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Effectively utilizing incomplete multi-modality data for the diagnosis of Alzheimer’s disease (AD) and 

its prodrome ( i.e. , mild cognitive impairment, MCI) remains an active area of research. Several multi- 

view learning methods have been recently developed for AD/MCI diagnosis by using incomplete multi- 

modality data, with each view corresponding to a specific modality or a combination of several modali- 

ties. However, existing methods usually ignore the underlying coherence among views, which may lead to 

sub-optimal learning performance. In this paper, we propose a view-aligned hypergraph learning (VAHL) 

method to explicitly model the coherence among views. Specifically, we first divide the original data 

into several views based on the availability of different modalities and then construct a hypergraph in 

each view space based on sparse representation. A view-aligned hypergraph classification (VAHC) model 

is then proposed, by using a view-aligned regularizer to capture coherence among views. We further 

assemble the class probability scores generated from VAHC, via a multi-view label fusion method for 

making a final classification decision. We evaluate our method on the baseline ADNI-1 database with 807 

subjects and three modalities ( i.e. , MRI, PET, and CSF). Experimental results demonstrate that our method 

outperforms state-of-the-art methods that use incomplete multi-modality data for AD/MCI diagnosis. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease, char-

cterized by progressive impairment of neurons and synaptic

unctioning. As an increasingly prevalent disease, AD is regarded

s a major world-wide challenge to global health care sys-

ems ( Brookmeyer et al., 2007 ). The total estimated prevalence

f AD is expected to be 13.8 million in the United States by

050 ( Association et al., 2013 ). It is reported that the direct cost of

are for AD patients provided by family members and health-care

ystems is more than $100 billion per year ( Association et al.,

013 ). In recent years, much effort has been made to find early

iagnostic markers to evaluate AD risk pre-symptomatically in

 rapid and rigorous way, allowing early interventions that may

revent or at least delay the onset of AD, as well as its prodrome,

.e. , mild cognitive impairment (MCI) ( Reiman et al., 2010 ). 

Recent research and clinical studies have shown that structural

agnetic resonance imaging (MRI), fluorodeoxyglucose positron

mission tomography (FDG-PET) and cerebrospinal fluid (CSF) are
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mong the best-established data modalities to identify biomarkers

or AD progression and pathology ( Reiman et al., 2010 ). Specifically,

tructural MRI provides anatomical information about the brain,

nd feature representations generated from MRI ( e.g. , cortical

hickness, regional volumetric measures, and connectivity infor-

ation) can be used to quantify AD-associated brain abnormali-

ies ( Jack et al., 2008; Cuingnet et al., 2011; Wolz et al., 2011; Liu

t al., 2016; Zhang et al., 2016 ). Also, FDG-PET (PET for short) can

e employed to detect the abnormality in cerebral metabolic rate

or glucose in human brain ( Chetelat et al., 2003; Herholz et al.,

002; Foster et al., 2007 ). In addition, CSF total-tau (t-tau), CSF tau

yperphosphorylated at threonine 181 (p-tau) and the decrease of

SF amyloid β (A β) are closely related to the cognitive decline in

D and MCI subjects ( Hansson et al., 2006; Kawarabayashi et al.,

001 ). In the literature, extensive studies have shown that multi-

odality data ( e.g. , MRI, PET and CSF) provide complementary

nformation that can improve the performance of AD/MCI diagno-

is ( Ingalhalikar et al., 2012; Yuan et al., 2012; Xiang et al., 2014;

hung et al., 2014 ). However, the problem of incomplete data re-

ains a big challenge in making use of multi-modality data, since

here may be missing values existing in some modalities due to

oor data quality and patient dropouts. For instance, while base-

ine MRI data are fully available for all subjects in the Alzheimer’s
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Fig. 1. Illustration of the proposed view-aligned hypergraph learning method, where subjects from the baseline ADNI-1 database are taken as examples. Subjects are divided 

into M ( M = 6 in this study) views according to the data availability of a certain combination of modalities, where each view contains subjects with complete data of 

combined modalities. We then compute the distances among subjects via a sparse representation model, and construct one hypergraph in each view space. A view-aligned 

hypergraph classification method is further proposed, followed by a multi-view label fusion method to make a final classification decision. 
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Disease Neuroimaging Initiative (ADNI) database ( Jack et al.,

2008 ), PET and CSF data are only available for roughly half the

subjects. 

Currently, several approaches have been developed to handle

incomplete multi-modality data ( Hastie et al., 1999; Schneider,

2001; Golub and Reinsch, 1970; Yuan et al., 2012; Xiang et al.,

2014; Thung et al., 2014 ). In general, existing methods can be

divided into three categories, i.e. , sample exclusion methods,

imputation methods, and multi-view methods. Sample exclusion

methods discard subjects with incomplete data from the study,

leading to sub-optimal performance due to potentially insufficient

sample size ( Hastie et al., 2005 ). Imputation methods estimate

missing values based on available data using specific imputation

techniques, e.g. , expectation maximization (EM) ( Schneider, 2001 ),

singular value decomposition (SVD) ( Golub and Reinsch, 1970 ),

and matrix completion ( Thung et al., 2014 ). However, the effective-

ness of these approaches can be affected by imputation artifacts.

Without discarding subjects or imputing missing values, several

recently developed multi-view learning methods ( Yuan et al., 2012;

Xiang et al., 2014 ) demonstrate greater accuracies in AD/MCI di-

agnosis. Multi-view methods generally divide the data into several

views, with each view corresponding to a modality or a combina-

tion of modalities. Diagnosis is then performed using a multi-view

learning algorithm. However, these approaches usually ignore

the underneath coherence among views. Integrating these views

coherently is expected to achieve better diagnostic performance. 

In this paper, we propose a view-aligned hypergraph learning

(VAHL) method that utilizes incomplete multi-modality data for

AD/MCI diagnosis. Compared with conventional methods, VAHL

explicitly incorporates the coherence among views into the learn-

ing model, where the optimal weight for each view can also be

learned from the data automatically. Fig. 1 presents a schematic

diagram of the proposed framework using subjects in ADNI-1

database with block-wise missing features ( Xiang et al., 2014;

Yuan et al., 2012 ). We first divide the whole data set into M views
 M = 6 in Fig. 1 ) consisting of combinations of modalities. We

ompute the distances among subjects using a sparse represen-

ation model and then construct one hypergraph in each view

pace. We further propose a view-aligned hypergraph classification

odel, where the coherence among views is explicitly captured

y a proposed view-aligned regularizer. The basic idea of such

iew-aligned regularizer is that, for one subject represented by

wo feature vectors in two view spaces, the estimated class labels

or such two feature vectors should be similar because they denote

he same subject. To arrive at a final classification decision, we

gglomerate the class probability scores obtained from different

iews, via a multi-view label fusion method. 

The rest of the paper is organized as follows. In Section 2 ,

e describe the data used in this study and flesh out the pro-

osed method. In Section 3 , we describe the methods used for

omparison, the experimental settings, and the experimental

esults based on the baseline ADNI database ( Jack et al., 2008 ). In

ection 4 , we investigate the learned weights for different views,

he influence of parameters on the classification performance, as

ell as the influence of the proposed sparse representation based

istance measurement for constructing hypergraphs. In Section 5 ,

e conclude this paper and discuss possible future research

irections. 

. Material and method 

In this section, we first introduce the database and image

re-processing pipeline used in this study ( Section 2.1 ), and then

resent the proposed view-aligned hypergraph learning (VAHL)

ethod, which includes multi-view data grouping ( Section 2.2 ),

parse representation based hypergraph construction ( Section 2.3 ),

iew-aligned hypergraph classification ( Section 2.4 ), and multi-

iew label fusion ( Section 2.5 ). 
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Table 1 

Demographic and clinical information of subjects in the baseline ADNI-1 database. 

AD MCI NC 

Male/Female 99/87 254/141 118/108 

Age (Mean ± SD) 75 .40 ± 7.60 74 .90 ± 7.30 76 .00 ± 5.00 

Edu. (years) (Mean ± SD) 14 .70 ± 3.10 15 .70 ± 3.00 16 .00 ± 2.90 

MMSE (Mean ± SD) 23 .30 ± 2.00 27 .00 ± 1.80 29 .10 ± 1.00 

CDR (Mean ± SD) 0 .75 ± 0.25 0 .50 ± 0.03 0 .00 ± 0.00 

Note : Values reported as Mean ± Stand Deviation (SD); MMSE: mini-mental state 

examination; CDR: Clinical Dementia Rating. 
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Fig. 2. Illustration of the proposed hyperedge construction method. Two hyper- 

edges ( i.e., e 1 and e 2 ) are built by connecting the centroid vertex v 1 with the other 

vertices, according to the sparse representation coefficients obtained by using two 

l 1 regularization parameters. 
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.1. Subjects and data pre-processing 

The ADNI-1 database ( Jack et al., 2008 ) is used in this study.

ccording to the Mini-Mental State Examination (MMSE) scores,

ubjects in ADNI-1 can be divided into three categories: normal

ontrol (NC) subjects, MCI subjects, and AD subjects. The general

nclusion/exclusion criteria used by ADNI-1 are summarized as

ollows: 1) NC subjects: Mini-Mental State Examination (MMSE)

cores between 24 and 30 (inclusive), a Clinical Dementia Rating

CDR) of 0, non-depressed, non MCI and non-demented; 2) MCI

ubjects: MMSE scores between 24 and 30 (inclusive), a memory

omplaint, have objective memory loss measured by education

djusted scores on Wechsler Memory Scale Logical Memory II, a

DR of 0.5, absence of significant levels of impairment in other

ognitive domains, essentially preserved activities of daily living

nd an absence of dementia; 3) mild AD: MMSE scores between

0 and 26 (inclusive), CDR of 0.5 or 1.0 and meets NINCDS/ADRDA

riteria for probable AD. In addition, some MCI subjects had

onverted to AD within 24 months, while some other MCI subjects

ere stable over time. According to whether MCI subjects would

onvert to AD within 24 months, the MCI subjects are divided

nto two categories: 1) stable MCI (sMCI) subjects, if diagnosis

as MCI at all available time points (0–96 months); 2) progressive

CI (pMCI) subjects, if diagnosis was MCI at baseline but these

ubjects converted to AD after baseline within 24 months. 

In the baseline ADNI-1 database, there are a total of 807

ubjects, including 186 AD subjects, 226 NCs and 395 MCI subjects

consisting of 169 pMCI subjects and 226 sMCI subjects). Detailed

escription for each category can be found at website. 1 It is worth

oting that all subjects in the baseline ADNI-1 database have

1-weighted structural MRI data, while only 396 subjects have

DG-PET data and 406 subjects have CSF data. The demographic

nformation of the studied subjects ( i.e. , gender, age, and educa-

ion) and clinical scores ( i.e. , MMSE and CDR global) used in this

tudy are summarized in Table 1 . 

We extract features based on regions-of-interest (ROIs) from

R and PET images. Specifically, for each MR image, we apply

he anterior commissure (AC)-posterior commissure (PC) correc-

ion using the MIPAV software package. 2 We then re-sample the

mages to 256 × 256 × 256 resolution, and apply the N3 algo-

ithm ( Sled et al., 1998 ) to correct intensity inhomogeneity. Skull

tripping ( Wang et al., 2011 ) is then performed, followed by man-

al editing to ensure that both skull and dura are cleanly removed.

ext, we remove the cerebellum by warping a labeled template to

ach skull-stripped image. Afterwards, FAST ( Zhang et al., 2001 ) in

he FSL software package 3 is then applied to segment the human

rain into three different tissue types, i.e. , gray matter (GM),

hite matter (WM) and cerebrospinal fluid (CSF). Meanwhile, the

natomical automatic labeling (AAL) atlas ( Tzourio-Mazoyer et al.,

002 ), with 90 pre-defined ROIs in the cerebrum, are aligned to
1 http://adni.loni.usc.edu . 
2 http://mipav.cit.nih.gov/index.php . 
3 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki . 

2  

(  

r  

g  

o  
he native space of each subject using a deformable registration

lgorithm, i.e. , HAMMER ( Shen and Davatzikos, 2002 ) that is also

xtended and applied to other applications ( Qiao et al., 2009; Yang

t al., 2008; Xue et al., 2006; Verma et al., 2005 ). Finally, for each

ubject, we extract the volumes of GM tissue inside those 90 ROIs

s features, normalized by the total intracranial volume (estimated

y the summation of GM, WM, and CSF volumes from all ROIs).

or PET images, we first align each PET image onto its correspond-

ng MR image via a rigid registration, and then compute the mean

ntensity of each ROI in the PET image as features. In this study,

e also employ five CSF biomarkers, including amyloid β (A β42),

SF total tau (t-tau), CSF tau hyperphosphorylated at threonine 181

p-tau), and two tau ratios with respect to A β42 ( i.e. , t-tau/A β42

nd p-tau/A β42). Ultimately, we have a 185-dimensional feature

ector for a subject with complete data, including 90 MRI features,

0 PET features and 5 CSF features. 

.2. Multi-view data grouping 

For subjects with block-wise incomplete MRI, PET and CSF data

n the baseline ADNI-1 database, we group them into M(M = 6)

iews, including “PET+MRI”, “PET+MRI+CSF”, “MRI+CSF”, “PET”, 

MRI”, and “CSF”. As shown in Fig. 1 , subjects in View 1 have both

ET and MRI features, while those in View 6 only have CSF data.

n this way, we have complete feature representations for each

ubject in each view. Using such data grouping strategy, we can

ake full use of all subjects, without discarding any subjects with

issing data or imputing those missing values. Such data grouping

ethod is also used in Yuan et al. (2012) and Xiang et al. (2014) for

roblems with block-wise incomplete multi-modality data. 

The purpose of such multi-view data grouping strategy is to

ully utilize all subjects, by grouping them into different views

ccording to the availability of data modalities. Currently, this data

rouping approach can only be applied to block-wise incomplete

ata problem. For more general problems where there may be

ome missing values in a specific modality for some subjects, we

an first impute these missing values using some simple technique

 e.g. , EM or SVD), and then group subjects into different views. 

.3. Sparse representation based hypergraph construction 

In this study, AD/MCI diagnosis is formulated as a hypergraph

ased multi-view learning problem. A hypergraph is a generaliza-

ion of the traditional graph, where each edge (called hyperedge) is

 non-empty subset of the vertex set ( Zhou et al., 2006; Gao et al.,

012 ). As shown in Fig. 2 (a), the hyperedge e 1 contains 5 vertices

 i.e., v 2 , v 3 , v 4 , v 5 , and v 7 ), which demonstrates some high-order

elationship among vertices. In contrast, an edge in a conventional

raph can only convey the pairwise relationship by connecting

nly two vertices. For the convenience of presentation, we now
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e  
introduce some notations for hypergraphs. Throughout the paper,

we denote matrices, vectors, and scalars using boldface upper-

case letters, boldface lower-case letters, and normal italic letters,

respectively. Let G m = (V, E m , w 

m ) denote the m th hypergraph cor-

responding to the m th ( m = 1 , 2 , . . . , M) view, where V represents

the vertex set that contains N vertices, E m denotes the hyperedge

set, and w 

m is the weights for hyperedges (with the element w 

m 

e j 

representing the weight for the hyperedge e j in the m th view

space). We let N 

m 

e represent the number of hyperedges in the m th

hypergraph. Denote W 

m ∈ R 

N m e ×N m e as a diagonal matrix of hyper-

edge weights, i.e. , W 

m 

j, j 
= w 

m 

e j 
. That is, each diagonal element of W 

m 

denotes the weight for a specific hyperedge in the classification

task, with a larger value representing that the hyperedge is more

important. Let H 

m ∈ R 

N ×N m e denote the vertex-hyperedge incidence

matrix, with the ( v n , e j )-entry indicating whether the vertex v n is

connected with other vertices in the hyperedge e j , e.g. , 

h 

m 

v n ,e j = 

{
1 , if v n ∈ e j , 
0 , otherwise . 

(1)

The degree of a vertex v n is defined as 

d m 

v n = 

∑ 

e j ∈ E m 
w 

m 

e j 
h 

m 

v n , e j , (2)

and the degree for a hyperedge e j is defined as 

δm 

e j 
= 

∑ 

v n ∈V 
h 

m 

v n ,e j . (3)

A key point for hypergraph learning is constructing a set of

hyperedges to efficiently model the structure information of data.

In conventional methods, the Euclidean distance is generally used

to indicate the similarity between pairs of vertices for constructing

hyperedges. For instance, in the star expansion method ( Zien

et al., 1999 ), we first select each vertex as the centroid vertex,

and then construct a hyperedge by connecting this centroid vertex

to its s nearest neighbor vertices, where the similarity between

two vertices is evaluated by the Euclidean distance. However, the

Euclidean distance can only model the local structure information

among vertices and does not utilize global information. To address

this problem, we propose a sparse representation based distance

measurement for hyperedge construction. The reason we utilize

sparse representation for computing similarities among vertices is

that sparse representation coefficients have proven to be effective

in reflecting the global data structure and also robust to data

noise ( Wright et al., 2009; Qiao et al., 2010 ). 

Given a set of training samples { x n } N n =1 with x n ∈ R 

D , the data

matrix X = [ x 1 , x 2 , . . . , x n , . . . , x N ] ∈ R 

D ×N contains N samples in its

columns. The goal of sparse representation ( Qiao et al., 2010 ) is

to represent each x n using as few samples as possible. Hence, we

expect to seek a sparse representation weight vector s n for each

x n via the following modified l 1 minimization problem 

min 

s n 
‖ 

x n − Xs n ‖ 

+ β‖ 

s n ‖ 1 

s . t . 1 = 1 

� s n , 
(4)

where s n = [ s n, 1 , . . . , s n,n −1 , 0 , s n,n +1 , . . . , s n,N ] 
� 

is an N -dimensional

vector where the n th element is equal to zero (implying that x n 
is removed from X ). Note that the element s n, j ( j � = n ) denotes the

contribution of x j to the reconstruction of x n . The regularization

parameter β is used to control the sparsity of s n , and 1 ∈ R 

N is

a vector of all ones. In Eq. (4) , the weight vector ˆ s n is computed

globally in terms of samples from all classes, naturally characteriz-

ing the importance of the other samples for the reconstruction of

x n . In other words, sample x n is mainly associated with only a few

samples with prominent non-zero coefficients in its reconstruction.
With the optimal weight vector ˆ s n for each x n (n = 1 , 2 , . . . , N)

earned from Eq. (4) , the sparse representation weight matrix S is

efined as 

S = [ ̂ s 1 , ̂  s 2 , . . . , ̂  s n , . . . , ̂  s N ] 
� . (5)

Based on the sparse representation coefficients in Eq. (5) , we

dopt the star expansion algorithm ( Zien et al., 1999 ) to generate

 set of hyperedges. Specifically, in each view space, we first select

ach vertex as the centroid vertex, and then construct a hyperedge

y connecting this centroid vertex to the other vertices, with

he sparse representation coefficients as similarity measure. That

s, a large coefficient demonstrates a strong connectivity, and a

ero coefficient denotes no connectivity. The element h m 

v n ,e j of the

ertex-hyperedge incidence matrix H 

m is defined as 

 

m 

v n ,e j = 

{| S n, j | , if | S n, j | > θ, 

0 , otherwise , 
(6)

here θ is a small threshold (which is set to 0.001 empirically in

his study), and S n, j is the ( n, j )-entry of S in Eq. (5) . 

It is worth noting that a larger β in Eq. (4) will lead to more

eros in the representation coefficients, which indicates that fewer

ertices are used to represent the centroid vertex. In this way, the

orresponding hyperedge would contain less vertices, demonstrat-

ng a relatively local data structure. To model multi-scale structure

nformation of data, we propose to employ multiple ( e.g., q ) values

or β to construct multiple sets of hyperedges. As illustrated in

ig. 2 , we construct two hyperedges ( i.e., e 1 and e 2 ) by connecting

 centroid vertex v 1 with the other vertices, where each hyperedge

orresponds to a specific β . For the hypergraph G m in the m th

iew space, we can finally obtain N 

m 

e = qN hyperedges in the

ertex-hyperedge incidence matrix H 

m . In this way, we can obtain

undreds of hyperedges, some of which may not be informative

nough for subsequent classification model. We further propose to

earn optimal weights for hyperedges in Section 2.4.2 in order to

dentify those most informative hyperedges. 

.4. View-aligned hypergraph classification 

In the following, we first propose a view-aligned regularizer to

xplicitly model the underlying coherence among views, and then

evelop a view-aligned hypergraph classification model as well as

n efficient alternating optimization algorithm. 

.4.1. View-aligned regularizer 

Denote f m ∈ R 

N as the class probability score vector for N

ubjects in the m th view, and F = [ f 1 , f 2 , · · · , f m , . . . , f M ] ∈ R 

N×M ,

here M is the number of views. The proposed view-aligned reg-

larizer is illustrated in Fig. 3 , where different colors and shapes

enote different views and subjects, respectively. For instance,

ircles represent a subject having PET (View 4), MRI (View 5) and

SF (View 6) data, that are denoted as x 4 
1 
, x 5 

1 
and x 6 

1 
, respectively.

ntuitively, after being mapped into the label space, their esti-

ated class probability scores ( i.e. , f 4 1 , f 5 
1 
, and f 6 

1 
) should be close

o each other, since they represent the same subject. Similarly,

or the subject with only PET and MRI features ( i.e. , triangles for

 

4 
2 

and x 5 
2 
), the distance between f 4 

2 
and f 5 

2 
should be small in

he label space. Denote �m ∈ R 

N×N as a diagonal matrix, with the

iagonal element Ωm 

n,n = 0 if the n th subject has missing values

n the m th view, and Ωm 

n,n = 1 , otherwise. Then, the proposed

iew-aligned regularizer is defined as 

N ∑ 

n =1 

M ∑ 

m =1 

M ∑ 

p=1 

Ωm 

n,n Ω
p 
n,n ( f m 

n − f p n ) 
2 = 

M ∑ 

m =1 

(f m ) � �m 

M ∑ 

p=1 

�p (f m − f p ) . (

Let D 

m 

v represent the vertex degree matrix whose diagonal

ntries correspond to the degree of each vertex. Denote D 

m 

e as



M. Liu et al. / Medical Image Analysis 36 (2017) 123–134 127 

Fig. 3. Illustration of the proposed view-aligned regularizer. Circle, cross and triangle represent three subjects, respectively. Yellow, blue, and red denote the views of “PET”, 

“MRI”, and “CSF”, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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{  
he hyperedge degree matrix, with diagonal elements representing

he degree of each hyperedge. The hypergraph regularization

erm ( Zhou et al., 2006 ) is defined as 

1 

2 

M ∑ 

m =1 

∑ 

e j ∈ E m 

∑ 

v n , v i ∈V 

w 

m 

e j 
h 

m 

v n ,e j h 

m 

v i ,e j 

δm 

e j 

×
( 

f m 

v n √ 

d m 

v n 

− f m 

v i √ 

d m 

v i 

) 2 

= 

M ∑ 

m =1 

(f m ) � L m f m , (8) 

here L m = I − �m is the hypergraph Laplacian matrix, I is an

dentity matrix, and �m = ( D 

m 

v ) 
− 1 

2 H 

m W 

m ( D 

m 

e ) 
−1 (H 

m ) � ( D 

m 

v ) 
− 1 

2 . 

.4.2. View-aligned hypergraph classification 

Denote y = [(y la ) � , (y un ) � ] � ∈ R 

N , where y la denotes label

nformation for labeled data and y un represents label information

or unlabeled data. For the n th sample, y n = 1 if it is associated

ith the positive class ( e.g. , AD), y n = −1 if it belongs to the

egative class ( e.g. , NC), and y n = 0 if its category is unknown.

ince different views and hyperedges may play different roles in

 classification task, it is intuitively reasonable to learn weights

or different views and for hyperedges from data. Denote α ∈ R 

M 

s a weight vector, with its element αm representing the weight

or the m th view. Denote the Frobenius norm of the matrix W 

m 

s ‖ W 

m ‖ 2 F = 

∑ 

i, j | W 

m 

i, j 
| 2 . In this study, we resort to the multi-task

earning framework ( Argyriou et al., 2008 ) for classification, and

egard the classification in each view space as a specific learning

ask. The proposed view-aligned hypergraph classification (VAHC)

odel is formulated as 

min 

F , α, { W 

m } M m =1 

M ∑ 

m =1 

‖ 

�m (f m − y ) ‖ 

2 + 

M ∑ 

m =1 

(αm ) 2 (f m ) � L m f m 

+ μ
M ∑ 

m =1 

(f m ) � �m 

M ∑ 

p=1 

�p (f m − f p ) + λ
M ∑ 

m =1 

‖ 

W 

m ‖ 

2 
F , 

s . t . 

M ∑ 

m =1 

αm = 1 , ∀ αm ≥ 0 ;

N m e ∑ 

j=1 

W 

m 

j, j = 1 , ∀ W 

m 

j, j ≥ 0 , 

(9) 

here the first term is the empirical loss, and the second one

s the hypergraph Laplacian regularizer ( Zhou et al., 2006 ). It is

orth noting that the third term in Eq. (9) is the proposed view-

ligned regularizer, encouraging the similarity of the estimated

lass labels for one subject represented in two different views. The
ast term and those constraints in Eq. (9) are used to penalize the

omplexity of the weights ( i.e. , W 

m ) for hyperedges and also the

eights ( i.e. , α) for views. The regularization parameter ( αm ) 2 is

sed to prevent the degenerate solution of α. In addition, μ and

are regularization parameters for our proposed view-aligned

egularizer and the hyperedge weight regularizer, respectively.

ith Eq. (9) , one can jointly learn the class probability scores F ,

he optimal weights for different views ( i.e. , α), and the optimal

eights for hyperedges ( i.e. , { W 

m } M 

m =1 ) from data. 

