Information of the Subjects Included in the
Studied Datasets (i.e., the Baseline ADNI-1 and ADNI-2)

Dataset Category Gender Age Education MMSE

ADNI-1 NC 127/102 75.8 � 5.0 16.0 � 2.9 29.1 � 1.0
sMCI 151/75 74.9 � 7.6 15.6 � 3.2 27.3 � 1.8
pMCI 102/65 74.8 � 6.8 15.7 � 2.8 26.6 � 1.7
AD 106/93 75.3 � 7.5 14.7 � 3.1 23.3 � 2.0

ADNI-2 NC 113/87 74.8 � 6.8 15.7 � 2.8 26.6 � 1.7
sMCI 134/105 71.7 � 7.6 16.2 � 2.7 28.3 � 1.6
pMCI 24/14 71.3 � 7.3 16.2 � 2.7 27.0 � 1.7
AD 91/68 74.2 � 8.0 15.9 � 2.6 23.2 � 2.2

The gender is reported as male/female. The age, education years, and mini-
mental state examination (MMSE) values [54] are reported as Mean � Stan-
dard deviation (Std).
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nW-FCN) have the same structure, i.e., fully convolutional
network [58], for efficiency of training. In addition, in our
implementation, all these PSN modules share the same
weights to limit the number of learnable parameters, espe-
cially considering a relatively large number of input patches.

Specifically, each PSN module contains six convolutional
(Conv) layers, including one 4� 4� 4 layer (i.e., Conv1),
four 3� 3� 3 layers (i.e., Conv2 to Conv5), and one
1� 1� 1 layer (i.e., Conv6). The number of channels for
Conv1 to Conv6 is 32, 64, 64, 128, 128, and 64, respectively.
All Conv layers have unit stride without zero-padding,
which are followed by batch normalization (BN) and recti-
fied linear unit (ReLU) activations. Between Conv2 and
Conv3, as well as between Conv4 and Conv5, a 2� 2� 2
max-pooling layer is adopted to down-sample the interme-
diate feature maps. At the end, a classification layer (i.e.,
ClassP) is realized via 1� 1� 1 convolutions (with C chan-
nels, where C is the number of categories) followed by sig-
moid activations.

As the result, each local image patch is processed by the
corresponding PSN module to yield a patch-level feature repre-
sentation (i.e., output of Conv6; size: 1� 1� 1� 64), based
on which a patch-level classification score (size: 1� 1� 1� C)
is further produced by the subsequent classification layer
(i.e., ClassP). Intuitively, the diagnostic/classification score
accuracy of each PSN module indicates the discriminative
capacity of the corresponding location proposal.

4.1.3 Region-Level Sub-Networks

To construct the region-level sub-networks, we concate-
nate each patch-level feature representation with the cor-
responding patch-level classification score across
channels, i.e., as a 1� 1� 1� ð64þ CÞ tensor. These
patch-level outputs are then used as the inputs for the
subsequent region-level sub-networks. In particular, here
the classification scores for each specific patch can be
regarded as high-level, task-oriented features, which is
similar to the auto-context strategy used in image seg-
mentation [59], [60]. That is, as complementary to the
patch-level feature representations, the subsequent classi-
fication scores could potentially provide more direct and
higher semantic information with respect to the diagnos-
tic task. Also, using both of them as the inputs for the
region-level sub-networks, the patch-level classification
scores could be jointly optimized with the patch-level fea-
ture representations under multi-scale supervision (which
will be detailed in Section 4.2).

Then, we group spatially-nearest patches, e.g., in a
2� 2� 2 neighborhood of each patch, to form a specific
region (or second-level patch). Accordingly, the corre-
sponding patch-level outputs are concatenated by taking
into account their spatial relationship, e.g., as a 2� 2� 2 �
ð64þ CÞ tensor. As shown in Fig. 1, for each specific
region, a region-level Conv layer (i.e., ConvR) is then
applied on the concatenated tensor to generating a region-
level feature representation (size: 1� 1� 1� 64), based on
which a region-level classification score is further produced by
the subsequent classification layer (i.e., ClassR). Similar to
the patch-level sub-networks, the diagnostic score accuracy
of each region-level sub-network indicates the discrimina-
tive capacity of the corresponding region. Notably, the

specific regions (or second-level patches) described here
are partially overlapped. The shapes of them are defo-
rmable, depending on the location proposals. Specifically,
in nH-FCN, these regions are regular partitions of the
template image, which are further deformed for each sub-
ject in the linearly-aligned image space. In nH-FCN, these
regions have irregular shapes, determined by the locations
of pre-defined anatomical landmarks.

4.1.4 Subject-Level Sub-Network

Finally, all region-level feature representations (size: 1� 1 �
1� 64) and classification scores (size: 1� 1� 1� C) are
concatenated. They are further processed by the subject-level
Conv layer (i.e., ConvS in Fig. 1) to obtain a subject-level feature
representation (size: 1� 1� 1� 64), based on which a subject-
level classification score (size: 1� 1� 1� C) is produced by the
ultimate classification layer (i.e., ClassS in Fig. 1).

