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Multiple Kernel Learning in the Primal for
Multi-modal Alzheimer’s Disease Classification
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Abstract—To  achieve effective and efficient detection of be sensitive to Mild Cognitive Impairment (MCI) - an early
Alzheimer's disease (AD), many machine learning methods @ stage of AD,e.g, brain atrophy detected by imaging [12],
been introduced into this realm. However, the general casefo protein changes in blood or spinal fluld[11], genetic vavias

limited training samples, as well as different feature repesenta- . - . . .
tions typically makes this problem challenging. In this wok, we (mutations)([25tc With accurate early diagnosis of MCI, the

propose a novel multiple kemel learning framework to combne Progression of converting to AD can be possibly slowed down
multi-modal features for AD classification, which is scalatke and and well controlled.

easy to implement. Contrary to the usual way of solving the  Recent studie$ [4]. [33] indicate that image analysis ofrbra
problem in the dual space, we look at the optimization fromaew  g.ans js more reliable and sensitive in detecting the peesein
perspective. By conducting Fourier transform on the Gaussin v AD than traditional i luation. In this cext
kernel, we explicitly compute the mapping function, which eads early z?m radi |qna cognitive evalua 'Onj nthis ’

to a more straightforward solution of the problem in the primal Many machine learning methods have been introduced to per-
space. Furthermore, we impose the mixed.»; norm constraint form neuroimaging analysis for automatic AD classification
on the kernel weights, known as the group lasso regularizath, to  Early attempts mainly focused on applying off-the-shetfi$o
enforce group sparsity among different feature modalities This in statistical machine learning to differentiate AD, withet

actually acts as a role of feature modality selection, whilat the t | bei t t hi SVM
same time exploiting complementary information among diferent MOSt popular one being support vector machines ( S)-

kernels. Therefore it is able to extract the most discrimindive Kloppel et al [19] trained a linear SVM to classify AD
features for classification. Experiments on the ADNI data se patients and cognitively normal individuals using magneti
demonstrate the effectiveness of the proposed method. resonance imaging (MRI) scans. More SVM based approaches

Index Terms—Alzheimer's disease (AD), multiple kernel learn- can be found in[[10],[[31]. Besides SVMs, other learning
ing (MKL), multi-modal features, random Fourier feature, group methods are also introduced. Tripoligt al [33] applied
Lasso. Random Forests on functional MRI (fMRI) obtained from

41 subjects to differentiate AD and health control. [n [4],
I. INTRODUCTION Casanoveet al. implemented a penalized logistic regression

As the most common type of dementia among the eldef8,classify SMRI images of cognitive normal subjects and AD
Alzheimer's disease (AD) is now affecting millions of peepl patients from ADNI datasets. Note that they all used single
all over the world. It is characterized by progressive braf§ature modality for classification.
disorder that damages brain cells, leading to memory lossHowever, as indicated by [11], different biomarkers may
confusion and eventually to death. The huge price of carifgy complementary information. Therefore combining tiul
AD patients has made it one of the most costly diseasespdal features, instead of depending on one is a promising
the developed countries, and also caused great physical digction for improving classification accuracy. Intuély, one
well as psychological burdens on the caregivers. From tfidn combine multiple results from different classifiershwit
perspective, early diagnosis of AD can be of great signifiean Voting technique, or ensemble method. B&al. [8] proposed
Identified in an early stage, the disease can be made welr un@énulti-classifier fusion model through weighted votingngs
control. maximum uncertainty linear discriminant analysis (MLDA) a

Previous diagnosis mainly depends on evaluation of thase classifiers, to distinguish AD patients and healthyrobn
patient history, clinical observation, or cognitive asseent. 1hey used features from both sMRI and fMRI images. Polikar
Recent AD related research showed promising prospect&hal [26] proposed an ensemble method based on multi-
finding reliable biomarkers for automatic early detecti@@][ layer perceptron to combine Electroencephalography (EEG)
which is a promising yet challenging task. Many projectg0sitron emission tomography (PET) and MRI data. A linear
such as ADNI [[1] have been launched, to collect data @fogram boosting (LP Boosting) algorithm was proposed by
candidate biomarkers to promote the development of ABnrichs [14] to jointly consider features from MRI and

research. Several biomarkers have been studied and provetiorodeoxyglucose PET (FDG-PET).
Moreover, concatenating several features into one single
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by a single feature. One more disadvantage of this methfit briefly reviews some preliminaries of SVMs and MKL,
is that it treats multiple features equally, being incapatl and then gives our formulation and the detailed algorithm.
effectively exploring the complementary information pided Experimental results are reported and discussed in Séiffjon

by different feature modalities. and conclusions are made in Section IV.
In addition to the above stated fusion approaches, another
method is multiple kernel learning (MKL)_[20],_[82], which Il. METHODS

works by simultaneously learning the predictor parameters

and the kernel combination weights. The multiple kernets ca Before getting into the details of the method, we first define
come from different sources of feature spaces, thus pmidisome notation. A column vector is denoted by a bold lower-
a general framework for data fusion. It has found successfi@se letterX) and a matrix is represented by a bold upper-
applications in genomic data fusion [20], protein functiofase letter X). £ = 0 indicates all elements af being non-
prediction [21]etc As for AD data fusion and classification,n€gative.

