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Abstract

Pattern classification methods have been widely investigated for analysis of brain images to assist

the diagnosis of Alzheimer’s disease (AD) and its early stage such as mild cognitive impairment

(MCI). By considering the nature of pathological changes, a large number of features related to

both local brain regions and interbrain regions can be extracted for classification. However, it is

challenging to design a single global classifier to integrate all these features for effective

classification, due to the issue of small sample size. To this end, we propose a hierarchical

ensemble classification method to combine multilevel classifiers by gradually integrating a large

number of features from both local brain regions and interbrain regions. Thus, the large-scale

classification problem can be divided into a set of small-scale and easier-to-solve problems in a

bottom-up and local-to-global fashion, for more accurate classification. To demonstrate its

performance, we use the spatially normalized grey matter (GM) of each MR brain image as

imaging features. Specifically, we first partition the whole brain image into a number of local

brain regions and, for each brain region, we build two low-level classifiers to transform local

imaging features and the inter-region correlations into high-level features. Then, we generate

multiple high-level classifiers, with each evaluating the high-level features from the respective

brain regions. Finally, we combine the outputs of all high-level classifiers for making a final

classification. Our method has been evaluated using the baseline MR images of 652 subjects

(including 198 AD patients, 225 MCI patients, and 229 normal controls (NC)) from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The experimental results show

that our classification method can achieve the accuracies of 92.0% and 85.3% for classifications of

AD versus NC and MCI versus NC, respectively, demonstrating very promising classification

performance compared to the state-of-the-art classification methods.
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INTRODUCTION

Brain images such as magnetic resonance images (MRI) are providing a powerful in vivo

tool to help understand the disease-induced neural changes, due to Alzheimer’s disease (AD)

or its early stage such as mild cognitive impairment (MCI) [Davatzikos et al., 2010;

Hinrichs et al., 2009; Leung et al., 2010; Li et al., 2011; Magnin et al., 2009; Mueller et al.,

2005; Querbes et al., 2009; Tandon et al., 2006; Wolz et al., 2011; Zhang and Shen, 2011].

Recently, various classification methods have been proposed to identify the changes related

to brain diseases and further decode the disease states by using neuroimaging data [Cuingnet

et al., 2011; Davatzikos et al., 2008a; Fan et al., 2005; Hinrichs et al., 2009; Magnin et al.,

2009; Oliveira et al., 2010; Wolz et al., 2011]. In most of these classification methods, two

main steps are usually involved, i.e., (1) extraction and/or selection of discriminative

features from the neuroimaging data, and (2) design of a supervised classifier for performing

classification. Details for these two steps are briefed below.

The original brain images are usually too large and noisy to be directly input into the

classifier for classification, and more importantly not all image information is useful for

classification. Thus, feature extraction is necessary and important for extracting more

relevant and discriminative features for neuroimage analysis and classification. In general,

three types of MR imaging features were often extracted to detect the abnormal brain

structures with AD, which include tissue densities (e.g., gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF)), cortical thickness, and both shape and volume of

certain structure such as hippocampus [Cuingnet et al., 2011]. The volume in the region of

interest (ROI), labeled by warping of a pre-labeled atlas, was often used to investigate brain

abnormality [Lao et al., 2004; Magnin et al., 2009]. However, since the atlas-based ROI

parcellation may not adapt well to the diseased-related pathology, the abnormal region may

be part of one ROI or span over multiple ROIs, which may affect the feature

discriminability. To address this issue, Fan et al. [Fan et al., 2007] proposed to adaptively

partition the brain image into a number of most discriminative brain regions according to a

predefined similarity measure, and then extracted regional features for brain disease

classification. Although the ROI-based methods can significantly reduce the feature

dimensionality and are robust to noise and registration error, the ROI-based regional features

are generally very coarse and thus not sensitive to detect the small changes related to brain

diseases. This limitation could be potentially alleviated by the voxel-wise analysis methods,

i.e., using voxel-wise imaging features to identify the small brain abnormality [Baron et al.,

2001; Ishii et al., 2005]. On the other hand, it was observed that the disease-induced

structural changes also occur in several inter-related-regions, thus the correlations between

different brain regions could also be extracted for more accurate characterization of brain

pathology [Zhou et al., 2011]. By considering the nature of these pathological changes, the

rich features related to both local brain regions and the inter-brain regions can be extracted
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from brain images to avoid missing the important characterization of disease pathology.

However, if more irrelevant and noisy information are included in the feature set, the disease

classification and interpretation could become very difficult due to the small number of

training samples in the neuroimaging study. For example, the support vector machines

(SVM) classifier, which is often used for classification of brain disease [Fan et al., 2007;

Klöppel et al., 2008; Magnin et al., 2009; Zhang et al., 2011], experiences a notable drop in

classification accuracy when the number of irrelevant and noisy features is extremely large

[Chapelle et al., 2002].

To address the above problem, principle component analysis (PCA) [Jolliffe, 2005] is

popularly used to perform linear transformation of the data into a lower dimensional feature

space for reduction of feature dimensionality [Davatzikos et al., 2008b; Yoon et al., 2007].

However, the main problem related to PCA is that the feature extraction is done

independently from the subsequent classification task, thus potentially affecting the final

classification results. Another popular solution to the above problem is to select the most

discriminative features and eliminate the redundant features for further reduction of feature

dimensionality and improvement of classification performance [Chu et al., 2012; Davatzikos

et al., 2008a; Fan et al., 2005; Zhou et al., 2011]. For example, Chu et al. have compared

four different feature selection methods followed by a linear SVM classifier [Chu et al.,

2012]. Their experimental results show that feature selection does improve the classification

accuracies, but it depends on the method used. Since the disease-induced brain structural

changes often happen in the local focused regions, rather than isolated voxels, the local

spatial contiguity of the selected features should be carefully considered for achieving better

classification performance. For this purpose, the neighboring voxels with discriminative

features (identified by feature selection) were jointly used for classification [Vemuri et al.,

2008]. Although promising results have been reported for brain image analysis in the above

studies, it is still potentially advantageous to investigate building and combining multiple

classifiers for making full use of the rich imaging and structural information, for improved

classification performance.

In this article, we propose a novel classification framework for analysis of voxel-wise

neuroimaging data based on hierarchical fusion of neuroimaging features and decisions of

multi-level classifiers in a layer-by-layer and local-to-global fashion. The spatially

normalized grey matter (GM) of each T1-weighted MR brain image is computed as imaging

features for classification. Note that the hierarchical classification framework was often used

to solve the complex problem by gradually decomposing it into a number of easier-to-solve

tasks [Scalzo and Piater, 2007; Singh et al., 2008]. A hierarchical generative model was also

proposed to model the spatial relations and high-level appearance between correlated

features and further generate the adaptive patch features to a SVM classifier for object

classification in [Scalzo and Piater, 2007]. In addition, a hierarchical feature fusion model

was proposed to combine feature fusion and decision fusion in [Scalzo et al., 2008].

Different from all these methods, we propose a hierarchical classification method that builds

multilevel classifiers with supervised learning to gradually integrate imaging and spatial-

correlation features for more accurate classification. The individual classifiers at the same

level evaluate the classification abilities of the imaging features in different brain regions.

On the other hand, the high-level classifiers work on larger brain regions than the low-level
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classifiers. Figure 1 shows the hierarchical structure of our proposed classification

framework. Specifically, the whole brain image is first partitioned into a number of local

three-dimensional patches, with each containing only a subset of whole feature space.

Second, for each patch, two different low-level classifiers are specially built with the use of

local imaging and spatial-correlation features, respectively. Third, instead of directly

combining low-level classifiers to make a final decision, the classifier outputs and the

statistical imaging features at different brain regions are further integrated into a feature

vector to construct the respective high-level classifiers for classification. Finally, the

classification outputs of all high-level classifiers are combined to make the final

classification.

The main contributions of this article can be summarized as follows. (1) A classification

framework based on the hierarchical fusion of multi-level classifiers is proposed to

gradually transform the high-dimensional imaging and structural data into more and more

compact representations. Thus, this large-scale classification problem is hierarchically

decomposed into a set of easy-to-solve small-scale problems, which is expected to improve

the classification performance. (2) The imaging and spatial-correlation features of the whole

brain image are extracted and gradually integrated into a hierarchical framework for more

efficient and accurate classification. (3) The local spatial contiguity of image features is

greatly respected in classification by using a hierarchical spatial structure that is built from

small local patches to larger brain regions. It is worth noting that this article is the extension

of our recently published workshop article [Liu et al., 2012], with some major differences as

listed next. First, more detailed description and illustration of our method are provided in all

sections, for allowing other people to better understand our method. Second, in the result

section, we have also provided the new classification results between NC and MCI, the

comparison with existing methods (Comparison With Existing Methods section), the list and

analysis of the top-selected brain regions (Top Selected Regions section), and the discussion

(Discussion section).

The rest of this article is organized as follows. Method section presents the details of the

proposed classification framework. In Results section, experiments are presented to

demonstrate the classification accuracy and the advantage of the proposed method. Finally,

we conclude this article and discuss the possible future directions in Conclusion section.

METHOD

In this section, we will present our proposed classification algorithm. Figure 2 shows the

flow chart of the proposed hierarchical classification algorithm by gradual fusion of

multilevel classifier decisions and features. In the proposed method, the low-level classifiers

are used to respectively transform the imaging and spatial-correlation features of a local

patch, with supervised learning, into more compact representations (such as in certain

intermediate feature spaces). Then, the outputs of these low-level classifiers together with

the coarse-scale imaging features (i.e., statistical measures of local patches) are integrated to

build the high-level classifiers, with each evaluating the features in different large brain

regions. Finally, the classification is performed by ensemble of the outputs of all high-level

classifiers. Accordingly, the proposed hierarchical classification framework can be divided
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into five main steps: Imaging features, patch extraction, construction of low-level classifiers,

construction of high-level classification, and final classification, as detailed one by one in

the next.

Imaging Features

Although the proposed classification framework makes no assumption on a specific

neuroimaging modality, for demonstrating its performance, the T1-weighted MR images,

which have been widely used for detection of AD and MCI in the past decades, are used in

this work. Before extraction of the imaging features for classification, pre-processing of

these brain images is performed for reliable feature extraction. Specifically, all T1-weighted

MR brain images are first skull-stripped and cerebellum-removed after a correction of

intensity inhomogeneity [Sled et al., 1998]. Then, each brain image is segmented into three

brain tissues, e.g., gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF).

Finally, all the three tissues of each brain image are spatially normalized onto a standard

space by a mass-preserving deformable registration algorithm [Shen and Davatzikos, 2003].

Since GM is more related to AD and MCI than the WM and CSF, the spatially-normalized

GM volumes, which are also called as GM tissue densities, are used as the imaging features

for classification in this work. The voxel-wise GM densities describe both GM information

in the original subject and also its local geometric deformation relative to the selected brain

template.

Patch Extraction

Given a GM tissue density map and patch size w × w × w, a simple way to extract the local

patch is to uniformly divide the whole-brain image into a number of three-dimensional

patches. However, this partition does not consider the different discriminability of individual

brain regions and thus is not optimal for extraction of the discriminative local patches. To

alleviate this problem, we first perform the t-test on each voxel with the training image set

and select the voxels with significant group difference (i.e., with the resulting P value of t-

test smaller than 0.05) among all the voxels in the image space. Second, for each selected

voxel, we compute the mean of the P values in its local neighborhood of size w × w × w and

then use the mean P value to sort all selected voxels in ascending order. The first three-

dimensional patch of size w × w × w is extracted to be centered at the voxel with the

smallest mean P value, followed by the second local patch centered at the voxel with the

second smallest mean P value. Note that each new extracted patch should have less than

50% overlap with the previous extracted patches, i.e., the distance between the centers of

any two patches is larger than w/2. Finally, by repeating the above step until all selected

voxels are visited, we can obtain a set of three-dimensional local patches with size w × w ×

w, i.e., totally K patches denoted as P = {P1, …, Pk, …, PK}.

Construction of Low-Level Classifiers

For each extracted local patch Pk, we build two low-level classifiers C1,k and C2,k based on

different types of low-level features related to the patch. Specifically, to capture both

imaging and structural information from the neuroimaging data, two types of features are

extracted for each patch, i.e., the local imaging features (GM densities of each patch) and the
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correlations between pairs of local patches (namely spatial-correlation features in this

article), respectively. Instead of building a single low-level classifier by fusion of these two

types of features, we propose to build an independent classifier with each type of features. In

this way, the difficult task in classification of high-dimensional features is now divided into

a number of easier-to-do classification tasks using much lower-dimensional features. Then,

based on the respective low-level imaging features, the classifier C1,k can be constructed

with a supervised learning method such as SVM.

The second low-level classifier C2,k is constructed for each patch based on the spatial-

correlation features, which characterize the relationship between different patches of the

same subject and thus can capture more rich information about the pathology of AD and

MCI. To do this, each patch is first represented by a feature vector that consists of the GM

densities in that local patch. Then, the interaction between two patches within the same

subject is computed as the Pearson correlation coefficient of their corresponding feature

vectors (consisting of the GM densities in patches), to measure the similarity of imaging

features between a pair of patches. When a patient is affected by AD or MCI, the correlation

value of a particular brain patch with another patch will be potentially affected due to some

factors such as atrophy. It is worth noting that the correlation provides a second-order

measurement of the GM densities of the local patches. As a higher-order measurement, this

new feature is more descriptive [Zhou et al., 2011] and can provide complementary

information different from local GM densities for classification. Considering that the

correlations can be computed between any pair of local patches in each subject, the feature

dimensionality of all correlations is K × [K − 1]/2, which is usually larger than 5,000. This

will make it difficult to train a single classifier. Thus, for efficient training, we build a low-

level classifier for each patch by using the correlations of this patch with all other patches in

the same image, and thus obtain K low-level classifiers finally. Therefore, for all K extracted

patches, we can obtain totally 2K low-level classifiers, which can be denoted as Ci = {Ci,1,

…, Ci,k, …, Ci,K}, i = 1, 2.

High-Level Classification

After constructing two sets of low-level classifiers Ci = {Ci,1, …, Ci,k, …, CiK}, = i = 1, 2.

from all K local patches, a common ensemble approach is to directly combine the classifier

outputs to make the final classification. However, since the low-level classifiers are built

with the features from local patch, their performances may be limited especially when the

affected brain regions are larger than the local patch. The limited performance of the low-

level classifier will affect the final ensemble classification performance. To alleviate this

problem, we propose to combine the decision outputs of low-level classifiers, along with the

coarse-scale imaging features in each local patch, to build multiple high-level classifiers

placed at different larger brain regions. The high-level classification results on different

brain regions are finally combined to make the final classification.

High-level features—We combine three types of high-level features to build each high-

level classifier at a specified brain region as described below. The first two types of high-

level features are the outputs of two low-level classifiers C1,k and C2,k in each local patch k.

Instead of using the class label, the output of each low-level classifier is computed as the
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continuous value that evaluates the probability of each patch belonging to different classes.

For example, it can be treated as an estimate of the class posterior probability as used in Tu

and Bai [2010]. Specifically, for the SVM classifier that outputs the relative distance to the

decision boundary (i.e., the signed distance), we can use a logistic function to convert the

classifier output into a probability, belonging to [0 1]. The classifier output can be

considered as the patch-level representation of the low-level imaging features and is thus

more relevant to class label. With the supervised learning, the high-dimensional imaging

feature space is now transformed into the compact high-level feature space. Therefore, we

can treat the outputs of low-level classifiers as the inputs for high-level classification in the

certain intermediate feature space.

The third type of high-level features is the statistical measures that are computed as the

mean and standard deviation of the GM densities in each local patch. Although these

statistical features capture the coarse-scale imaging information with limited discriminative

information, they can achieve higher robustness to noise and thus are useful for high-level

classification, as will be demonstrated in the experimental results. All these three types of

features computed from the local patches in a specified brain region will be concatenated

into a feature vector to train the high-level classifier that is responsible for the specific large

brain region, as detailed below. In addition, for each feature fi in the training samples, it will

be normalized using equation , where f̄i, and σi are the mean and standard

deviation of the feature fi across all training samples. Similarly, this normalization process

will be applied to the corresponding feature of each test sample.

High-level classifiers—The information related to the disease can be distributed over

some distant brain regions with arbitrary shape and size. To maximize the prediction

accuracy, the high-level classifier should be instantiated at the informative brain regions,

i.e., through coarse subdivision of the brain volume. Similar to the process of extracting

three-dimensional local patches as described above, local patches can be agglomerated to

form the highly-informative brain regions with respect to the disease classification, and then

the high-level classifiers can be constructed to maximize the discriminability of the high-

level features in each brain region. Also as introduced below, the size of each brain region

can be optimized to achieve the best performance for its respective high-level classifier, and

the obtained sizes can be different across different brain regions.

Specifically, we first perform the cross-validation test on the low-level classifiers with the

training data, and thus obtain their classification accuracies, which evaluate the classification

abilities of the local patches. Then, the local patches are sorted according to the

classification accuracies of the low-level classifiers constructed with the local GM densities,

and the first brain region is centered at the local patch with the highest classification

accuracy. To obtain the most informative brain region, we first change the size of brain

region (i.e., the radius from the first selected patch) within a predefined range, and then use

all high-level features within this brain region to train a high-level classifier. In the

meanwhile, the classification performance will be cross-validated for each size of brain

region. Finally, we can select a brain region that can yield the highest classification

accuracy, and place the first high-level classifier on this brain region. After building the first
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high-level classifier, the second and other subsequent high-level classifiers are similarly

constructed one by one, with their respective brain regions partially overlapped by less than

50%. Finally, we can obtain a set of M high-level classifiers trained with the high-level

features in M different brain regions, i.e., HC = {HC1, …, HCj, …, HCM}. It is worth noting

that each brain region for building the high-level classifier may not have the same number of

patches or the same number of features.

It is worth noting that our proposed hierarchical classification framework is not limited to

any particular choice of classifier model. Many state-of-the-art classifiers, such as SVM and

linear discriminant analysis (LDA), can be used to build the base classifiers. In this work,

we choose the linear SVM classifier without any threshold as the base classifier to build

both the low-level and high-level classifiers. For simplicity, we implement the SVM

classifier with a linear kernel by using the SVM functions provided by MATLAB software

[Kecman, 2001]. The value of the box constraint C for the soft margin is set to the default

value 1, and we also use the SMO Method to find the separating hyperplane.

Final (Ensemble) Classification

The final classification is made by combination of the M high-level classifiers with the

weighted voting strategy. In general, the ensemble classifier by fusing multiple classifiers is

superior to the single classifier when the predictions of component classifiers have enough

diversity [Brown et al., 2005]. In our case, the multiple high-level classifiers are trained with

the features of different brain regions, thus giving a certain degree of diversity to improve

the ensemble classification. However, since we allow the overlap among different brain

regions selected for high-level classifiers, the discriminating capabilities of some high-level

classifiers may be similar to some extent. In addition, the disease-related pathological

changes often happen in a small number of brain regions. Thus, it is important to select a

subset of high-level classifiers with larger discriminating capability for more accurate

ensemble classification and also for facilitating the interpretation of classification results.

Although the exhaustive search of all possible classifier combinations allows obtaining the

optimal subset of high-level classifiers for final ensemble, it is computationally expensive

when the number of high-level classifiers is large. Greedy approach focuses on adding or

removing a specific classifier at each time for maximizing the improvement in the ensemble

performance (Ruta and Gabrys, 2005), thus taking less computational cost with good

performance. In this article, we employ a forward greedy search strategy to select an optimal

subset of high-level classifiers for final fusion, as described in Figure 3.

It is worth noting that the classifier selection in the above is performed on the training set

and thus may not be optimal for the testing set. To improve the generalization, we divide the

training set into 10 folds, and in each fold a subset of classifiers is selected using the forward

greedy search. The selection frequency of each classifier is computed over all folds, with the

high frequency indicating the high likelihood of the respective classifier to improve the

ensemble accuracy. Thus, the selection frequency of each high-level classifier is treated as

its weight in the final voting. Specifically, for a test sample x, the weighted sum of the

prediction outputs of M high-level classifiers is used to make the final classification:
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(2)

where PCj (x) is the prediction output of the j-th high-level classifier PCj (x) for the test

sample x, and is the respective weight assigned to the j-th high-level classifier which is

computed as the selection frequency of the j-th high-level classifier in the 10-fold testing of

the forward greedy search method.

RESULTS

Data Set

The data used for evaluation of our proposed hierarchical classification algorithm were

taken from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (available at:

www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the

Food and Drug Administration (FDA), private pharmaceutical companies and nonprofit

organizations, as a $60 million, 5-year public–private partnership. The primary goal of the

ADNI has been to test whether serial magnetic resonance imaging (MRI), Positron Emission

Tomography (PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers

of very early AD progression is intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen the time and cost of clinical

trials. The Principal Investigator of this initiative is Michael W. Weiner, M.D., VA Medical

Center and University of California, San Francisco. ADNI was the result of efforts of many

co-investigators from a broad range of academic institutions and private corporations. The

study subjects were recruited from over 50 sites across the US and Canada. They gave the

written informed consent at the time of enrollment for imaging and genetic sample

collection and completed the questionnaires approved by the Institutional Review Board

(IRB) of each participating site.

Our experimental evaluations are based on a portion of the ADNI database. We use the T1-

weighted MR imaging data from the baseline visit. MRI acquisitions have been done

according to the ADNI acquisition protocol in [Jack et al., 2008]. T1-weighted MR image

data from 652 ADNI participants are used for evaluation in the experiments. These 652

subjects include 198 AD, 225 MCI (including 112 stable MCI (sMCI) and 113 progressive

MCI (pMCI)), and 229 NC. Table I presents a summary of the demographic characteristics

of the studied subjects (including the number, age, gender, and MMSE of the subjects).

The image processing of the T1-weighted MR brain images was performed as described in

Imaging Features section. The spatially normalized GM tissues, i.e., GM densities (with

isotropic voxel size of 1 × 1 × 1 mm3), are used as the imaging features. To reduce the

impact of noise, registration error, and inter-individual anatomical variations, the tissue

density maps were further smoothed using a Gaussian filter (with a sigma value of 1.0) and
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then down-sampled by a factor of 4 for saving the computational time and memory cost,

without sacrificing the classification accuracy as confirmed by our experiment. Final

imaging size was of 64 × 64 × 64 voxels, with the voxel size of 4 × 4 × 4 mm3. To build the

low-level classifiers, we partitioned the GM density map into a number of three-dimensional

local patches. For simplicity, the patch size was set to 11 × 11 × 11 in the whole image,

although it could be adaptively determined in different brain regions. In total, we obtained

more than one hundred of patches for each brain image. Then, two low-level classifiers were

built for each patch by using the GM densities and spatial-correlation features, respectively.

In our experiments, to evaluate the classification performance, we use a 10-fold cross-

validation strategy to compute the classification accuracy (ACC), which evaluates the

proportion of correctly classified subjects among the whole test population. In addition, we

also compute the sensitivity (SEN), i.e., the proportion of AD (or MCI) patients correctly

classified, and the specificity (SPE), i.e., the proportion of correctly classified normal

controls for further evaluation. In each time, one fold of the data set was used for testing,

while the other remaining nine folds were used for training. The training set was further

divided into 10 folds to optimize the parameters in our method, which include the size of the

brain region in building the high-level classifiers and the weight assigned to each high-level

classifier in final ensemble.

Classification Results

We conducted two experiments to investigate the effectiveness of the proposed hierarchical

classification algorithm in identification of AD (or MCI) from normal controls. The first

experiment was performed to test the efficacy of different features used for classification. In

general, three types of features, i.e., GM-density-based classifier outputs (GCO),

correlation-based classifier outputs (CCO), and statistical measures (SM), are extracted from

each patch to build the high-level classifiers. To evaluate the efficacy of these features, we

computed the classification accuracy by ensemble of the high-level classifiers built with

different features. When using GCO or CCO features, or their combinations, usually 20 to

30 high-level classifiers were obtained for final ensemble. Since the statistical measure (SM)

is a kind of coarse-scale feature with limited discrimination in small brain region, we

obtained only one SM-based high-level classifier, instantiated on a relatively large brain

region. The classification results with respect to the use of different features and their

combinations are summarized in Tables II and III for classification of AD versus NC and

MCI versus NC, respectively.

As we can see from these results, the statistical measures (SM) have limited information and

thus result in low classification accuracy when only this type of features is used for

classification. However, the SM can improve the classification accuracy when combined

with other two types of features. In addition, GCO are generated based on the GM densities

of each local patch, while CCO are generated based on the correlations between pairs of

patches. These two types of features can provide complementary information for

classification, and thus the combination of GCO and CCO improves the classification

accuracy. Finally, combination of these three types of features by our proposed hierarchical

method can further improve the classification performance.
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The second experiment was conducted to test the effectiveness of the hierarchical fusion

used in the proposed classification framework. Specifically, we compared the performance

of the proposed hierarchical fusion method with those of other two possible classification

methods. The first possible classification method is to build a single global classifier for

final classification, by using PCA to reduce the dimensionality of GM density features. In

particular, the dimensionality of the reduced feature space by PCA was optimally

determined via the 10-fold cross-validation using the training set. We changed the feature

dimensionality within a predefined range (i.e., from 10 to the number of training samples)

and selected the dimensionality with the minimum classification error rate for the test set.

The PCA-based classification method is used as an example of conventional classification

method with a single global classifier, to be compared with our proposed method that uses

the ensemble of multilevel classifiers. The second classification method is to directly

ensemble the decisions of both the GM-density-based and correlation-based low-level

classifiers using the weighted voting. The weight assigned to each individual classifier is

determined using the same strategy as used in the proposed hierarchical classification

method (Final (Ensemble) Classification section). The classification results and their

comparisons with respect to different methods are summarized in Tables IV and V for

classification of AD versus NC and MCI versus NC, respectively. Also, their receiver

operating characteristic (ROC) curves for classification of AD versus NC and MCI versus

NC are given in Figures 4 and 5, respectively. These results demonstrate that both

classification methods by fusion of multiple classifiers can achieve better performance than

the single classifier. Moreover, the proposed hierarchical fusion method can further improve

the classification performance compared with the direct fusion method. Specifically, the

proposed hierarchical classification can achieve a high accuracy of 92.0% (with sensitivity

of 91.0% and specificity of 93.0%) for classification of AD versus NC and 85.3% for

classification of MCI versus NC, respectively.

For interpreting our results, we further visualize the patches that are selected for disease

classification using GCO features. Since a linear SVM classifier is used in our experiment,

the classifier weights are used to show the contribution of each voxel in the selected patches.

Figure 6a,b show the weight maps for the voxels in the selected patches when used for AD

versus NC and MCI versus NC classifications, respectively.

On the other hand, to illustrate the contributions of the correlation classifier (CCO), we

show in Figure 7a three-dimensional graph overlaid on a three-dimensional transparent

brain, which is generated with the BrainNet Viewer package (available at: http://

www.nitrc.org/projects/bnv/). The nodes of the graph denote the selected patches, while the

thickness of the graph edge indicates the weight of the linear SVM classifier built with the

respective patch correlations. For better illustration, the important patches and classifier

weights are selected as follows. First, we sort the correlation classifiers in ascending order of

their classification accuracies and select top 10 classifiers. Then, for each selected classifier,

the patches with 10 highest classifier weights are selected as the important patches. Finally,

all selected patches are used to generate the graph nodes, and the corresponding classifier

weights are used to generate the graph edges. Figure 7a,b show the three-dimensional graphs

for the cases of AD versus NC and MCI versus NC classification, respectively.
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Comparison with Existing Methods

Furthermore, we compare the results of the proposed classification method with some results

recently reported in the literature, which were also obtained based on the baseline MRI data

of ADNI subjects. In particular, four recent classification methods for AD and MCI

diagnosis are compared as briefly described in the following.

• In [Hinrichs et al., 2009], the linear program (LP) boosting method with novel

additional regularization was proposed to incorporate the spatial smoothness of MR

imaging space into the learning process and improve the classification accuracy.

Only classification results for AD versus NC were provided in this article.

• In [Cuingnet et al., 2011], 10 methods on different types of MRI-based features,

which included five voxel-wise imaging feature based methods, three cortical

thickness based methods, and two hippocampus based methods, were compared for

classification of AD versus NC and MCI versus NC with the linear SVM classifier.

The best results, which were obtained using voxel-wise GM densities, were

provided for comparison in our article.

• In [Zhang et al., 2011], 93 volumetric features were extracted from the 93 regions

of interest (ROI) in GM densities for both AD and MCI classification and a single

SVM classifier was constructed to make classification.

• More recently, four types of MRI-based features, i.e., hippocampal volume, tensor-

based morphometry, cortical thickness, and manifold-learning based features, were

combined to achieve improved classification accuracies with both linear

discriminant analysis (LDA) and SVM classification approaches in [Wolz et al.,

2011]. For comparison, we present their best results that were obtained with the

LDA classification approach.

The classification results of the above four methods, along with our proposed method, for

classification of AD versus NC and MCI versus NC are summarized in Tables VI and VII,

respectively. These results further validate the efficacy of our proposed classification

method.

It is worth noting that, in Tables VI and VII, we just list the results of different methods

reported in the literature. These different methods may not use exactly the same subjects

from ADNI, and thus the comparison of their results needs to be careful. In the following,

we compare the performance of our proposed with a specific method reported in the

literature, by using the same dataset. In [Chu et al., 2012], the impact of sample size and

feature selection on brain classification were extensively studied by using the GM features

and SVM classifier. In particular, they compared four different feature selection methods,

i.e., one prior-knowledge based method, two data-driven methods, and one hybrid method.

Their experimental results showed that the most accurate classification was achieved by

feature selection using the prior knowledge about the regions of brain atrophy found in

previous studies, i.e., using all GM voxels in the hippocampal and parahippocampal mask.

Therefore, this prior-knowledge based method is used here for comparison. Specifically, by

using our template with 93 manually-delineated ROIs [Kabani et al., 1998], we can label all

GM voxels in the hippocampal and parahippocampal regions for each subject, and then we
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can use a linear SVM for classification. For fair comparison, the same training and testing

data sets are used as our method. This prior-knowledge based method produces

classification accuracy (ACC) of 84.5%, along with SEN of 82.3% and SPE of 86.4%, for

classification of AD versus NC. A simple paired t-test of the accuracies in each fold of cross

validation was also performed to test the difference between our method and this prior-

knowledge based method. The obtained P value, 1.7954e-004, indicates that our method is

statistically better than the prior-knowledge based method.

Top Selected Regions

For better understanding of the brain regions selected by the proposed method for AD or

MCI classification, we picked out the most discriminative patches according to the hierarchy

of classifiers based on the training data set. Since our proposed hierarchical classification

method builds multilevel classifiers on different brain regions, the classification accuracy of

the respective classifier indicates the importance of the corresponding brain region in

classification. Specifically, we first selected the brain region related to the high-level

classifier with the highest accuracy. From the selected brain region, we then selected the

local patches that give high accuracy with respect to the GCO and CCO in the low-level

classification. It is worth noting that the patch selection is performed on the training data

only. Thus, the selected patches at each cross-validation fold may be different. For example,

we checked the selected patches from all cross-validation folds, and found that some

selected patches do vary across different folds. Thus, we compute the frequencies of the

voxels included in the selected patches in all folds. For illustration purpose, we generated

the frequency maps for the voxels in the selected patches during the cross-validations for

AD and MCI classifications (see Fig. 8). It can be observed from Figure 8 that the most-

affected regions detected by our classification method include hippocampus,

parahippocampal gyrus, entorhinal cortex, and amygdala, which are consistent with those

reported in the literature for AD and MCI studies [Cuingnet et al., 2011; Hinrichs et al.,

2009; Zhang et al., 2011].

Discussion

In this article, we have proposed a hierarchical classification framework to gradually

combine features and classifier decisions into a unified multilevel model for analysis of MR

images, to assist the diagnosis of AD and MCI. Different from the conventional

classification methods that build a single classifier with all input features, the proposed

method divide the difficult task for classification of high-dimensional features into many

low-dimensional classification problems that are easier to solve. The rich imaging and

spatial-correlation features of the whole brain image are extracted and gradually integrated

into a hierarchical framework for more efficient and accurate classification. Our

experimental results show that the hierarchical fusion of these two features can improve the

classification performance. To the best of our knowledge, there are no previous studies on

combining these two features for classification. More importantly, the local spatial

contiguity of imaging features is greatly respected in classification by using a hierarchical

spatial structure that is built from small local patches to larger brain regions. This strategy

can make better use of the local information than the ROI-based methods [Fan et al., 2007;
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Zhang et al., 2011]. Ensemble learning is a kind of machine learning technique by

combining multiple weak classifiers to build a strong classifier. Adaboost learning is a

popular ensemble learning by aggregating base classifiers to successively estimate their

errors and focusing more and more on the instances misclassified by previous classifiers.

However, AdaBoost is sensitive to noisy data and outliers since the noisy data will be also

put with high weight in the subsequent classification, thus degrading the classification

performance. The proposed hierarchical ensemble method is to aggregate multiple local

classifiers gradually by fusing the multilevel classifier decisions and features into a global

classifier, which is more robust to noisy data and outliers.

We also tested the proposed hierarchical classification method on the entire brain voxels,

without limiting to the voxels with significant univariate group difference by t-test. The

accuracies of the proposed method on the entire brain voxels are 91.35% (along with

89.92% SEN, 92.55% SPE) and 84.86% (along with 81.84% SEN, 87.79% SPE) for

classifications of AD versus NC and MCI versus NC, respectively. These results further

show that the proposed method is also robust to the size of feature space.

Selecting suitable patch size is important for achieving good classification performance. If

the patch size is too small, each patch will have no enough information to offer good

performance in the low-level classification, and also the number of patches or low-level

classifiers will be too large which will significantly increase the computation cost in the

classification. On the other hand, if the patch size is too large, more redundant or even

confounding information will be included into each patch, which will affect the localization

of informative brain regions and finally the ensemble classification result. To balance these,

the patch size needs to be optimized, i.e., 11 × 11 × 11 as we obtained, which leads to about

120 patches on average in our study. On the other hand, if other sizes are used, the

classification performance may be affected.