It is worth noting that, in our proposed H-FCN method,
the discriminative power of the sub-networks defined at dif-
ferent scales is expected to increase monotonously, as poste-
rior sub-networks are trained to effectively integrate
outputs of preceding sub-networks to produce higher-level
features for the diagnostic task.

4.2 Hybrid Loss Function

We design a hybrid cross-entropy loss to effectively learn
our proposed H-FCN, in which the subject-level labels
are used as weakly-supervised guidance for the training of
patch-level and region-level sub-networks. Specifically,
let ðXn; ynÞ

� �N

n¼1
be a training set containing N samples,

where Xn and yn 2 f1; . . . ; Cg denote, respectively, the
sMRI for the nth subject and the corresponding class
label. The learnable parameters for the patch-, region-,
and subject-level sub-networks are denoted, respectively,
as Wp, Wr, and Ws. Then, our hybrid cross-entropy loss is
designed as

L Wp;Wr;Wsð Þ ¼

� �p

N

XN

n¼1

1

C

XC

c¼1

dn;clog Pp ŷn ¼ cjXn;W
p;Wr;Ws

� �� �

� �r

N

XN

n¼1

1

C

XC

c¼1

dn;clog Pr ŷn ¼ cjXn;W
r;Ws

� �� �

� 1

N

XN

n¼1

1

C

XC

c¼1

dn;clog Ps ŷn ¼ cjXn;W
s

� �� �
;

(1)

where dn;c is a binary indicator of the ground-truth class
label, which equals 1 iff yn ¼ c. Function Ppð�j�Þ, Prð�j�Þ,
and Psð�j�Þ denote the probability obtained, respectively,
by the patch-, region-, and subject-level sub-networks, in
terms of a given subject (e.g., Xn) being diagnosed as a
specific class (e.g., ŷn ¼ c). Thus, given a training set
ðXn; ynÞ

� �N

n¼1
, the first to the last terms of Eq. (1) denote,

respectively, the average loss for all patch-level sub-net-
works, the average loss for all region-level sub-networks,
and the loss for the subject-level subnetwork.

As can be inferred from the form of Ppð�j�Þ and Prð�j�Þ,
the training loss from higher-level sub-networks are back-
propagated and merged into lower-level sub-networks to
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assist the updating of their network parameters. Tuning
parameters �p and �r control, respectively, the influences of
patch-level and region-level training losses, which were
empirically set as 1 in our experiments.

4.3 Network Pruning

After training the initial H-FCNmodel byminimizing Eq. (1)
directly, the discriminative capabilities of input location
proposals can be automatically inferred in a data-driven
manner. Based on the resulting diagnostic/classification
scores on the training set for each patch-level and region-
level sub-networks, we further refine the initial H-FCN by
pruning sub-networks to remove uninformative patches
and regions. An illustration of such network pruning step is
denoted by small red crosses in Fig. 1.

Specifically, we select the top Tr regions and Tp patches
with the lowest diagnostic losses on the training set. Then,
we delete those uninformative (i.e., not listed in the top Tr)
region-level sub-networks, and hence the connections
between those uninformative regions and the preceding
patches are simultaneously removed. We further prune the
uninformative (i.e., not listed in the top Tp) patch-level sub-
networks that connect to the remaining (informative)
region-level sub-networks. Finally, we remove the sub-
networks for regions (as well as their corresponding patch-
level connections) that are completely included in other
regions to form the pruned H-FCNmodel.

The pruned H-FCN model yielded in the above manner
contains much less learnable parameters than the initial
H-FCN model. It is worth noting that those informative
regions remained in the pruned H-FCN model may have
different shapes and sizes, as they are constructed on the
outputs of varying numbers of informative patches. Also,
these regions are potentially overlapped. In our experi-
ments, we selected top 10 regions (i.e., Tr ¼ 10) and top 20
patches (i.e., Tp ¼ 20) to prune the network.

4.4 Implementations

The proposed networks were implemented using Python
based on the Keras package,2 and the computer we used
contains a single GPU (i.e., NVIDIA GTX TITAN 12 GB).
The Adam optimizer with recommended parameters was
used for training, and the size of mini-batch was set as 5.
The networks were trained on one complete dataset (e.g.,
ADNI-1), and then tested on the other independent dataset
(e.g., ADNI-2). We randomly selected 10 percent training
samples as the validate set. The diagnostic models and the
corresponding tuning parameters (e.g., the patch size) were
chosen in terms of the validation performance.

In the training stage, the definition of the voxel-wise cor-
respondence for the extraction of anatomically-consistent
image patches requires about 10 minutes for each subject.
We trained the networks for 100 epochs, which took around
14 hours (i.e., 500 seconds for each epoch). In the application
stage, the diagnosis for an unseen testing subject only
requires less than 2 seconds, based on its non-linear regis-
tration deformation field (for the definition voxel-wise cor-
respondence) and trained networks.