Hinrichs et al. [15] proposed an MKL method, which casts
each feature as one or more kernels and then solves for SUpB\mMKL Revisit
vectors and kernel weights using simplex constraints, know "

as SimpleMKL [29]. Cuingne¢t al. [7] evaluated ten methods Support Vector Machines (SVMs) [6] is a large margin
for predicting AD, including linear SVM, Gaussian SVM,method, based on the theory of structural risk minimiza-
logistic regression, MKLetc, also based on SimpleMKL. tion. In case of binary classification, SVMs finds a linear
More recently, Zhanget al [38] proposed an SVM baseddecision boundary that best separates the two classes. When
model to combine kernels from MRI, PET and CSF feature.comes to non-linear separable cases, a mapping function
Their formulation does not involve kernel coefficients liag. @ : RY — R (d’ > d) is adopted to embed the original data
Instead, they use grid search to find kernel weights, which cto a higher dimensional space, finally yields linear decis

be very time consuming or even intractable when the numieundaryf(z) = w” ®(x) + b. Given a labeled training set

of kernels or features gets large. It is worth noting thaytle  { (24, v:)}7—,, wherex; € R? denotes the training sample and
solve the MKL problem in the Lagrange dual space. Therefaye € {—1, +1} the corresponding class label, canonical SVM
the time complexity scales at lean23) [9] with respect Solves the following problem:

to the sizen of the training set.

1 2
Here, we propose to directly solve the primal MKL problem. {flvlil 3 [w]+C Z &
This is achieved by explicitly computing the mapping fuonti i _ (1)
through Fourier extension of the kernel function, inspibsd st yi((w, ®(x;)) +0) > 1 - &, Vi,
the random features proposed by Rahimil [28]. By sampling £E-0,

components from the Fourier space of the Gaussian kerng Ci de-off b - d
using Monte Carlo methods, we can obtain an approximatgere C is a trade-off parameter between training error an

) o " . .
embedding, and hence reduce the complexity of the kerfBfrgin maX|m|zat|o_n§ = [&1,.--. & _the sl_ack variables, .
learning problem taD(n). Furthermore, instead of the mosfNd(:, -) represents inner product. While finding the appropri-
commonly used., L, norm, we impose the mixekly; norm ate mapping functio® is always difficult, one usually resorts

constraint on the kernel weights, known as the group Las§8,50|vmg it in the Lagrange dual space by the kernel trick:

to enhance group sparsity among different feature modsliti k(z,2:) = (B(x), D(z:)). @)
In summary, we highlight the main contributions of this work o ’ ’
as follows: As ®(-) only appears in the inner product form, by such

1) We use random Fourier features (RFF) to approximaﬁ‘eSimple substitution, one can instead solve the following
Gaussian kernels, leading to the straightforward primkftgrange dual problem (3) without explicitly knowing the
solution of the MKL problem. Therefore the learninggMPedding:

complexity is reduced to linear scale. 1
2) We enforce anLy; norm constraint on the kernel max Zo‘i ~3 Zaiaiyiyﬁk(m%mi)
weights, to promote group sparsity among different g b
feature modalities, while simultaneously exploiting the s.t. 0 <a; <C,Vi; Zaiyi =0. 3)
complementary information among different kernels. It i

can be used to select the most discriminative features,_t@reai are Lagrange multipliers, and the kernel, which is
improve classification accuracy. _ typically predefined. Several frequently involved kernate
3) The proposed RFFLy; norm MKL framework is used linear, polynomial, Gaussian, sigmoid kerrest
to perform feature_ sele_ct_lon on ROI_ feature of AD To this end, the algorithm performance relies largely on
datasets, therefore identifying brain regions that af?‘m‘%ﬁe kernel one chooses. While finding the appropriate kernel
re!ated to AD' The prop_osed method yields a S'mplﬁ‘lay not be straightforward, many researchers turned tgyusin
primal solution and prqwdes a general framework fol'hultiple kernels instead of a single one and tried to find
heterogeneous feature integration. the optimum combination of them. The different kernels may
The rest of the paper is organized as follows. Secfibn ¢brrespond to different similarity representations ofedtént



feature sources. A simple option is to consider the convex TABLE |

combination of basic kernels: GAUSSIAN KERNEL AND ITS CORRESPONDING-OURIER TRANSFORM
kernel name k(®) R)
k(x;, x;) = Zﬂmkm(mz‘, x;) (4) , —Z o252
™ Gaussian e 202 V2moe T 2

with >~ 3, = 1,8 = 0, where 3, denotes the weight of ) )
the mih kernel function. 1) Random Fourier Features (RFF)n order to approxi-