Since the problem in Eq. (9) is not jointly convex with respect

o F, α, and { W 

m } M 

m =1 , we adopt an alternating optimization

ethod to solve the proposed objective function. Specifically, in

he first step, we aim to optimize F with fixed α and { W 

m } M 

m =1 . In

uch case, the objective function in Eq. (9) can be written as 

min 

F 

M ∑ 

m =1 

‖ 

�m (f m − y ) ‖ 

2 + 

M ∑ 

m =1 

(αm ) 2 (f m ) � L m f m 

+ μ
M ∑ 

m =1 

(f m ) � �m 

M ∑ 

p=1 

�p (f m − f p ) . 
(10) 

The partial derivative of the objective function in Eq. (10) with

espect to f m is as follows 

∂ 

∂f m 

{ 

M ∑ 

m =1 

‖ 

�m (f m − y ) ‖ 

2 + 

M ∑ 

m =1 

(αm ) 2 (f m ) � L m f m 

+ μ
M ∑ 

m =1 

(f m ) � �m 

M ∑ 

p=1 

�p (f m − f p ) 

} 

= �m (f m − y ) + (αm ) 2 L m f m + μ�m 

M ∑ 

p=1 

�p (2 f m − f p ) = 0 . 

(11) 

 f m = 

( 

�m + (αm ) 2 L m + 2 μ�m 

M ∑ 

p=1 

�p 

) −1 

�m 

( 

y + μ
M ∑ 

p=1 

�p f p 

) 

.

(12)

In the second step, given fixed F and α, we can optimize

 W 

m } M 

m =1 . Then, the objective function in Eq. (9) can be re-written
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Algorithm 1: View-aligned hypergraph classification. 

Input : Labeled data with MRI, PET and CSF modalities, class 

label vector y , and parameters μ and λ. 

1 Step 1: Initialization 

2 1.1: Group data into several views according to modalities, 

and construct the index matrix �m (m = 1 , . . . , M) ; 

3 1.2: Construct multiple sets of hyperedges based on sparse 

representation coefficients in each of M view spaces, and 

compute corresponding matrices H 

m , D 

m 

v and D 

m 

e ; 

4 1.3: Set W 

m (m = 1 , . . . , M) as a diagonal matrix and α with 

initial values; 

5 repeat 

6 Step 2: Label update. Compute F = [ f 1 , . . . , f M ] using Eq. 

(12) ; 

7 Step 3: Hyperedge weight update. Update the hyperedge 

weight W 

m (m = 1 , . . . , M) based on Eq. (15) ; 

8 Step 4: View weight update. Compute the view weight α
via Eq. (18) ; 

9 until convergence ; 

Output : F , { W 

m } M 

m =1 , and α. 

w  

v
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m
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as follows 

min 

{ W 

m } M m =1 

M ∑ 

m =1 

(αm ) 2 (f m ) � L m f m + λ
M ∑ 

m =1 

‖ 

W 

m ‖ 

2 
F , 

s . t . 

N m e ∑ 

j=1 

W 

m 

j, j = 1 , ∀ W 

m 

j, j ≥ 0 . 

(13)

The partial derivative of Eq. (13) with respect to W 

m is as

follows 

∂ 

∂W 

m 

{ 

(αm ) 2 (f m ) 
� 

L m f m + λ‖ 

W 

m ‖ 

2 
F + η

( 

N m e ∑ 

j=1 

W 

m 

j, j − 1 

) } 

= 0 . 

(14)

⇒ W 

m = 

(αm ) 2 �� �( D 

m 

e ) 
−1 − ηI m 

2 λ
, 

η = 

(αm ) 2 �( D 

m 

e ) 
−1 �� − 2 λ

N 

m 

e 

, (15)

where � = (f m ) � ( D 

m 

v ) 
− 1 

2 H 

m , and I m ∈ R 

N m e ×N m e is an identity

matrix. 

In the third step, we optimize α with fixed F and { W 

m } M 

m =1 ,

and the problem in Eq. (9) can be re-written as follows 

min 

α

M ∑ 

m =1 

(αm ) 2 (f m ) � L m f m , 

s . t . 

M ∑ 

m =1 

αm = 1 , ∀ αm ≥ 0 . 

(16)

The partial derivative of Eq. (16) with respect to αm is as

follows 

∂ 

∂αm 

{ 

M ∑ 

m =1 

(αm ) 2 (f m ) � L m f m + τ

( 

M ∑ 

m =1 

αm − 1 

) } 

= 0 . (17)

⇒ αm = − τ

(f m ) � L m f m 

, 

τ = − 2 

∏ M 

m =1 (f m ) � L m f m ∑ M 

m =1 

∏ M 

p=1 ,p� = m 

(f p ) � L p f p 
. (18)

The alternating optimization process is repeated until conver-

gence. The entire process of the above-mentioned method is sum-

marized in Algorithm 1 . In Fig. 4 , we plot the change of the objec-

tive function values of Eq. (9) using different iteration numbers and

the learned weights for hyperedges in the AD vs. NC classification,

with μ = 10 and λ = 10 for illustration. From Fig. 4 (top), it can

be seen that the objective function value decreases rapidly within

5 iterations, illustrating the fast convergence of the proposed

optimization algorithm. Fig. 4 (bottom) shows that the learned

weights for different hyperedges vary significantly, implying that

many hyperedges could be less discriminative in reflecting the true

structure of data. In such a case, learning the optimal weights from

data, as we do in this study via Eq. (9) , provides an efficient way

to suppress the contribution of hyperedges that are less important.

2.5. Multi-view label fusion 

For a new testing sample z , we now compute the weighted

mean of its class probability scores { f m 

z } M 

m =1 for making a final

classification decision. Specifically, its class label can be obtained

via 

l(z ) = sign 

( 

M ∑ 

m =1 

αm × f m 

z 

γ

) 

, (19)
here γ = 

∑ M 

m =1 α
m , and αm is the optimal weight of the m th

iew learned from VAHC defined in Eq. (9) . 

It is worth noting that if z has missing values in a specific

odality, the weights for related views associated with this

odality will be 0. For instance, the weights for the views of

PET+MRI+CSF”, “MRI+CSF” and “CSF” will be zeros if there are

issing CSF data in the testing sample z . 

. Results 

Here, we present the competing methods ( Section 3.1 ) and

xperimental settings ( Section 3.2 ), followed by experimen-

al results of our method in comparison to baseline methods

 Section 3.3 ) and several state-of-the-art methods ( Section 3.4 ).

e further compare the computational costs of different methods

n Section 3.5 . 

.1. Methods for comparison 

We first compare the proposed VAHL method with four base-

ine approaches based on data imputation techniques, including

) Zero (missing values filled with zeros), 2) k -Nearest Neighbor

KNN) ( Hastie et al., 1999; Troyanskaya et al., 2001; Hastie et al.,

005 ), 3) Expectation Maximization (EM) ( Schneider, 2001 ), and

) Singular Value Decomposition (SVD) ( Golub and Reinsch, 1970 ).

ssuming that the feature values are collected in the form of

 matrix (as shown in Fig. 1 ), four baseline imputation-based

ethods are briefly summarized below. 

1) In Zero method, missing values are filled with zeros. If data are

normalized to have a mean of zero and unit standard devia-

tion, this method is equivalent to the mean-value imputation

method. That is, the missing feature values are filled with the

means of corresponding feature values available in the same

row. 

2) In KNN method ( Hastie et al., 1999; Troyanskaya et al., 2001 ),

each missing value is filled with the weighted mean of its k -

nearest neighbor columns. Specifically, we first adopt KNN to

identify the feature columns that are most similar to the one

with missing values. Those missing values are then filled in

with the weighted mean of the values in the neighbor columns.

Following ( Thung et al., 2014 ), the weight for a specific neigh-

bor column is inversely proportional to the Euclidean distance
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Fig. 4. Objective function values with respect to different iterations (top), and the learned weights for hyperedges (bottom) in AD vs. NC classification, with μ = 10 and 

λ = 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

e  

a  

i  

e  

(  

(  

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

c  

c  

f  
between the neighbor column and the column with missing

values. 

3) In EM method ( Schneider, 2001 ), missing values are imputed

using the EM algorithm. Specifically, in the E step, we estimate

the mean and the covariance matrix from the feature matrix,

with missing values filled with the estimates from the previous

E step (or initialized as zeros). In the M step, we assign the con-

ditional expectation values to the missing elements based on

the available values, the estimated mean, and the covariance.

Next, we re-estimate the mean and the covariance according

to the filled feature matrix. These two steps are repeated until

convergence. 

4) In SVD method ( Golub and Reinsch, 1970 ), missing values are

iteratively filled-in using the matrix completion technique with

low-rank approximation. That is, some initial guesses ( e.g. , ze-

ros) are first assigned to the missing values and the method

of SVD is then adopted to obtain a low-rank approximation of

a filled-in matrix. Next, we update the missing elements with

their corresponding values in the low-rank estimation matrix.

Then, we perform SVD to the updated matrix again, and such

processes are repeated until convergence. 

The proposed VAHL method is further compared with six state-

f-the-art methods: 1) two Ensemble based methods ( Ingalhalikar

t al., 2012 ) using weighted average (denoted as Ensemble-1) and

verage (denoted as Ensemble-2) strategies, respectively; 2) two

ncomplete multi-source feature (iMSF) learning methods ( Yuan

t al., 2012 ) with square loss (denoted as iMSF-1) and logistic loss

denoted as iMSF-2); 3) an incomplete source-feature selection

iSFS) method ( Xiang et al., 2014 ); and 4) a matrix shrinkage and

ompletion (MSC) method ( Thung et al., 2014 ). 

1) In the Ensemble based method ( Ingalhalikar et al., 2012 ), an

ensemble classification technique is adopted to fuse multiple

classifiers by using different subsets of samples with complete

data. Specifically, this method first divides the data into dif-

ferent subsets, and then selects relevant features using signal-

to-noise ratio coefficient filter algorithm ( Guyon and Elisseeff,

2003 ). Based on the selected features, a linear discriminant

analysis (LDA) ( Scholkopft and Mullert, 1999 ) classifier is con-

structed for each subset, followed by the fusion of classifica-
tion results of multiple LDA classifiers to make a final decision

for a testing subject. According to different fusion strategies,

there are two versions of this method. The first one, denoted as

Ensemble-1, is based on weighted averaging, where each classi-

fier is assigned a specific weight based on its classification error

on the training data. In the second approach ( i.e. , Ensemble-2),

all classifiers are assigned equal weights. 

2) The iMSF method ( Yuan et al., 2012 ) is a multi-view based

method. Similar to our data grouping technique, iMSF first par-

titions subjects into several views, and a specific classifier is

constructed in each view. A structural sparse learning model is

then developed to select a common set of features among these

tasks. Finally, an ensemble model is used to combine all models

together. There are two versions of iMSF based on different loss

functions, i.e. , the least square loss (denoted as iMSF-1) and the

logistic loss (denoted as iMSF-2). 

3) As another multi-view based method, iSFS ( Xiang et al., 2014 )

first partitions subjects into several views according to the

availability of data modalities. A bi-level ( i.e. , both feature-level

and view-level) feature learning model is proposed to learn the

optimal weights for both features and views. 

4) The MSC method ( Thung et al., 2014 ) is a matrix completion

based method. In MSC, the feature and the target output matri-

ces are first combined into a large matrix that are partitioned

into smaller sub-matrices, and each sub-matrix consists of sam-

ples with complete features (corresponding to a certain com-

bination of modalities) and target outputs. A multi-task sparse

learning method is applied to select informative features and

samples, resulting in a shrunk version of the original matrix.

The missing features and unknown target outputs of the shrunk

matrix is then completed simultaneously, by using an EM impu-

tation method ( Schneider, 2001 ) or a fixed-point continuation

method ( Ma et al., 2011 ). 

.2. Experimental settings 

In the experiments, we perform four classification tasks, in-

luding AD vs. NC, pMCI vs. NC, MCI vs. NC, and pMCI vs. sMCI

lassification. A 10-fold cross-validation strategy is used for per-

ormance evaluation. Specifically, all subjects are partitioned into
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Fig. 5. Comparison between the proposed VAHL method and four baseline methods in four classification tasks. 
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10 subsets with roughly equal size. Each time one subset is desig-

nated as the testing data and the rest subsets as the training data.

This process is repeated 10 times to avoid any bias introduced by

random partitioning of the data, and finally the mean classification

results are reported. 

We adopt seven metrics for performance evaluation, including

the classification accuracy (ACC), sensitivity (SEN), specificity (SPE),

balanced accuracy (BAC), positive predictive value (PPV), negative

predictive value (NPV) and the area under the receiver operating

characteristic curve (AUC) ( Fletcher et al., 2012 ). Denote TP, TN,

FP and FN as true positive, true negative, false positive and false

negative, respectively. These evaluation metrics are defined as:

ACC = (TP+TN)/(TP+TN+FP+FN), SEN = TP/(TP+FN), SPE = TN/(TN+FP),

BAC = (SEN+SPE)/2, PPV = TP/(TP+FP), and NPV = TN/(TN+FN). 

To optimize the parameters for different methods, we fur-

ther perform an inner 10-fold cross-validation using the training

data. That is, each training subset is further divided into 10

subsets for cross-validation parameter selection ( Xiang et al.,

2014 ). The parameters in Eq. (9) ( i.e., μ and λ) are chosen from

{ 10 −3 , 10 −2 , · · · , 10 4 } , while the iteration number in the proposed

alternating optimization algorithm for Eq. (9) is empirically set

to 20. Multiple parameter values for β in Eq. (4) are set to

[10 −3 , 10 −2 , 10 −1 , 10 0 ] for constructing multiple sets of hyperedges

for each hypergraph ( w.r.t. each view) in VAHL. The parameter k

for KNN is chosen from {3, 5, 7, 9, 11, 15, 20}, the rank parameter

is chosen from {5, 10, 15, 20, 25, 30} for SVD, and the parameter

λ for iMSF is chosen from { 10 −5 , 10 −4 , · · · , 10 1 } . 
3.3. Comparison with baseline methods 

We first compare VAHL with imputation methods, includ-

ing Zero, KNN ( Hastie et al., 1999; Troyanskaya et al., 2001 ),

EM ( Schneider, 2001 ) and SVD ( Golub and Reinsch, 1970 ). In Fig. 5 ,

we report mean results as well as standard deviations achieved by

different methods in four classification tasks, i.e. , AD vs. NC, pMCI

vs. NC, MCI vs. NC, and pMCI vs. sMCI classification. From Fig. 5 , we

can observe that VAHL consistently outperforms those four base-

line methods in terms of seven evaluation criteria. 
.4. Comparison with state-of-the-art methods 

We further compare VAHL with several state-of-the-art meth-

ds, including Ensemble-1 and Ensemble-2 ( Ingalhalikar et al.,

012 ), iMSF-1 and iMSF-2 ( Yuan et al., 2012 ), iSFS ( Xiang et al.,

014 ), and MSC ( Thung et al., 2014 ). It is worth noting that iSFS

rst selects informative features from the original feature space,

nd then utilizes Random Forest classifier for classification. MSC

tilizes matrix completion technique to simultaneously impute

hose missing values and unknown target outputs. The results for

our classification tasks are reported in Table 2 and Table 3 , where

he best results are marked in boldface. In these tables, results of

SFS ( Xiang et al., 2014 ) and MSC ( Thung et al., 2014 ) are directly

aken from their respective papers. From these two tables, we can

bserve that, in AD vs. NC, pMCI vs. NC, MCI vs. NC and pMCI vs.

MCI classification, our VAHL method generally outperforms the

ther methods in terms of ACC, SEN, SPE and AUC. For instance,

n AD vs. NC classification, VAHL achieves a 4.6% improvement in

erms of ACC compared with other methods. It is worth noting

hat both iSFS and VAHL learn the optimal weights for different

iews from data. Table 2 shows that, compared with iSFS, VAHL

chieves much better results in AD vs. NC classification, and com-

arable results in pMCI vs. NC classification. The improvements

iven by VAHL can be attributed to the capability in modeling

oherence among different views. 

We further use the McNemars test ( Dietterich, 1998 ) to assess

hether the difference in performance between our proposed

ethod and each competing method is significant, with the corre-

ponding p -values reported in Table 4 . These results show that our

roposed method performs significantly better than the compared

ethods, as demonstrated by very small p -values ( < 0.001). 

.5. Computational costs 

Fig. 6 lists the computational costs of different methods in AD

s. NC classification. As shown in Fig. 6 , the computational cost of

AHL is less than that of iMSF-2, and is comparable to SVD and

MSF-1. Compared with Zero, KNN, and EM methods, VAHL needs
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Table 2 

Comparison with the state-of-the-art methods in AD vs. NC and pMCI vs. NC classification. 

Method AD vs. NC pMCI vs. NC 

ACC SEN SPE AUC ACC SEN SPE AUC 

(%) (%) (%) (%) (%) (%) (%) (%) 

Ensemble-1 83 .03 78 .54 86 .72 89 .82 73 .92 71 .61 75 .58 78 .88 

Ensemble-2 81 .07 76 .37 84 .94 87 .39 71 .14 68 .08 73 .33 74 .98 

iMSF-1 86 .41 76 .91 94 .24 85 .57 82 .53 69 .32 92 .11 80 .71 

iMSF-2 86 .97 75 .78 93 .90 86 .34 83 .29 71 .37 92 .11 81 .74 

iSFS 88 .48 88 .95 88 .16 88 .56 89 .86 99 .15 84 .00 91 .57 

MSC 88 .50 83 .70 92 .70 94 .40 – – – –

VAHL 93 .10 90 .00 95 .65 94 .83 89 .95 89 .35 93 .48 92 .00 

Table 3 

Comparison with the state-of-the-art methods in MCI vs. NC and pMCI vs. sMCI classification. 

Method MCI vs. NC pMCI vs. sMCI 

ACC SEN SPE AUC ACC SEN SPE AUC 

(%) (%) (%) (%) (%) (%) (%) (%) 

Ensemble-1 62 .58 65 .42 57 .73 64 .40 68 .10 55 .44 77 .77 64 .60 

Ensemble-2 61 .61 64 .16 57 .28 62 .07 65 .56 51 .15 75 .41 61 .78 

iMSF-1 70 .64 81 .62 54 .42 63 .02 65 .82 56 .90 72 .38 68 .20 

iMSF-2 71 .61 82 .83 54 .73 63 .78 64 .55 56 .85 70 .22 66 .00 

MSC 71 .50 75 .30 64 .90 77 .30 – – – –

VAHL 80 .00 86 .19 68 .78 80 .49 79 .00 60 .80 92 .53 79 .66 

Table 4 

The p -values in the McNemars test between the performances of the proposed 

method and each competing method in four classification tasks 

Method AD vs. NC pMCI vs. NC MCI vs. NC pMCI vs. sMCI 

Zero 0 .0016 0 .0021 0 .0019 0 .0030 

KNN 0 .0014 0 .0026 0 .0013 0 .0033 

EM 0 .0028 0 .0024 0 .0017 0 .0031 

SVD 0 .0027 0 .0020 0 .0024 0 .0035 

Ensemble-1 0 .0038 0 .0039 0 .0011 0 .0028 

Ensemble-2 0 .0032 0 .0035 0 .0013 0 .0022 

iMSF-1 0 .0040 0 .0042 0 .0022 0 .0023 

iMSF-2 0 .0039 0 .0043 0 .0020 0 .0019 
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Fig. 6. Run time comparison between the proposed VAHL method and competing 

methods in AD vs. NC classification. 
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ore computational time, due to the time spent on the construc-

ion of multiple hypergraphs. Overall, the computational cost of

ur method is reasonable and acceptable in practical applications. 

. Discussion 

We first investigate the optimal weights for different views

earned from our proposed VAHC model in Section 4.1 , and then

valuate the influence of two regularization parameters in Eq.

9) in Section 4.2 . In Section 4.3 , we study the influence of differ-

nt similarity measurement for hyperedge construction, including

he proposed sparse representation and conventional Euclidean

istance based measurements. We also study the influence of the

roposed view-centralized regularizer on the learning performance
n Section 4.4 . In Section 4.5 , we further show the results using

omplete data in the ADNI-1 database. 

.1. Learned weights for different views 

Now we show the optimal weights for different views learned

rom the proposed VAHC model defined in Eq. (9) , with results

iven in Fig. 7 . From Fig. 7 , we can observe that the weights for

he view of “PET+MRI+CSF” are much larger than those of the

ther five views in four classification tasks. This indicates that the

iew that contains the combination of MRI, PET, and CSF data can

rovide more discriminative information, compared with the other

iews. Among three views that contain only one single modality

ata, Fig. 7 indicates that the weights for the view of “CSF” are

enerally larger than those for the views of “MRI” and “PET”. This

mplies that CSF could be comparatively more effective biomarkers

n distinguishing AD/MCI patients from the whole population,

ompared with MRI and PET data. 

.2. Influence of regularization parameters 

In the proposed classification model in Eq. (9) , there are two

arameters ( i.e., μ and λ) for our proposed view-aligned regular-

zer and the hyperedge weight regularizer, respectively. We have

valuated the influences of those two regularization parameters on

he performance of our method, with results shown in Fig. 8 . The
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Fig. 8. Influence of the parameters ( i.e.. μ and λ) on the proposed method. 
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Fig. 9. Comparison between VAHL and VAHL _ Eu. Here, VAHL and VAHL _ Eu denote 

the proposed methods that adopt sparse representation coefficients and Euclidean 

distance as similarity measurements for constructing hyperedges, respectively. 
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values of μ and λ are varied within { 10 −3 , 10 −2 , · · · , 10 4 } . From

Fig. 8 , we can observe we can observe that, with different values

of μ and λ, the classification accuracies fluctuate in a large range.

For instance, as shown in Fig. 8 (left), VAHL generally achieves

better results in terms of ACC when 1 ≤ μ ≤ 10. Also, Fig. 8 (right)

indicates that the best results are usually obtained by VAHL using

0.1 ≤ λ ≤ 1 in four classification tasks. These results imply that the

proposed view-aligned regularizer and the hypergraph Laplacian

regularizer play important roles in the VAHC model. 

4.3. Sparse representation coefficients vs. Euclidean distance 

We further compare VAHL (using a sparse representation based

hypergraph construction approach) with the conventional method

(denoted as VAHL _ Eu) that uses the Euclidean distance as similar-

ity measurement for constructing a hypergraph in each view space.

For fair comparison, in VAHL _ Eu, multiple neighbors are used for

constructing hyperedges via the star expansion algorithm ( Zien

et al., 1999 ), where each centroid vertex is connected with its

s -nearest neighbors. In the experiments, we adopt the neighbor

size s = [3 , 5 , 7 , 9 , 11 , 15] for VAHL _ Eu. Fig. 9 reports the classifica-

tion accuracies achieved by VAHL and VAHL _ Eu. From this figure,

we can observe that VAHL consistently outperforms VAHL _ Eu in

four classification tasks. This demonstrates that, for hypergraph

construction, the use of sparse representation brings performance

improvement compared with that of the Euclidean distance. This

can partly contribute to the global structure information conveyed

by sparse representation coefficients ( Wright et al., 2009 ). 

4.4. Influence of the view-aligned regularizer 

We also study the influence of the proposed view-aligned regu-

larizer on the classification performance. We denote ”VAHL _ noVA”

as the VAHL model without the view-aligned regularizer ( i.e. ,

μ = 0 in Eq. (9) ), and perform experiments to compare VAHL and

VAHL _ noVA (with results shown in Fig. 10 ). It can be seen from

Fig. 10 that VAHL outperforms VAHL _ noVA in terms of accuracy

in four classification tasks, implying that modeling the coherence
mong views via the proposed view-aligned regularizer can boost

he classification performance of hypergraph based model. 

.5. Complete data vs. incomplete data 

We further investigate whether methods using incomplete

ata can boost the learning performance, compared with those

sing only complete data (with PET, MRI, and CSF features). In the

aseline ADNI-1 database, there are a total of 202 subjects that

ave complete data, including 51 AD, 42 pMCI, 57 sMCI, and 52

C subjects. We compare the proposed VAHL method with both

VM and multi-kernel SVM (MHL _ SVM) ( Zhang et al., 2011 ) using

omplete data, with corresponding results shown in Fig. 11 . Here,

he concatenation of MRI, PET, and CSF features is used in SVM,

hile each of three data modalities is treated as a specific kernel

n MHL _ SVM. It is worth noting that our VAHL model has only

ne view ( i.e. , “PET+MRI+CSF”) in the case of using complete data.

rom Figs. 11 and 5 , we can observe that the overall performance

f methods using complete data is worse than that of the method

sing incomplete data, suggesting that utilizing more data can

romote the AD/MCI diagnosis performance. Also, it can be seen

rom Fig. 11 that VAHL generally outperforms the conventional

VM and MHL _ SVM, demonstrating that our method provides a

etter way to utilize multi-modality data for AD/MCI diagnosis. 

. Conclusions 

In this paper, we propose a view-aligned hypergraph learning

VAHL) method using incomplete multi-modality data for AD/MCI

iagnosis. Specifically, we first partition the original data into

everal views according to the availability of data modalities,

nd construct one hypergraph in each view using a sparse rep-

esentation based hypergraph construction approach. We then

evelop a view-aligned hypergraph classification model to explic-

tly capture the underlying coherence among views, as well as

utomatically learn the optimal weights of different views from

ata. A multi-view label fusion method is employed to assemble

he estimated class probability scores to arrive at a final classi-

cation decision. Results on the baseline ADNI-1 database (with

RI, PET, and CSF modalities) demonstrate the efficacy of our

ethod in AD/MCI diagnosis. In this study, we employ all original

eatures for hypergraph construction, while there may exist noisy

r redundant information in original features. It is interesting to

elect those most informative features for subsequent hypergraph

onstruction, which will be part of our future work. Also, we

nly perform experiments on the baseline ADNI-1 database with

hree data modalities. As a future work, we will evaluate the

roposed method on more datasets, such as the ADNI-2 database

nd the dataset in the Computer-Aided Diagnosis of Dementia

CADDementia) challenge ( Bron et al., 2015 ). 
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Fig. 10. Comparison between VAHL and VAHL _ noVA. Here, VAHL _ noVA denotes the proposed VAHL model without the view-aligned regularizer. 
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Fig. 11. Classification results achieved by different methods using complete data, where MHL _ SVM denotes multi-kernel SVM. 
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