4.4.1 Training Strategy

For the task of AD classification (i.e., AD versusNC), the ini-
tial wH-FCN model was trained from scratch by minimiz-
ing Eq. (1) directly. After identifying the most informative
patches and regions, the pruned wH-FCN model was
trained in a deep manner. That is, the sub-networks at each
scale of the pruned network were first trained sequentially
by freezing the preceding sub-networks (i.e., at finer scales)
and minimizing the corresponding term in Eq. (1). After
that, by using the learned parameters as initialization, all
sub-networks were further refined jointly.

4.4.2 Transfer Learning

Compared with the task of AD classification, the task of
MCI conversion prediction is relatively more challenging,
since structural changes of MCI brains (between those of
NC and AD brains) caused by dementia may be very subtle.
Considering that the two classification tasks are highly cor-
related, recent studies [19], [34] have shown that the supple-
mentary knowledge learned from AD and NC subjects can
be adopted to enrich available information for the predic-
tion of MCI conversion. Accordingly, in our implementa-
tion, we transferred the network parameters learned for AD
diagnosis (i.e., AD versus NC classification) to initialize the
training of the network for pMCI versus sMCI classification.

4.4.3 Data Augmentation

To mitigate the over-fitting issue, 0.5 dropout was activated
for the Conv6, Conv_R, and Conv_S layers in Fig. 1. Also,
the training samples were augmented on-the-fly using three
main strategies, i.e., i) randomly flipping the sMRI for each
subject, ii) randomly distorting the sMRI with a small scale
for each subject, and iii) randomly shifting at each location
proposal within a 5� 5� 5 neighborhood to extract image
patches. It is worth mentioning that the operation of ran-
domly shifting was designed specifically for our proposed
method. When combined with the first two operations, it
could effectively augment the number and diversity of
available samples for training our H-FCN model. Moreover,
as introduced in Section 4.1.2, the patch-level sub-networks
shared weights across different patch locations in our
implementations. This could also help reduce the over-fit-
ting risk, considering the number of learnable parameters
was effectively reduced and the input image patches were
extracted at different brain locations with various anatomi-
cal appearances. In addition, based on identified discrimi-
native locations, the network pruning strategy introduced
in Section 4.3 further reduced the number of learnable
parameters to tackle the over-fitting challenge.

5 EXPERIMENTS AND ANALYSES

In this section, we first compare our H-FCN method with
several state-of-the-art methods. Then, we validate the effec-
tiveness of the important components of our method,
including the prior knowledge for location proposals, the
network pruning strategy, and the transfer learning strat-
egy. After that, we further evaluate the influence of the net-
work parameters (e.g., the size and number of input image
patches) as well as the training data partition on the2. https://github.com/fchollet/keras
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diagnostic performance. Finally, we verify the multi-
scale discriminative locations automatically identified by
our H-FCNmethod.

5.1 Experimental Settings

Our H-FCNmethod was validated on both tasks of AD clas-
sification (i.e., AD versus NC) and MCI conversion predic-
tion (i.e., pMCI versus sMCI). The classification performance
was evaluated by four metrics, including classification accu-
racy (ACC), sensitivity (SEN), specificity (SPE), and area
under receiver operating characteristic curve (AUC). These
metrics are defined as ACC ¼ TPþTN

TPþTNþFPþFN, SEN ¼ TP
TPþFN,

and SPE ¼ TN
TNþFP, where TP, TN, FP, and FN denote,

respectively, the true positive, true negative, false positive,
and false negative values. The AUC is calculated based on
all possible pairs of SEN and 1-SPE obtained by changing
the thresholds performed on the classification scores
yielded by the trained networks.

5.2 Competing Methods

The proposed wH-FCN method was first compared with
three conventional learning-based methods, including 1) a
method using region-level feature representations (denoted
as ROI) [14], 2) a method using voxel-level feature repr-
esentations, i.e., voxel-based morphometry [36], and 3) a
method using patch-level feature representations, i.e., land-
mark-based morphology (LBM) [23]. Besides, wH-FCN
was further compared with a state-of-the-art deep-learning-
based method, i.e., 4) deep multi-instance learning (DMIL)
model [34].

(1) Region-based method (ROI): Following previous stud-
ies [14], the whole brain sMRI data were partitioned
into multiple regions to extract region-scale features
for SVM-based classification. More specifically, each
sMRI was first segmented into three tissue types, i.e.,
gray matter, white matter (WM), and cerebrospinal
fluid (CSF), by using the FAST algorithm [61] in the
FSL package.3 Then, the anatomical automatic label-
ing (AAL) atlas, with 90 pre-defined ROIs in the
cerebrum, was aligned to each subject using the
HAMMER algorithm [62]. Finally, the GM volumes
in the 90 ROIs were quantified, and further normal-
ized by the total intracranial volume (estimated by
the summation of GM, WM, and CSF volumes), to
train linear SVM classifiers.

(2) Voxel-based morphometry (VBM): In line with [36], all
sMRI data were spatially normalized [63] to the
Colin27 template to extract local GM density in a
voxel-wise manner. After that, a statistical group
comparison based on t-test was performed to reduce
the dimensionality of the high-dimensional voxel-
level feature representations. Finally, linear SVM
classifiers were constructed for disease diagnosis.

(3) Landmark-based morphometry (LBM): In the LBM
method [23], morphological features (i.e., local
energy pattern [64]) were first extracted from a local
image patch centered at each pre-defined anatomical

landmark. These patch-level feature representations
were further concatenated and processed via z-score
normalization process [65] to perform linear SVM-
based classification.

(4) Deep multi-instance learning (DMIL): The DMIL
method [34] adopted local image patches to develop a
CNN-based multi-instance model for brain disease
diagnosis. Specifically, multiple image patches were
first localized by anatomical landmarks. Then, each
input patch was processed by a CNN to yield the cor-
responding patch-level feature representations. These
patch-level features were finally concatenated and
fused by fully connected layers to produce subject-
level feature representations for AD classification and
MCI conversion prediction. In line with [34], totally 40
landmarkswere selected to construct the classifier.

Notably, our implementation of wH-FCN shared the
same landmark pool with the LBM and DMIL methods.
However, the key difference between them is that, based on
prior knowledge, both the LBM and DMIL methods first
pre-selected the top 40 landmarks as inputs. In contrast,
our wH-FCN method regarded all anatomical landmarks
equally as potential location proposals, without explicit
assumption concerning their discriminative capacities.

5.3 Diagnostic Performance

In this group of experiments, the baseline ADNI-1 and
ADNI-2 datasets were used as the training and testing sets,
respectively. Results of AD versus NC and pMCI versus
sMCI classification obtained by the competing methods
(i.e., ROI, VBM, LBM, and DMIL) and our wH-FCN method
are presented in Table 2.

Several observations can be summarized from Table 2.
1) Three patch-based methods (i.e., LBM, DMIL, and wH-
FCN) yield better classification results than both the ROI
method and VBM method. This shows that, as an interm-
ediate scale between the region-level and voxel-level feat-
ure representations, the patch-level feature representations
could provide more discriminative information regarding
subtle brain changes for brain disease diagnosis. 2) For both
diagnosis tasks, deep-learning-based methods (i.e., DMIL
and wH-FCN) outperform other three traditional learning-
based methods (i.e., the ROI, VBM, and LBMmethods) with
relatively large margins, demonstrating that learning task-
oriented imaging features in a data-driven manner is benefi-
cial for subsequent classification tasks. 3) Compared with
the state-of-the-art DMIL method, our proposed wH-FCN
method has competitive performance in the fundamental

TABLE 2
Results for AD Classification (i.e., AD versus NC)

and MCI Conversion Prediction (i.e., pMCI versus sMCI)

Method AD vs.NC
classification

pMCI vs. sMCI
classification

ACC SEN SPE AUC ACC SEN SPE AUC

ROI 0.792 0.786 0.796 0.867 0.661 0.474 0.690 0.638
VBM 0.805 0.774 0.830 0.876 0.643 0.368 0.686 0.593
LBM 0.822 0.774 0.861 0.881 0.686 0.395 0.732 0.636
DMIL 0.911 0.881 0.935 0.959 0.769 0.421 0.824 0.776
wH-FCN 0.903 0.824 0.965 0.951 0.809 0.526 0.854 0.781

3. http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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task of AD classification. More importantly, our wH-FCN
method yields much better results on the more challenging
task, i.e., MCI conversion prediction. Specifically, the per-
formance improvements brought by our method with
respect to ACC, SEN, and SPE are all statistically significant
(i.e., p-values < 0:05) in pMCI versus sMCI classification.
The main reason could be that the integration of discrimina-
tive localization, feature extraction, and classifier construc-
tion into a unified deep learning framework is effective for
improving diagnostic performance, since, in this way, the
three important steps can be more seamlessly coordinated
with each other in a task-oriented manner. The DMIL
method slightly outperforms our wH-FCN method in the
task of AD versus NC classification, with p-values > 0:5 for
both ACC and AUC. It perhaps due to the reason that the
AD classification task has less strict requirement for task-
oriented discriminative localization than the MCI conver-
sion prediction task, considering the structural changes in
brains with AD should be easier to be captured. Another
reason could be that DMIL constructed specific CNNs
(i.e., with different network parameters) for image patches
extracted at different brain locations. Nevertheless, as a
compromise, such kind of implementations inevitably incre-
ases the computational complexity, especially when a rela-
tively large number of local patches are extracted as the
network inputs.

5.4 Effectiveness of Prior Knowledge for Location
Proposals

As introduced in Section 4.1.1, in the implementation of our
wH-FCN method, the anatomical landmarks were used as
prior knowledge to assist the definition of relatively infor-
mative location proposals, i.e., to efficiently filter out unin-
formative locations. To evaluate the effectiveness of this
strategy, we also designed another version of our proposed
network (i.e., nH-FCN) for comparison, in which the loca-
tion proposals were defined without any prior knowledge.

In Fig. 2, the two variants of our method (i.e., nH-FCN
and wH-FCN) are compared on both the tasks of AD classi-
fication and MCI conversion prediction. According to Fig. 2
and Table 2, we can have at least two observations. 1) Com-
pared with the state-of-the-art method (i.e., DMIL), our nH-
FCN and wH-FCN consistently lead to competitive perfor-
mance, especially on the challenging task of MCI conversion
prediction. For example, in the case of DMIL versus nH-
FCN, the ACC and SEN for MCI conversion prediction is
0.769 versus 0.791 and 0.421 versus 0.526, respectively. In
some sense, this reflects the robustness of our proposed
method in terms of location proposals. 2) Our wH-FCN out-
performs nH-FCN on both tasks, e.g., the AUC for AD

classification is 0.951 versus 0.938, and for MCI conversion
prediction is 0.781 versus 0.777. It indicates that wH-FCN
may include more informative patches as the initial
inputs, compared with nH-FCN that does not consider any
prior knowledge on discriminative locations in sMRI. Also,
it potentially implies that, if we could initialize the network
with more informative location proposals, the diagnostic
performance of our proposed H-FCN method could be
further improved.

5.5 Effectiveness of Hierarchical Network Pruning

As introduced in Section 4.3, a key component of
our proposed method is the network pruning strategy to
hierarchically prune uninformative region-level and patch-
level sub-networks, thereby reducing the number of learn-
able parameters and ultimately boosting the diagnostic
performance.

In this group of experiments, we evaluated the effective-
ness of the network pruning as well as the hierarchical
architecture used in our proposed wH-FCN method. Specif-
ically, using the task of AD diagnosis as an example, we
performed a two-fold evaluation, including 1) the compari-
son between the initial network without network pruning
and the refined network with network pruning, and 2) the
comparison of classification performance for sub-networks
defined at different (i.e., patch-, region-, and subject-) levels.

The corresponding experimental results are presented in
Fig. 3, from which we can have the following observations.
1) Our network pruning strategy effectively improves the
classification performance of the sub-networks defined at
the three different scales, where the improvement for the
patch-level and region-level sub-networks is especially sig-
nificant. This implies that those uninformative patches and
regions in the initial network were largely removed due to
the network pruning strategy. 2) From the patch-level to the
subject-level, the sub-networks defined at different scales
lead to monotonously increased classification performance
in terms of all the four metrics. This indicates that, capital-
izing on the hierarchically integration of feature representa-
tions from lower-level sub-networks, our proposed method
can effectively learn more discriminative feature representa-
tions for the diagnosis task at hand.

5.6 Effectiveness of Transfer Learning

As introduced in Section 4.4.1, we used the network
parameters learned from the task of AD classification as
initialization to train networks for the relatively challeng-
ing task of MCI conversion prediction, considering that
the two tasks are highly correlated according to the
nature of AD.

Fig. 2. Comparison between no-prior locations proposals (i.e., nH-FCN)
and with-prior location proposals (i.e., wH-FCN). (a) and (b) show the
classification results for AD diagnosis and MCI conversion prediction,
respectively.

Fig. 3. Results of AD classification produced by our wH-FCN method
with and without the network pruning strategy, respectively. For each
case, the average classification performance of the sub-networks
defined at different scales are presented.
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In this group of experiments, we verified the effective-
ness of the transferred knowledge for the network training.
To this end, we trained another network from scratch for
MCI conversion prediction, and compared the resulting
classification performance with that obtained by the previ-
ous network trained with transferred knowledge.

The corresponding results are presented in Fig. 4, based
on which we can find that initialization of networks with
transferred knowledge could further boost a little bit of
diagnostic performance. This is intuitive and reasonable,
especially under the circumstance that the two diagnosis
tasks are correlated. The possible reason is that the training
data in the task of pMCI versus sMCI classification are
implicitly enriched since the supplementary information of
AD and NC subjects is also included.

5.7 Influence of the Number of Image Patches

In this group of experiments, we investigated the influence
of the number of input image patches (denoted as P ) on the
classification performances achieved by our wH-FCN
method. Using AD classification as an example, we orderly
selected P from f40; 60; 80; 100; 120g in wH-FCN and
recorded the corresponding results. Experimental results
quantified by ACC and AUC are summarized in Fig. 5.

From Fig. 5, we can observe that both the values of ACC
and AUC are clearly increased when changing P from 40 to
80. For example, we have ACC ¼ 0:850 and AUC ¼ 0:883
when P ¼ 40, while ACC ¼ 0:903 and AUC ¼ 0:946 when
P ¼ 80. This implies that less location proposals are not
enough to yield satisfactory results, potentially because 1)
limited number of local patches cannot comprehensively
characterize the global information at the subject-level, and
2) limited number of location proposals may fail to include
some actually discriminative locations at the very begin-
ning. We can also observe that the performance of our
method is relatively stable between P ¼ 80 and P ¼ 120,
considering that the improvements of ACC and AUC are
slow. The main motivation for choosing P ¼ 120 in our imp-
lementations is to largely include potentially informative

locations, as well as to account for the computational
complexity and memory cost during the training.

5.8 Influence of the Size of Image Patches

In previous implementations of our H-FCN method, the
size of input image patches was fixed as 25� 25� 25. To
evaluate the influence of patch size, in this group of experi-
ments, we trained networks using local patches with the
size of 15� 15� 15, 25� 25� 25, 35� 35� 35, and
45� 45� 45, one by one. Correspondingly, the classification
results in terms of ACC and AUC are reported in Fig. 6.

From Fig. 6, we can see that our proposed H-FCN
method is not very sensitive to the size of input patch in a
wide range (i.e., from 15� 15� 15 to 45� 45� 45), and the
overall better result is obtained using patches with the size
in the range of ½25� 25� 25; 35� 35� 35�. Also, H-FCN
using relatively smaller image patches (i.e., 15� 15� 15)
cannot generate good results, implying that too small image
patches could not capture global structural information of
the whole brain. On the other hand, the performance of H-
FCN using larger image patches (i.e., 45� 45� 45) is also
slightly decreased. It may be because too large image
patches inevitably include more uninformative voxels,
which could affect the identification of subtle brain changes
in these large patches.

5.9 Influence of Data Partition

In all the above experiments, we trained and tested the classi-
fication networks on the baseline ADNI-1 and ADNI-2 data-
sets, respectively. To study the influence of training data as
well as the generalization ability of our proposed method, in
this group of experiments, we reversed the training and test-
ing sets to train the network on ADNI-2, and then apply the
learned network on ADNI-1 for AD classification.

Accordingly, the classification results on the testing set
(i.e., ADNI-1) are summarized in Table 3, in which our pro-
posed wH-FCN method is compared with a state-of-the-art
patch-based method (i.e., LBM). We can observe that our
proposed wH-FCN method still outperforms the competing
method in this scenario. In addition, by comparing the
results achieved by wH-FCN trained on ADNI-2 (Table 3)
with the results achieved by wH-FCN trained on ADNI-1

Fig. 4. Comparison between our wH-FCN models trained without and
with transferred knowledge, respectively, for MCI conversion prediction.
In the latter case, the parameters of the network for AD classification
were transferred to initialize the training of the network for MCI conver-
sion prediction.

Fig. 5. Results of AD classification obtained by our wH-FCN method in
terms of different numbers of input image patches (i.e.,
P ¼ 40; 60; . . . ; 120).

Fig. 6. Results of AD classification obtained by our wH-FCN method in
terms of different sizes of input image patches (i.e., 15� 15� 15,
25� 25� 25, 35� 35� 35, and 45� 45� 45).

TABLE 3
Results for AD Classification (i.e., AD versus NC) on the
Baseline ADNI-1, Using the Baseline ADNI-2 as the Training Set

Method ACC SEN SPE AUC

LBM 0.820 0.824 0.817 0.887
wH-FCN 0.895 0.879 0.910 0.945
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(Table 2), it can be seen that the diagnostic results are com-
parable (e.g., 0.895 versus 0.903 for ACC, and 0.945 versus
0.951 for AUC). The network constructed on ADNI-1 is
slightly better, possibly due to the fact that more training
subjects are available in ADNI-1 than in ADNI-2. These
experiments suggest that our proposed H-FCN model has
good generalization capacity in sMRI-based AD diagnosis.

5.10 Automatically-Identified Multi-Scale Locations

Our proposed H-FCN method can automatically identify
hierarchical discriminative locations of brain atrophy at both
the patch-level and region-level. In Fig. 7, we visually verify
those automatically-identified locations in distinguishing
between AD and NC as well as between pMCI and sMCI.

Specifically, the first, second, and third rows of Fig. 7 pres-
ent the discriminative atrophy locations identified, respec-
tively, by the wH-FCN trained for AD classification, the nH-
FCN trained for AD classification, and the wH-FCN trained
from scratch for MCI conversion prediction. Also, the left and
right panels of Fig. 7 denote, respectively, the patch-level and
region-level discriminative atrophy locations identified by our
method. From Fig. 7, we can have the following observations.
1) In all three different cases, our proposed H-FCN method
consistently localized multiple locations at the hippocampus,
ventricle, and fusiform gyrus. It is worth noting that the dis-
criminative capability of these brain regions in AD diagnosis
has already been reported by previous studies [7], [23], [31],
[69], which implies the feasibility of our proposed method. 2)
For AD classification, although different location proposals
were used, the two different implementations of our proposed
method (i.e., wH-FCN and nH-FCN) identified multiple
patches and regions that are largely overlapped or localized at
similar brain regions. 3) The patches and regions identified by
our wH-FCN trained from scratch for MCI conversion predic-
tion (i.e., the third row) were largely consistent with those
identified by our wH-FCN trained for AD classification (i.e.,
the first row), although totally different subjects were used to
train the networks in the two different but highly-correlated
tasks. Statements in both 2) and 3) imply the robustness of our

proposed method in identifying discriminative atrophy loca-
tions in sMRI for AD-related brain disease diagnosis.

Also, based on the identified patch-level discriminative
locations, it is intuitive to further localize AD-related struc-
tural abnormalities at a finer scale (i.e., voxel-level). As an
example, Fig. 8 presents the discriminative patches localized
by our wH-FCNmethod in six patients with AD, and the cor-
responding voxel-level AD heatmaps generated by the
method proposed in [35] for these patches. To generate such
voxel-level heatmaps, we used the identified patches to train
a 3D FCN described in Fig. S3 of the Supplementary Materials,
which can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2018.2889096.
The architecture of this 3D FCN is similar to the PSN module
used in our H-FCN, but with several essential modifications.
Specifically, in this 3D FCNmethod, we removed the pooling
layers and included zero-padding in the convolutional layers
to preserve the spatial resolution of the input patches for the
following feature maps. We then used a global average
pooling layer followed by a fully connected (FC) layer (with-
out bias) to produce the classification score. After training,
the voxel-level AD heatmaps were finally calculated based
on the FC weights and the outputs of the last Conv layer,
using the operation proposed in [35]. From Fig. 8,
we can observe that, based on the discriminative patches
localized by our H-FCN method, we could further
identify more detailed discriminative locations at the voxel
level, e.g., the hippocampus, and the corners and boundaries
of the ventricle. Potentially, we may also replace the PSN
module (shown in Fig. 1) with the above FCN to directly pro-
duce the voxel-level AD heatmaps in our H-FCN, while it
will inevitably increase the computational complexity for
training, due to the high spatial resolutions of intermediate
feature maps.

Moreover, we further verified the effectiveness of another
two strategies (i.e., the voxel-wise anatomical correspondence
for location proposals and the hierarchical architecture) used
in our H-FCNmethod, and also analyzed the influence of the
size of regional inputs on the diagnostic performance. These

Fig. 7. Discriminative locations automatically identified by our proposed method at the patch-level (i.e., the left panel) and region-level (i.e., the right
panel). The first to third rows correspond, respectively, to our proposed wH-FCN model trained for AD classification, our proposed nH-FCN model
trained for AD classification, and our proposed wH-FCN model trained from scratch for MCI conversion prediction.
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experimental results can be found in Section 1 to Section 3 of
the SupplementaryMaterials, available online.

6 DISCUSSION

In this section, we first summarize the main differences
between our proposed H-FCNmethod and previous studies
on AD-related brain disease diagnosis. We also point out
the limitations of our proposed method as well as potential
solutions to deal with these limitations in the future.

6.1 Comparison with Previous Work

Compared with the conventional region- and voxel-level
pattern analysis methods [7], [8], [9], [10], [11], [12], [13],
[14], [16], [17], [18], [41], [45], our proposed H-FCN method
adopted local image patches (an intermediate scale between
voxels and regions) as inputs to develop a hierarchical clas-
sification model. Specifically, multi-scale (i.e., patch-, region-
, and subject-level) sub-networks were hierarchically con-
structed in our proposed method, by using outputs of pre-
ceding sub-networks as inputs. In this way, local-to-global
morphological information was seamlessly integrated for
comprehensive characterization of brain atrophy caused by
dementia. Also, different from conventional patch-level pat-
tern analysis methods [19], [21], [22], [23] using manually-
engineered imaging features, our proposed H-FCN method
can automatically learn high-nonlinear feature representa-
tions, which are more consistent with subsequent classifiers,
leading to more powerful diagnosis capacity.

Our proposed H-FCN method is also different from
existing deep-learning-based AD diagnosis methods in
the literature [31], [33], [34], [50], [51], [66], [68]. First
and foremost, in contrast to existing CNN-based methods
that require the pre-determination of informative brain
regions [31], [33] or local patches [34] for feature extraction,
our proposed method integrated automatic discriminative
localization, feature extraction, and classifier construction
into a unified framework. In this way, these three correlated
tasks can be more seamlessly coordinated with each other
in a task-oriented manner. In addition, rather than using
solely the mono-scale feature representations, our proposed
method extracted and fused complementary multi-scale fea-
ture representations to construct a hierarchical classification
model for brain disease diagnosis.

In Table 4, we briefly summarize several state-of-the-art
results reported in the literature for AD classification and/or
MCI conversion prediction using baseline sMRI data of
ADNI, including seven conventional learning-based methods
(i.e., voxel-level analysis [9], [41], region-level analysis [17],
[45], and patch-level analysis [19], [21], [22]), and five deep-
learning-based methods (i.e., [33], [50], [51], [66], [68]). It is
worth noting that the direct comparison between these meth-
ods is impossible due to the utilization of different datasets.
That is, the results in Table 4 are not fully comparable, since
these studies were performed with the varying number of
subjects, and also the varying partition of training and test-
ing samples, and the definition of pMCI/sMCI may be par-
tially different as well. However, by roughly comparing our
study (i.e., the last row of Table 4) with these state-of-the-art
methods, we can still have several observations. First, in
contrast to the studies using only fractional sMRI data
of ADNI-1, our proposed method was evaluated on a
much larger cohort of 1,457 subjects from both ADNI-1 and
ADNI-2, which should be more challenging but more fair.
Second, using a more challenging evaluation protocol (i.e.,
independent training and testing sets), our method also
obtained competitive classification performance, especially
for MCI conversion prediction. Third, compared with [68]
that constructed an end-to-end CNN model using the
whole brain sMRI data and [33] that constructed a CNN
model using hippocampal sMRI data, our proposed method
yielded better diagnostic results. This implies that, due to
the use of hierarchical architecture and automatic discrimi-
native localization, our method is more sensitive to subtle
structural changes in sMRI caused by dementia.

6.2 Limitations and Future Work

While our proposed H-FCN method achieved good results
in automatic discriminative localization and brain disease
diagnosis, its performance and generalization capacity
could be further improved in the future by carefully dealing
with the following limitations or challenges.

First, in our current implementation, the size of input
image patches was fixed for all location proposals. Consider-
ing the structural changes caused by dementia may vary
across different locations, it is reasonable to extend our pro-
posedmethod by usingmulti-scale image patches. To flexibly
design sub-networks with shared-weights for multi-scale

Fig. 8. Voxel-level AD heatmaps for the discriminative patches automatically-identified by our H-FCN method in six different subjects. The heatmaps
and the image patches have the same spatial resolution (i.e., 25� 25� 25). Note that voxels with warmer (or more yellow) colors in these heatmaps
have higher discrminative capacities.
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image patches, we could potentially modify our network
architecture by including global pooling layers. Second, the
network pruning strategy used in our current methodmay be
too aggressive, since removed patches or regions will no lon-
ger be considered, while those pruned patches/regions could
contain supplementary information (when combined with
other distinctive patches/regions) for robust model training.
Therefore, it is interesting to design a more flexible pruning
strategy to re-use those removed patches/regions based on
some criteria. Third, the non-linear registration step was
required for establishing the voxel-wise anatomical corre-
spondence across different subjects, which inevitably incre-
ased the computational complexity in the testing phase. To
accelerate our proposed method for predicting unseen sub-
jects, we could alternatively construct another automatic
detection model (e.g., in [70]), using the training sMRIs and
identified discriminative locations as the input and ground
truth, respectively. Then, we could directly predict the identi-
fied discriminative locations for unseen subjects in the line-
arly-aligned image space, without using any time-consuming
non-linear registration in the testing phase. Forth, in our cur-
rent method, the location proposal module is isolated to the
subsequent network. It should be a promising direction to fur-
ther unify this important module into our current deep learn-
ing framework to automatically and specifically generate
location proposals for each individual subjects. To this end,
we could potentially develop a multi-task learning model.
For example, we could include a weakly-supervised FCN
(e.g., [35]) constructed on the whole brain sMRI to generate
location proposals on high-resolution feature maps. Then,
based on the location proposals and feature maps produced
by this FCN, we could further construct our proposedH-FCN
model for precise discriminative localization and brain dis-
ease diagnosis. Furthermore, it is worth mentioning that the
datasets studied in this paper have different imaging data

distributions due to the use of different scanners (i.e., 1.5T
and 3T scanners) in ADNI-1 and ADNI-2. Hence, including
domain adaptation [71] module into our current method
could further improve its generalization capability.

7 CONCLUSION

In this study, a hierarchical fully convolutional network was
proposed to automatically identify multi-scale (i.e., patch-
and region-level) discriminative locations in sMRI to con-
struct the hierarchical classifier for AD diagnosis and MCI
conversion prediction. On the two public datasets with
1,457 subjects, the effectiveness of our proposed method on
joint discriminative localization and disease diagnosis has
been extensively evaluated. Compared with several state-
of-the-art CAD methods, our proposed method has demon-
strated better or at least comparable classification perfor-
mance, especially in the relatively challenging task of MCI
conversion prediction.
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