As for the number of levels in the hierarchy to build the base classifiers, our current

classification method adopts three levels of hierarchy. We have compared the experimental

results with one, two, and three levels of hierarchy for classification in the second

experiment. The experimental results show that the method with three levels of hierarchy

performs better than others, because it can make better use of the local features and classifier

decisions. However, when increasing the hierarchical levels to be more than three, we found

that the classification performance is not further improved, but the computation complexity

is increased.

CONCLUSION

In summary, we have presented a hierarchical classification algorithm for MRI-based

diagnosis of AD and MCI in this article. To deal with the challenge of high-dimensional

imaging features in the whole brain MRI during AD/MCI diagnosis, we proposed to

gradually aggregate the low-level imaging features into the compact high-level

representations via constructing multilevel classifiers with supervised learning. Thus, the

large-scale classification problem with high-dimensional imaging features can be

decomposed into a hierarchical set of small-scale classification problems, which are easier to
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handle. In addition to the local imaging features, the spatial-correlations are also integrated

into the hierarchical model for better classification. Experimental results on the baseline data

of ADNI subjects show that the ensemble of multiple classifiers performs better than the

single global classifier and importantly the hierarchical fusion of multi-level classifiers can

further improve the classification performance.

Since different imaging modalities can provide complementary information for disease

diagnosis, in the future work, we will extend our method to include other imaging features

extracted from other modality of data. We will also investigate more advanced classifier

ensemble method, i.e., sparse multiple kernel learning [Subrahmanya and Shin, 2010], for

further improvement of the classification accuracy.
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Figure 1.
The hierarchical structure of the proposed classification framework by using a two-

dimensional slice for illustration, where the white squares denote local patches. The small,

middle and large dots denote the low-level, high-level, and final classifiers, respectively, and

the blue circles denote the brain regions where the high-level classifiers are placed. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2.
The flow chart of the proposed hierarchical classification algorithm. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 3.
Classifier selection with forward greedy search.
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Figure 4.
ROC curves of three methods in AD vs. NC classification. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.
ROC curves of three methods in MCI vs. NC classification. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6.
The weight maps for the voxels in the selected patches for (a) AD vs. NC classification and

(b) MCI vs. NC classification. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Figure 7.
The three-dimensional graphs generated with the nodes indicating the important patches and

the edge thickness indicating the weight of the correlation classifier for (a) AD vs. NC

classification and (b) MCI vs. NC classification. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 8.
The frequency maps for the voxels in the selected patches during the cross-validation for (a)

AD classification and (b) MCI classification, with respect to the use of GCO (left) and CCO

(right) features. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Liu et al. Page 25

Hum Brain Mapp. Author manuscript; available in PMC 2014 August 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://wileyonlinelibrary.com


N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Liu et al. Page 26

TABLE I

Demographic characteristics of the studied subjects from ADNI database (denoted as mean ± standard

deviation)

Diagnosis Number Age Gender (M/F) MMSE

AD 198 75.7 ± 77 103/95 23.3 ± 2.0

MCI 225 75.2 ± 7.4 154/71 26.7 ± 1.8

NC 229 76.0 ± 5.0 119/110 29.1 ± 1.0
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TABLE II

Performance comparison for classification of AD versus NC on different features

Classification features ACC (%) SEN (%) SPE (%)

Statistical measures (SM) 85.3 83.4 86.9

GM-density-based classifier outputs (GCO) 90.2 88.9 91.3

Correlation-based classifier outputs (CCO) 89.7 89.4 89.9

SM + GCO 91.1 89.5 92.5

SM + CCO 90.8 88.4 93.0

GCO + CCO 90.9 89.4 92.1

SM + GCO + CCO 92.0 90.9 93.0
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TABLE III

Performance comparison for classification of MCI versus NC on different features

Classification features ACC (%) SEN (%) SPE (%)

Statistical measures (SM) 74.1 73.4 74.7

GM-density-based classifier outputs (GCO) 83.7 80.1 87.3

Correlation-based classifier outputs (CCO) 82.5 81.8 83.0

SM + GCO 84.4 80.5 88.2

SM + CCO 83.2 81.0 85.2

GCO + CCO 84.2 82.3 86.0

SM + GCO + CCO 85.3 82.3 88.2
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TABLE IV

Comparison of three methods for AD versus NC classification

Classification methods ACC (%) SEN (%) SPE (%) Area under ROC (%)

Single classifier 86.4 83.9 88.6 92.9

Direct fusion of low-level classifiers 89.7 86.9 92.1 93.9

Proposed hierarchical fusion 92.0 91.0 93.0 95.2
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TABLE V

Comparison of three methods for MCI versus NC classification

Classification methods ACC (%) SEN (%) SPE (%) Area under ROC (%)

Single classifier 79.4 79.2 79.5 87.8

Direct fusion of low-level classifiers 83.2 81.8 84.7 89.5

Proposed hierarchical fusion 85.3 82.3 88.2 91.0
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