The process of learning the kernel weights while simyinate @, we conduct Fourier transform on kernel functions.
taneously minimizing the structural risk is known as thEl€ré, we adopt the most commonly used Gaussian kernel,
multiple kernel learning (MKL). As one of the state-of-thet whose Fourier transform [28] is illustrated in Tadle. I. Asnc

MKL algorithms, SimpleMKL [29] efficiently solves a simplex be seen from the table, the Fourier transform of a Gaussian

constrained MKL formulation. The primal MKL problem with function also conforms to a Gaussian distribution. Morepve
L, norm constraint is formulated as: the bandwidtho in time space corresponds t};) in Fourier

frequency space. Therefore, we can adopt random Fourier

min 1 Z inmH% + CZ& basiscos(w’x) andsin(w’x) to represent the random feature
wBE 24~ f . mapping ¥, where w € R?, are random variables drawn
st yi(w! Z‘Pz(wi) Lh)>1-&,Vi from f_requency space of Gaussian kernel using Monte Carlo
; (5) sampling.
Zﬂ 1 The algorithm of computing random feature mépcan be
— me described as Algorithni] 1:

B=0,£=0, Algorithm 1 Compute random Fourier feature

While the I,; norm is known as a sparsity inducing norm, Input: Matrix of training samplesX, Fourier sizeD, Gaussian
one can easily replace the simplex constraint, 3,,, = 1 with kernel bandwidthr
the ball constrain§”,, 32, < 1, which usually yields the non- 1. Compute gaussian kernel matii&.
sparse solution. Again, the mappifigis conducted implicitly, ~ 2- Compute the Fourier transformof the kernel.

. . . . 3. DrawD samplesvi, w2, ...,wp € R® from p by Monte Carlo
which draws its corresponding Lagrange dual problem into

i sampling.
spotlight: 4.9(X) = %[cos(w{X)7 ...ycos(wpX), sin(wi X), .. .,
) 1 sin(wp X)]
Inén In(SJX ; a; — B ; Q0G5 YiY 5 ; Bmkm (i, mj) Output: ¥(X)
st Y oy =0, 2) Proposed MKL Framework:Given p different fea-
i ®)  ture groups, the samples are represented Xas =
0<a; <C,Vi, {z",..., ™)} . For each feature group, we ugernel
Z Bm=1,8+0 functions to produce embeddings. After explicitly computing
— R the random fourier feature$ according to each kernel, we

propose to solve the following primal objective function:

1 Gl .
2 32 2 g ol €26

=1 m m i=1

wherew;, «; are Lagrange multipliers ankl,, (z;, ;) is the
mth kernel function.

—
[

B. Proposed MKL for Combining multi-modal features :q

p
MKL provides a principled way of incorporating multi- s.t. yi(z Wi, Ui (@) +0) > 1 - ¢,V 8
modal features by using multiple kernels. However, due to =1 m=1 (8)
the unknown mappin@, they usually must be solved in the P
Lagrange dual space, which results in a time complexity of at lz; 1Bell2 < 1,

leastO(n?3) [9] with respect to the data size We thus seek

to look at the MKL problem from a new perspective. Instead of p=0,£=0,

solving it in the dual space, we propose to directly appr@ten where! indexes different feature groups andindexes mul-

the mapping function through Fourier transform of the késne tiple kernels used for a single feature group. This is a conve

leading to the primal solution of the problem. This is or&glly  optimization problem, which can be efficiently solved using

inspired from the random features proposed by Rahimi [28&]ff-the-shelf solvers like CVX[[3], MOSEK[Z4].

Specifically, we explicitly seek &(-) satisfying It is worth noting that we use the well known group

N _ _ Lasso {21 norm) constraint of the kernel weights instead

W(@i, ) ~ (V@) (=) ) of the commonly used.; norm. As according to Yan et

Therefore we can simply transform the primal data witland  al. [36], the L; norm is less effective when the combined

solve the primal MKL problem in the new feature space. In thieernels carry complementary information. While as stated

section, we will first introduce the random Fourier featureabove, different biomarkers of AD may carry complementary

and then give our formulation and the detailed algorithm. knowledge, which serves as a reason why the norm



underperforms other formulations, as indicated by expemnits [18] is employed, which also reduces the dimensionalityhef t
later. Instead, the mixeflo; norm formulation enforces group shape descriptors. The brain regional grey matter volumees a
sparsity among different feature modalities, which adyualmeasured within 100 Regions of Interest (ROI) via an ROI
performs as a role of feature modality selection, while a&t thatlas [30] on tissue segmented brain images that have been
same time exploiting complementary information among thspatially normalized into a template spacel[16] after isiign
different kernels. