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Abstract
Accurate and early diagnosis of Alzheimer’s disease (AD) plays important role for patient care and development of future treatment.
Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are
providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent
years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation
and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image prepro-
cessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper
proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and
PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform
the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is
cascaded to ensemble the high-level features learned from themulti-modality and generate the latent multimodal correlation features
of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer
followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and
multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to
some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated
on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI
+128 sMCI) and 100 normal controls (NC) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental
results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classifi-
cation pMCI vs. NC, demonstrating the promising classification performance.
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Introduction

Alzheimer’s disease (AD) is an irreversible brain degenerative
disorder with progressive impairment of the memory and cog-
nitive functions. Mild cognitive impairment (MCI) is a transi-
tional state from normal control (NC) to dementia and it is
often considered as a clinical precursor of AD when it is as-
sociated with memory loss (Krizhevsky et al. 2012; Minati
et al. 2009). Currently there is no cure for AD, but it is of great
interest for developing treatments to delay its progression,
especially if AD can be diagnosed at an early stage where
those treatments would have the most impact. Thus, accurate
and early diagnosis of AD/MCI is important for patient care
and future treatment. But it is still a challenging problem for
accurate and early diagnosis of AD/MCI in clinic. Multi-
modality neuroimages such as magnetic resonance images
(MRI) and positron emission tomography (PET) are providing
powerful imaging information to help understand the anatom-
ical and functional neural changes related to AD. In recent
years, extensive studies have been done to find the biomarkers
and develop computer-aided system using the pattern recog-
nition methods for AD diagnosis with the different types of
neuroimaging modalities (Cheng et al. 2015; Suk et al. 2014,
2015; Suk and Shen 2013; Zhang et al. 2011).

MRI is a non-invasive medical imaging modality used for
imaging the internal body structures. It uses a powerful mag-
netic field and radio frequency pulses to produce detailed im-
ages of organs, soft tissues, bone and virtually all other inter-
nal body structures. Currently, MRI is the most sensitive im-
aging test of the brain in routine clinical practice. MRI scans
are specially used in brain imaging where it provides informa-
tion about the morphology of the white matter, gray matter
and cerebrospinal fluid (CSF). Structural MRIs are often used
to non-invasively capture the regional brain atrophy and help
understand the brain anatomical changes. Thus, they are rec-
ognized as an important biomarker for AD progression and
are widely studied with pattern recognition methods for AD
diagnosis (Hinrichs et al. 2009; Hosseini-Asl et al. 2016;
Kloppel et al. 2008, epub). The raw brain images are too large
and noisy to be directly used for classification. For morpho-
logical analysis of brain images, multiple anatomical regions,
i.e., regions of interest (ROIs), were produced by grouping
voxels through the warping of a labeled atlas and the regional
measurements are computed as the features for image classi-
fication (Liu et al. 2015; Zhang et al. 2011). To capture the rich
image information, voxel-wise features were extracted after
registering all brain images to associate each voxel with a
vector of scalar measurements for AD diagnosis (Ishii et al.
2005; Kloppel et al. 2008, epub). The brain volume is seg-
mented to gray matter (GM), white matter (WM), and CSF
parts, and the voxel-wise tissue density maps are computed for
classification. Lerch et al., (Lerch et al. 2008) proposed to
extract the cortical thickness features by calculating the

distances between corresponding points at the WM and GM
surfaces. Gerardin et al., (Gerardin et al. 2009) segmented and
spatially aligned the hippocampus regions and modeled their
shape with a series of spherical harmonics to quantify the
hippocampus shape for AD classification.

In addition toMRI, Positrons Emission Tomography (PET)
is a functional medical imaging modality which can help phy-
sicians to diagnose AD. A positron-emitting radionuclide
(tracer) with a biologically active molecule, such as (18)F-
fluorodeoxy-glucose ((18)FDG), is introduced in the body.
Concentrations of this tracer are imaged using a camera and
indicate tissue metabolic activity by virtue of the regional
glucose uptake (Silveira and Marques 2010). There are some
studies on prediction of the standard-dose PET image from
low-dose PET and multimodal MR images (Wang et al.
2016; Yan et al. 2017). Fluorodeoxiglucose positron emission
tomography (FDG-PET) provides a powerful functional im-
aging biomarker to help understand the neural changes for AD
diagnosis. In recent years, various pattern recognition
methods have been investigated in analysis of PET brain im-
ages to identify the patterns related to AD and decode the
disease states for computer-aided-diagnosis (CAD). A region
based method was proposed to extract features for classifica-
tion of AD on PET images (Silveira and Marques 2010). In
this method, brain images are mapped into 116 anatomical
regions of interest (ROIs) and the first four moments and the
entropy of the histograms of these regions are computed as the
regional features. Receiver Operating Characteristics curves
are then used to rank the discriminability of ROIs to distin-
guish PET brain images and the features from top 21 regions
are input to both support vector machine (SVM) and random
forest classifiers for AD classification. In (Lu et al. 2015), 286
features were extracted from 116 cerebral anatomical volumes
of interest (VOIs) based on the automated anatomical labeling
(AAL) cortical parcellation map, and a semi-supervised meth-
odwas proposed to integrate the labeled and unlabeled data by
random manifold learning with affinity regularization for AD
classification. To capture the rich image information, the
voxel-wise intensity features were extracted after preprocess-
ing PET images, including co-registration to their baseline
PET scan, reorientation into a standard space, voxel intensity
normalization and smoothing with a 8 mm FWHM Gaussian
filter for AD classification. In (Silveira and Marques 2010), a
boosting method was proposed for classification of PET
images based on a mixture of simple classifiers, which per-
forms feature selection concurrently with classification to
solve high dimensional problem. A favorite class ensemble
of classifiers was proposed with each base classifier using a
different feature subset which is optimized for a given class
(Cabral et al. 2013).

Multi-modality images includingMRI and PETare provid-
ing powerful imaging modalities to help understand the ana-
tomical and neural changes related to AD (Alberdi et al. 2016;
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Li et al. 2014; Liu et al. 2015; Zhang et al. 2011). The changes
of multi-modality biomarkers may provide complementary
information for the diagnosis and prognosis of AD and recent
studies show that the combination of multimodal features can
improve the classification performance. Zhang et al., (Zhang
et al. 2011) proposed a multi-kernel SVM to ensemble the
multimodal features such as tissue volumes extracted from
93 ROIs, intensity values of PET images and CSF biomarkers
for disease classification. Recently, deep learning networks
were also used to extract the latent features from measure-
ments of ROIs with different image modalities for AD classi-
fication (Liu et al. 2015; Suk et al. 2015). Liu et al., (Liu et al.
2015) extracted a set of latent features from 83 ROIs of MRI
and PET scans and trained a multi-layered neural network
consisting of several auto-encoders to combine multimodal
features for classification. Suk et al., (Suk et al. 2015) used a
stacked Autoencoder to learn the latent high-level features
separately from the multimodal ROI features as those in
(Zhang et al. 2011) and a multi-kernel SVM was used to
combine these features to improve the classification perfor-
mance. The voxel-wise features of MRI and PET
neuroimages including the GM density map o and the
PET intensities are combined with a sparse regression
classifier, and a deep learning based framework was pro-
posed for estimating missing PET images for multimodal
classification of AD (Li et al. 2014).

Previous studies have shown that it is not only important
but also challenging to extract the representative biomarkers
for image classification. Although promising results have
been reported by investigating various pattern recognition
methods for multimodal neuroimage analysis, there are still
some limitations in the above feature extraction methods. The
ROI-based feature extraction can significantly reduce the fea-
ture dimension and provide robust representations, but some
minute abnormal changes may be ignored. In addition, the
ROIs are generated by prior hypotheses and the abnormal
brain regions relevant to AD might not well fit to the pre-
defined ROIs, thus limiting the representation power of ex-
tracted features. The voxel-wise features, such as gray matter
density map, can alleviate this problem, but they are of huge
dimensionality, far more features than training subjects, which
may lead to low classification performance due to the ‘curse of
dimensionality’. The cortical thickness and hippocampus
shape features neglect the correlated variations of the whole
brain structure affected by AD in other ROIs, e.g., the ventri-
cle’s volume. In addition, extraction of these handcrafted fea-
tures highly depends on image preprocessing steps such as
segmentation and registration, which often require the domain
expert knowledge.

Recently, deep learning methods have gained a good repu-
tation especially to extract informative features for computer
vision and medical image analysis (Shen et al. 2017). Usually,
the features learned via deep learning have better

representations of the data than the handcrafted features.
Instead of extracting features based on the expert’s knowledge
about the target domain, deep learning can discover the dis-
criminant representations inherent in data by incorporating the
feature extraction into the task learning process. Thus, it can
be used by nonexperts for their researches and/or applications,
especially in medical image analysis (Shen et al. 2017). In
addition, deep learning can construct multi-layer neural net-
works to transform image data to task outputs (e.g., disease/
normal) while learning hierarchical features from data such
that high-level features can be derived from low-level fea-
tures. Thus, complex patterns can be discovered with deep
learning. Convolutional neural networks (CNNs) have been
explored to learn the generic features of neuroimages for AD
diagnosis (Adrien 2015; Hosseini-Asl et al. 2016). Hosseini-
Asl et al., (Hosseini-Asl et al. 2016) proposed a deep 3D-
CNNs method to learn discriminant features and predict AD
using the structural MRI scans. In this method, the deep 3D-
CNNs were built upon a 3D-CAES (convolutional
Autoencoders) pre-trained with the rigidly registered training
images to capture anatomical shape variations, followed by
fully connected network for classification. Adrien et al.,
(Adrien 2015) proposed a deep learning based classification
algorithm for AD diagnosis using both structural and func-
tional MRI. In this method, the CNN model was built with
one convolutional layer trained with sparse Autoencoder,
which was explored to extract the imaging features for AD
classification. The above methods can learn generic features
capturing AD biomarkers via convolutional network.
However, all of them require the convolutional filters
pretrained on Autoencoder with carefully preprocessed data
to extract features and then classify them for task-specific
target. In addition, the above methods focused on the AD
diagnosis from MRI. In the case of multimodal neuroimages,
further investigation is still needed to determine their ability
for AD diagnosis. The two-stream CNNs have been used to
learn different types of features which are combined for image
classification (Lin et al. 2015; Weinzaepfel et al. 2015). In
(Weinzaepfel et al. 2015), a spatial-CNN was trained to cap-
ture the static appearance of the actor and the scene using the
RGB image, while a motion-CNN took the optical flow as
input to capture the motion pattern. These two-stream CNN
features are concatenated to discriminate the actions against
background regions for action localization in realistic videos.
In (Kloppel et al. 2008, epub), a bilinear model has been
proposed to multiply the outputs of two CNNs using outer
product at each location of the image and pooled to obtain a
bilinear vector for image classification.

Motivated by the success of CNN in image classification,
this paper proposes a novel multi-modality classification al-
gorithm based on cascaded CNNsmodel to learn and combine
the multi-level and multi-modality features of MRI and PET
images for AD diagnosis. First, a number of local 3D patches
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are uniformly extracted from the whole brain image, and a
deep 3D CNN is built to hierarchically and gradually trans-
form each image patch into more compact discriminative fea-
tures. Second, an upper high-level 2D CNN is cascaded to
ensemble the features learned by deep 3D CNNs from multi-
modality and generate the high-level features. Finally, these
learned features are combined by fully connected layers
followed by softmax prediction layer for image classification
in AD diagnosis. For training the whole deep learning net-
works, the multiple local 3D-CNNs for different patches are
individually trained to generate the compact features, and the
upper convolution and fully connected layers are fine-tuned to
combine the features learned by multiple 3D-CNNs and mul-
tiple image modality for image classification. The proposed
method can be used to learn the generic features from the
imaging data and combine the multi-level and multi-
modality features for classification. Our experimental results
on ADNI database demonstrate the effectiveness of the pro-
posed method for AD diagnosis. Comparing to the methods
based on two-streamCNNs (Lin et al. 2015;Weinzaepfel et al.
2015), our proposedmethod uses two-streamCNNs to capture
the individual features of MRI and PET for each local patch.
Different from these two methods that use the concatenation
and bilinear model to combine the features of two-stream
CNNs, our proposed method will apply the cascaded CNNs
to integrate the multi-level and multi-modality features for
classification.

The rest of this paper is organized as follows. Section 2
presents the materials of multimodal imaging data used in this
paper and the proposed multimodal classification algorithm
based on cascaded CNNs. Experiments and comparisons are
provided in Section 3. Section 4 concludes this paper.

Material and Method

In this section, we will present the multimodal brain image
sets that used in this work and the proposed classification
algorithm in detail. The MRI and PET images are powerful
imaging modalities which are often used as biomarkers to help
physicians for AD diagnosis. It is still challenging to make use
of the high-dimensional and multi-modality image data. In
this work, a cascaded deep CNNs model has been proposed
to hierarchically learn and combine the multi-level and multi-
modality features for AD diagnosis using MRI and PET im-
ages. There are 3 main advantages to apply the cascaded deep
CNNs to our task. First, the deep architecture of CNNs can
gradually extract the features from the low-, mid- to high-
levels with a high volume of training images. Second, they
can explicitly make use of the spatial structure of brain images
and learn local spatial filters useful for the classification task.
Finally, cascading multiple CNNs can construct a hierarchy of
more complex multi-modality features representing larger

spatial regions, finally providing a global label. The features
are robust to some variations such as scales and rotation to
some extent. The proposed algorithm can integrate the feature
extraction and classification processes by deep convolutional
learning and data-driven methods without the domain expert
knowledge. Figure 1 shows the flowchart of the proposed
classification algorithm based on cascaded CNNs, which con-
sists of 3 main steps: image preprocessing, feature learning by
building multi-CNNs and final multimodal classification by
cascading CNNs, as detailed below.

Data Sets

All data sets used in this work were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
which are publicly available in the website (www.loni.ucla.edu/
ADNI). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public–pri-
vate partnership. The primary goal of the ADNI was to test
whether serial magnetic resonance imaging (MRI), Positron
Emission Tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost
of clinical trials. The principal investigator of this initiative is
Michael W. Weiner, M.D., VA Medical Center and University
of California, San Francisco. ADNI was the result of efforts of
many co-investigators from a broad range of academic institu-
tions and private corporations. The study subjects were recruit-
ed from over 50 sites across the U.S. and Canada and gave
written informed consent at the time of enrollment for imaging
and genetic sample collection and completed questionnaires
approved by each participating sites Institutional Review
Board (IRB).

In this work, we used the T1-weighted magnetic resonance
(MR) imaging data and the 18-Fluoro-DeoxyGlucose PET
(FDG-PET) imaging data from the baseline visit for evalua-
tion. These imaging data are acquired from 397 ADNI partic-
ipants including 93 AD, 204MCI (76MCI converters (pMCI)
and 128 MCI non-converters (sMCI)), 100 NC. Table 1 pre-
sents the demographic details of the studied subjects in this
paper, where CDR denotes the Clinical Dementia Rating
(CDR).

In ADNI, MRI and PET image acquisition had been done
according to the ADNI acquisition protocol in (Jack Jr. et al.
2008). We used the structural MR images acquired from 1.5 T
scanners. The T1-weighted MR images were acquired
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sagittally using volumetric 3D MPRAGE with 1.25 ×
1.25 mm2 in-plane spatial resolution and 1.2 mm thick sagittal
slices. The FDG-PET images were acquired 30–60 min post-
injection, averaged, spatially aligned, interpolated to a stan-
dard voxel size, normalized in intensity, and smoothed to a
common resolution of 8 mm full width at half maximum.
More detailed information about MRI and FDG-PET acquisi-
tion procedures is available at the ADNI website.

The MRI and PET images were pre-processed to make
the images from different systems more similar. All T1-
weighted MR images were preprocessed by applying the
typical procedures of Anterior Commissure (AC)–Posterior
Commissure (PC) correction, skull-stripping, cerebellum re-
moval and affine registration. Specifically, nonparametric
nonuniform intensity normalization, N3 (Sled et al. 1998)
was first applied to correct non-uniform tissue intensities,
followed by skull stripping and cerebellum removal (Wang

et al. 2011). After that, we manually checked the skull-
stripped images to ensure the clean and dura removal.
Affine registration was performed to register the MR images
to a template with FSL (FMRIB Software Library) 5.0,
which can be freely downloaded from the website https://
fsl.fmrib.ox.ac.uk/. Regarding FDG-PET images, they were
affine-registered to the respective MR images with the inten-
sity normalization and conversion to a uniform isotropic
resolution of 8 mm FWHM as in (Silveira and Marques
2010). No image segmentation and rigid registration are re-
quired in pre-processing the brain images. For consistency,
all images were resampled to size 256 × 256 × 256 and res-
olution 1 × 1 × 1 mm3. The images are further down-
sampled to 128 × 128 × 128 voxels. The voxels outside the
brain are removed from the image analysis and the MRI and
PET images finally used are of size 100 × 81 × 80 voxels.
The voxel intensities of each MRI and PET image are used

Table 1 Demographic
characteristics of the studied
subjects from ADNI database.
The values are denoted as mean ±
standard deviation

Diagnosis Number Age Gender (M/F) MMSE Education CDR

AD 93 75.49 ± 7.4 36/57 23.45 ± 2.1 14.66 ± 3.2 0.8 ± 0.25

MCI 204 74.97 ± 7.2 68/136 27.18 ± 1.7 15.75 ± 2.9 0.5 ± 0.03

NC 100 75.93 ± 4.8 39/61 28.93 ± 1.1 15.83 ± 3.2 0 ± 0

3D PET
 100  81  80

3D Image Patch
50×41×40

3D CNN

3D CNN

3D CNN

3D CNN

3D CNN

3D CNN

2D CNN

2D CNN

2D CNN
...

...

3D MRI 
100  81  80

...

...
AD/
MCI

NC

Fusion by 
Full 

connection

Softmax

Pretrained 
Individually

Finetuned 
Jointly

50@2×1×1

50@2×1×1

50@2×1×1

50@2×1×1

50@2×2

50@2×1×1

40×1

40×1

40×1

100

50@2×2

50@2×2

50@2×1×1

Fig. 1 The flowchart of the proposed classification algorithm, where B3D
CNN^ denotes the deep 3D CNN models for 3D local patches, B2D
CNN^ demotes the cascaded CNN model for fusion of multi-modality,

BFusion by full connection^ denotes a fully connected layer for fusion of
the learned high-level multimodality features, and Bsoftmax^ denotes the
softmax prediction layer
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for classification. The whole brain images are simply divid-
ed into 3 × 3 × 3 parts to extract 27 patches of size 50 × 41 ×
40 voxels. Each patch has half overlaps with its neighbor in
every direction.

Feature Learning with 3D CNNs

Different from the conventional methods which explicitly ex-
tract the handcrafted features of brain images, such as tissue
density map, cortical thickness, hippocampus shape and vol-
umes, deep CNNs are used to learn the generic features from
the multi-modality brain images. CNNs are a special kind of
multi-layer neural networks, which are trained with the back-
propagation algorithm. CNN has been widely used in several
domains such as image classification and object detection (He
et al. 2015; Krizhevsky et al. 2012; Lécun et al. 1998).
Convolutional neural networks are designed to recognize vi-
sual patterns directly from the images with minor preprocess-
ing. Most of the mature CNN architectures are designed for
2D image recognition. To adapt to 3D brain image, the volu-
metric data is split along the third dimension into 2D image
slices for training 2D CNN. However, this scheme is ineffi-
cient to encode the spatial information of 3D image due to the
absence of kernel sharing across the third dimension. To effi-
ciently encode the richer spatial information of 3D brain im-
ages, the 3D convolution kernel is used in this work. The deep
3D CNN is built by alternatively stacking convolutional and
sub-sampling layers to hierarchically learn the multi-level fea-
tures of multi-modality brain images, which is followed by the
fully connected and softmax layers for image classification, as
shown in Fig. 2.

A typical convolutional layer convolves the input image
with the learned kernel filters, followed by adding a bias term
and applying a non-linear activation function, and finally pro-
duce a feature map by each filter. More formally, the 3D
convolutional operation is defined as:

ulkj x; y; zð Þ ¼ ∑δx∑δy∑δz F
l−1
k xþ δx; yþ δy; zþ δz
� ��Wl

kj δx; δy; δz
� �

ð1Þ
where x, y and z denote the pixel positions for a given 3D

image, Wl
kj δx; δy; δz
� �

is the jth 3D kernel weight connecting

the kth feature map of the l-1 layer with the jth feature map of

the l layer, Fl−1
k is the kth feature map of the previous l-1 layer,

and δx, δy, δz are the kernel sizes corresponding to the x, y and z
coordinates. The output ulkj x; y; zð Þ is the convolutional re-

sponse of 3D kernel filter. After convolution, tanh is adopted
as the activation function following each convolution layer:

Fl
j x; y; zð Þ ¼ tanh blj þ ∑ku

l
kj x; y; zð Þ

� �
ð2Þ

where blj is the bias term for the jth feature map of the l layer.

The jth 3D feature map of l layer Fl
j x; y; zð Þ is obtained by

summation of the response maps of different convolution ker-
nels. By using 3D kernel to capture the spatial correlations, the
CNNs can take full advantages of the volumetric contextual
information.

After each convolutional layer, there usually has a pooling
layer. There are several ways for pooling, such as taking the
average value or the maximum, or a learned linear combina-
tion of the neurons in the cube. In our work, max pooling, i.e.,
the maximum of the pooling cube, is used to obtain more
compact and efficient features as in (Hosseini-Asl et al.
2016). Max pooling reduces the feature map along the spatial
dimensions by replacing each cube with their maximum. It
can keep the most influential features for distinguishing im-
ages. Through max pooling, the features become more com-
pact from low to high layers, which can achieve the robustness
to some variations.

The third type of layer is the fully connected layer. After
alternatively stacking several convolutional and max pooling
layers, the high-level reasoning in the deep CNN is done by
fully connected layers. All 3D feature maps are flattened into a
1D vector as the inputs of fully connected layer. A fully con-
nected layer consists of a number of output neurons, which
generate the learned linear combination of all neurons from
the previous layer and passed through a nonlinearity. The in-
puts and outputs of fully connected layers are 1D vector and
not spatially located anymore.

Finally, a softmax classification layer is appended to the
last fully connected layer and is fine-tuned by back-
propagation with negative log-likelihood to predict class prob-
ability. The softmax function is a derivation of logistic func-
tion that highlights the largest values in a vector while

Conv 3×3×3

Pooling 2×2×2

Conv 3×3×3 Conv 3×3×3

15@24×19×19 25@11×8×8 50@4×3×3

Conv 3×3×3

50@2×1×1

AD/MCI

NC

Flatten
Full-connect

4010050×41×40

Pooling 2×2×2Pooling 2×2×2Pooling 2×2×2

Softmax

Fig. 2 The architecture of deep 3D CNNs denoted with the sizes of input, convolution, max pooling and output layers and the numbers and sizes of
generated feature maps
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suppressing those significantly below the maximum. The out-
puts of softmax layer, ranging from 0 to 1, can be interpreted
as class prediction probabilities, and the sum of its outputs is
equal to 1.

For brain image analysis, one direct way is to take the
whole image as the input and construct a deep 3D CNNs of
large depth for feature learning and classification. However,
this may require training a large number of parameters which
easily results in overfittings and needs large training dataset.
Acquisition of large dataset is challenging for multi-modality
brain images. In addition, training a deep CNNs model for the
whole brain image not only requires high computation and
memory costs especially for the high-resolution images but
also is aimless for analyzing the local features related to AD.
To avoid these problems, this paper proposes to uniformly
partition the whole brain image into many local patches with
some overlap and construct a deep 3D CNNs for each patch to
learn the local features. Therefore, the learned features are
more suitable for extracting the subtle local patterns of the
high-dimensional brain images. The global classification will
be performed by ensemble of these multiple deep 3D CNNs
trained for the local patches.

The same network architecture is used to build all deep 3D
CNNs, as illustrated in Fig. 2. In our implementation, each
deep CNN is built by stacking 4 convolutional layers, 3 max
pooling layers, a fully connected layers and a softmax layer.
The sizes of all convolutional filters are set to 3 × 3 × 3 and the
numbers of filters are set to 15, 25, 50, 50 for 4 convolution
layers, respectively. Max pooling is applied for each 2 × 2 × 2
region. Tanh function is adopted as the activation function in
these layers. The 3D convolutional kernels are randomly ini-
tialized in the Gaussian distribution. The other trainable pa-
rameters of the networks are tuned using the standard back-
propagation with stochastic gradient descent by minimizing
the loss of cross entropy. In addition, the dropout strategy is
employed to reduce the co-adaption of intermediate features
and overfitting problem, and improve the generalization
capability.

Multi-Modality Cascaded CNNs for AD Diagnosis

To combine the multi-modality brain images, one direct meth-
od is to concatenate the learned features by deep CNNs from
all local patches of multi-modality images and design a clas-
sifier to make the final classification. However, this method
cannot make use of the correlation information between MRI
and PET brain images. Thus, we propose to build the cascaded
CNNs to combine the learned multimodal features of the cor-
responding local patches as shown in Fig. 3. The learned fea-
tures of the local patches from the multi-modality images at
the same position will be combined by cascading high-level
2D CNNs to further learn the features associated to both mo-
dalities. Finally, the learned high-level features containing
both the intrinsic properties of each modality and the correla-
tions between different modalities are combined with a fully
connected layer followed by a softmax layer to predict the
final global classification. While the lower layers of the pre-
dictive 3D-CNNs extract discriminative image features, the
upper fully connected and softmax layers have to facilitate
the task-specific classification with these features. Thus, train-
ing of the proposed multimodal classification consists of pre-
training individual 3D CNNs, and final task-specific fine-
tuning for 2D CNN networks and the ensemble classification.

Initially, a deep 3D CNN is pre-trained for each local patch
in each modality by directly mapping the outputs of the fully
connected layer to the probabilistic scores of all class labels
with softmax function. Then, the initial-trained parameters of
3D CNNs are used to fix the first 3 convolution and pooling
layers of the 3DCNNs, while the parameters of the multimod-
al 2D CNNs are fine-tuned jointly with the upper fully con-
nected and softmax prediction layers. Finally, in the ensemble
learning process, the initial-trained parameters of 3D CNNs
and 2D CNNs are fixed, while the parameters of the upper
fully connected layers and softmax prediction layer are fine-
tuned jointly to combine the features for the task-specific clas-
sification. The training iteration ends when the validation error
rate stops decreasing. The jointly fine training is included to
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Fig. 3 The network architecture of multi-modality cascaded CNNs
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adjust the parameters to handle the heterogeneity and produce
a more reliable estimate from the multimodal images.
However, training deep CNNs is challenged by the risk of
over-fitting as current datasets for AD diagnosis are relatively
small compared to other computer vision tasks such as face
recognition. A common practice is to initialize the weights
with the pre-trained models on some large dataset. To mitigate
the problem, we adopt dropout layer for regularization
(Srivastava et al. 2014). Data augmentation by shift and
downsample is also employed to cover the diversity and var-
iability of training samples.

Experimental Results

Experiments

In this section, experiments are performed to test the proposed
multi-modality classification algorithm on prediction of the
disease status AD, pMCI and sMCI from normal controls
(NC). There are MRI and PET multi-modality images of
397 subjects including 93 AD, 76 pMCI, 128 sMCI and 100
NC subjects from ADNI database for our experiments. The
proposed algorithm is tested on classifications of AD vs. NC,
pMCI vs. NC and sMCI vs. NC. Ten-fold cross-validation is
used to avoid random factors affecting the results. Each time,
one fold of the image set is used for testing, another one fold
used for validation while the left eight folds were used for
training. The validation part is used for early stopping the
training process to obtain the model weights with the opti-
mized performance. To increase training data, augmentation
is conducted by subsampling the brain image of 256 × 256 ×
256 voxels in 8 shift ways to generate additional images of
128 × 128 × 128 for the training set. Augmentation is not con-
ducted on the validation and test sets.

The proposed classification algorithm is implemented with
the Keras library in Python based on Theano. The experiments
are conducted on PC with GPU NVIDIA GTX1080. In the
low level, 27 deep CNNs are independently trained to extract
the local features with the output of the prediction scores for
disease classification. The Adadelta gradient descent algo-
rithm (Zeiler 2012) is used to train the local deep CNNs. To
avoid overfitting problem, dropout, L1 and L2 regulation are
adopted in our network (Srivastava et al. 2014). The batch size
is set to 64, and the model begins to converge after 15~30

epochs. The transfer learning is also used in our experiments
to alleviate the problems of limited training data. We initially
train the local 3D CNN models for classification of AD vs.
NC. The trained CNN model on AD vs. NC is used to initial-
ize the parameters of the 3D CNN model of pMCI vs. NC
classification to reduce the training time and improve the clas-
sification performance. Similarly, the trained CNN model on
pMCI vs. NC is also used to initialize the parameters of the 3D
CNN model for sMCI vs. NC classification. To evaluate the
classification performance, we demonstrate the receiver oper-
ating characteristic (ROC) curves and compute the classifica-
tion accuracy (ACC), the sensitivity (SEN), the specificity
(SPE) and the area under ROC (AUC) for comparison in the
experiments.

Classification Results on MRI, PET and Multi-Modality

The first experiment is to test the proposed classification al-
gorithm in prediction of AD, pMCI and sMCI fromNC, based
on MRI and PET biomarkers and multi-modality of 397 sub-
jects in ADNI.We compare the results of the proposedmethod
based on the different modalities. For the single modality such
as MRI or PET, the features learned by 27 3D CNNs are
combined by fully connected layers for final classification.
Tables 2, 3, and 4 show the comparisons of their classification
performances for AD vs. NC, pMCI vs. NC and sMCI vs. NC,
respectively. Figure 4 (a), (b) and (c) also compare the ROC
(receiver operating characteristic) curves of different modali-
ties for classification of AD vs. NC, pMCI vs. NC and sMCI
vs. NC, respectively. From these results, the multi-modality
performs better than each individual modality. The results also
show that the performances of PET by CNN are better than
those ofMRI, which are different from some existing methods
(Li et al. 2014; Suk et al. 2014; Zhang et al. 2011). This may
be due to two important factors. One is that MRI can capture
structural information of brain regions, which contains some
variations for different subjects, while PET imaging consists

Table 2 Comparison of classification performances on AD vs. NC

AD vs. NC ACC% SEN% SPE% AUC%

MRI 84.97 82.65 87.37 90.63

PET 88.08 90.70 85.98 94.51

Multi-modality 93.26 92.55 93.94 95.68

Table 3 Comparison of classification performances on pMCI vs. NC

pMCI vs. NC ACC% SEN% SPE% AUC%

MRI 77.84 76.81 78.50 82.72

PET 78.41 77.94 78.70 85.96

Multi-modality 82.95 81.08 84.31 88.43

Table 4 Comparison of classification performances on sMCI vs. NC

sMCI vs. NC ACC% SEN% SPE% AUC%

MRI 60.09 65.29 54.21 62.38

PET 63.35 63.84 65.59 66.62

Multi-modality 64.04 63.07 67.31 67.05
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of injecting radiotracer that contains a positron emitter to pa-
tients, detecting the emitted radiation by a scanner and

computing a digital image that represents the distribution of
radiotracer in the body. There are few structural information in
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PET images. The structural variations of MRI will bring the
difficulties in consistent extraction of discriminant features
and degrade the classification performance. Another impor-
tant factor is that no rigid registration is performed for both
the MRI and PET brain images used in this work, which will
cause more local variations for MRI than for PET.

Comparison of Different Combination Methods

The second experiment is to compare the proposed multimod-
al classification algorithm by the cascaded CNNs to other
multimodal combination methods. One combination method
is to directly average the prediction scores of the low-level 3D
CNNs from all multimodal image patches. Another combina-
tion method is to apply the fully connected layer to combine
the learned features of low-level 3DCNNs from all multimod-
al image patches, followed by a softmax layer for classifica-
tion. In addition, we also compare our method with the
concatenating method published in (Weinzaepfel et al. 2015)
and the bilinear published in (Lin et al. 2015). We implement
these two methods with our best efforts. To implement the
method in (Weinzaepfel et al. 2015), we concatenate the fea-
tures of all multimodal 3D CNNs into a feature vector as the
input to a softmax classification layer. We also implement the
bilinear model in (Lin et al. 2015) by multiplying the outputs
of two multimodal 3D CNNs using outer product at each local
patch to obtain the bilinear vector. The vector is then passed
through a softmax layer to obtain classification predictions.
Table 5 shows the comparison of their classification results.
From the results, we can see that the proposed cascaded CNNs
method performs better than other combination methods. The

cascaded CNNs can capture the high-level multimodal corre-
lation features which can further improve the classification
performance.

Comparison with Existing Methods

In this section, we will compare our proposed method with
those published in the literature. First, we compare our pro-
posed method based on deep 3D CNNs to the method based
on 3D convolutional Autoencoder (Hosseini-Asl et al. 2016),
which was proposed to learn the imaging features of structural
MRI scans with stacked 3D Convolutional Autoencoder
(CAE) for prediction of AD. Different from our method, the
3D convolutional Autoencoder method extracts the features of
a 3D brain image based on reconstructing the input. Thus,
training of the Autoencoder uses back-propagation and con-
straints on the properties of feature space to reduce the recon-
struction error. For fair comparison, we downloaded the
source codes released by the authors of (Hosseini-Asl et al.
2016) in the website and implemented it with our best effort
by using each single modality and multi-modality of our data
set. The same training and test sets are used in the experi-
ments. Table 6 shows the comparison of classification results
by our proposed 3D CNN method and the 3D CAE method
(Hosseini-Asl et al. 2016) using the MRI, PET and multi-
modality images for classification of AD and NC. We can
see that our proposed method performs better than the 3D
CAE method.

Furthermore, we compare the proposed multimodal classi-
fication method to other multimodal classification methods
published in the literature (Li et al. 2014; Liu et al. 2015;

Table 5 Comparison of classification performances on different multimodal combination methods

Methods AD vs. NC (%) pMCI vs. NC (%) sMCI vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

Averaging 90.16 93.02 87.85 94.81 78.98 74.68 82.47 87.55 61.40 61.63 60.71 64.34

Full Connection 91.19 91.30 91.09 95.02 78.98 78.26 79.44 85.71 60.53 62.03 57.14 63.12

Concatenate (Weinzaepfel et al. 2015) 89.64 90.11 89.22 94.87 80.68 77.63 83.00 87.45 59.21 59.16 59.46 65.43

Bilinear (Lin et al. 2015) 90.16 90.22 90.10 94.73 81.82 78.95 84.00 87.78 62.28 61.80 64.00 65.48

Cascaded CNNs 93.26 92.55 93.94 95.68 82.95 81.08 84.31 88.43 64.04 63.07 67.31 67.05

Table 6 Comparison of
classification results by our
method and the 3D CAE method
for AD vs. NC classification

Method Modality ACC(%) SEN(%) SPE(%) AUC(%)

Auto-Encoder (Hosseini-Asl et al. 2016), MRI 81.87 81.00 82.80 87.09

PET 84.97 84.95 85.00 91.34

Muti-modality 87.56 81.72 93.00 93.90

Proposed CNN Method MRI 84.97 82.65 87.37 90.63

PET 88.08 90.70 85.98 94.51

Muti-modality 93.26 92.55 93.94 95.68
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Zhang et al. 2011). These methods are based on the
handcrafted ROI or voxel-wise features of multi-modality. A
multi-kernel SVM was proposed to combine the multi-
modality features of multiple anatomical regions of interest,
which were generated by grouping voxels through the
warping of a labeled atlas, to improve the classification per-
formance (Zhang et al. 2011). Liu et al., (Liu et al. 2015)
extracted a set of latent MRI and PET features from 83 ana-
tomical regions of interest and trained a multi-layered neural
network consisting of several Autoencoder to combine multi-
modal features for classification. Instead of extracting ROI
features, the voxel-wise features of multi-modality images in-
cluding the GM density map of MRI and the intensity values
of PET are combined with a sparse regression classifier, and a
deep learning based framework was proposed for estimating
missing PET imaging data for multimodal classification (Li
et al. 2014). However, it is difficult to implement these pub-
lishedmethods on the same settings for fair comparison. Thus,
the results of these methods reported in the literature are di-
rectly used for comparison. Since these methods combines the
pMCI and sMCI into MCI for classification, to compare with
them, the pMCI and sMCI are also combined into one class
for evaluation. Table 7 compares our results with the reported
results of these methods that also used the multi-modality data
of MRI and PET from ADNI. It is worth noting that the dif-
ferences of the reported results may be due to the use of dif-
ferent feature extraction and classification methods for MRI
and PET images, and also the use of different ADNI subjects.
All these variations make the results comparison complicated.
In addition, the differences in the size of test samples, the use
of cross-validation to separate the training and testing sets can
also make the fair comparison difficult to achieve. Compared
to these methods, our proposed method requires less image
preprocessing steps for feature extraction. No segmentation
and rigid registration are required in our method, which can
reduce the computation costs.

Discussion

Different from the traditional methods based on the
handcrafted features, the proposed method built the cascaded

deep CNNs to learn the multi-level and multimodal features
for classification of brain images. Each 3D CNN layer com-
bines the low-layer feature maps to generate higher-level fea-
tures which can achieve more robustness to some variations of
translation and rotation etc. in images. No segmentation and
rigid registration are required in pre-processing the brain im-
ages. However, there are still some limitations in the proposed
method. First, the parameters of the deep CNNmodel, such as
the number of layers, the size and number of kernels in each
layer, may not be optimally determined. Second, only MRI
and PET modalities are used in this work, more information
such as CSF can be included to further improve performance.
Third, it is not easy to visualize the learned features by the
proposed method for interpretation of the brain and neurode-
generative disease (i.e., AD or MCI) in the clinical applica-
tion. The learned features have no sufficient clinical informa-
tion to find the related ROIs for clinical understanding of the
brain abnormalities.

However, there are some suggestions to address the above
limitations. For setting the convolutional kernel size of deep
CNN, large kernel size is effective to capture the large patterns
but it may ignore the small ones. Thus, the size of all 3D
kernels is set to 3 × 3 × 3, but multiple convolutional layers
are used to hierarchically capture the large patterns. The other
optimal parameters can be obtained by cross validation in our
experiments. More auxiliary information such as CSF and
clinical information may be considered to improve the perfor-
mance if they have high correlations to AD. Since AD has
important relations to certain pathological patterns, only a
subset of image regions is closely related to AD. For interpre-
tation of diseases, we aim to identify the impact of local re-
gions based on evaluation of classification prediction after
individually excluding these areas from the whole image as
in (Zeiler and Fergus 2014). To achieve this, we systematically
exclude different local areas of brain images with a 3D grey
box and monitor the classifier outputs. If the excluded patch
covers the important area related to AD, the prediction proba-
bility of the correct class drops significantly. In our experi-
ments, the important and network attention areas are identified
for MRI and PET images with the AD subjects from a test
subset as follows. First, the top 3 local patches are selected
with the better classification performance for each modality.

Table 7 Comparison of the multimodal classification performances (%) reported in the literature

Method Subjects AD vs. NC (%) MCI vs. NC (%)

ACC SEN SPE AUC ACC SEN SPE AUC

Liu et al. 2015 85 AD +168 MCI+ 77 NC 91.40 92.32 90.42 – 82.10 60.00 92.23 –

Li et al. 2014 93 AD +204 MCI 101 NC – – – 89.82 – – – 70.14

Zhang et al. 2011 51 AD +52 HC 90.60 90.50 90.70 – – – – –

Our method 93 AD +204 MCI 100 NC 93.26 92.55 93.94 95.68 74.34 70.08 84.91 80.23
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Then, the selected image patches are systematically obstructed
with 15 × 15 × 15 grey box and a heatmap is generated by
measuring the drop of the correct class prediction probability.
This heatmap shows the importance and attention of the cor-
responding areas in prediction of disease status. Finally, the
network attention areas are generated by compiling the predic-
tion masks of heatmaps. The areas with the highest attention
forMRI and PET images are demonstrated in Fig. 5 (a) and (b),
respectively. To facilitate the interpretation, we also map the
network attention areas to a template with 93 manually labeled
ROIs for reference (Kabani et al. 1998). The top ROIs covered

by these attention areas are shown in Fig. 6, which seem to be
consistent with the ones that are most affected by AD, mainly
hippocampus, Amygdata, and Parahippocampal gyrus etc.
(Liu et al. 2015; Zhang et al. 2011).

Conclusion

Multimodal neuroimages can provide complementary infor-
mation for the diagnosis and prognosis of AD. In this paper,
we have presented a multimodal classification algorithm

Fig. 5 The network attention areas generated by systematically excluding local patches of brain images and measuring the drop of correct class
prediction probability for (a) MRI and (b) PET images

Fig. 6 The top affected brain
regions of interests (ROIs)
covered by the generated network
attention areas

Neuroinform



based on the cascaded CNNs to predict AD and MCI from
normal controls using MRI and PET images. Multiple deep
3D-CNNs are built on different local image patches to learn
the discriminative features of MRI and PET images. Then, a
set of upper high-level CNNs are cascaded to combine the
features learned from local CNNs and learn the latent multi-
modal features for image classification. The proposed algo-
rithm can gradually and automatically learn the generic multi-
level and multimodal features from multiple imaging modal-
ities for disease classification. The proposed method requires
no image segmentation and rigid registration in pre-
processing the brain images, which can save computation
costs. Our experimental results and comparison on ADNI da-
tabase demonstrate the performance improvement of the pro-
posed method for AD diagnosis.

Information Sharing Statement

The dataset used in preparation of this paper was obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI, RRID:SCR_003007) database which is freely
available at the website www.loni.ucla.edu. The ADNI
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participate in analysis or writing of this paper. A complete
list of ADNI investigators can be found at:http://adni.loni.
ucla.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf. In this paper, the proposed
method is implemented with the Keras library in Python
based on Theano. The CNN code used in this paper can
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mutimodality_cnn/.
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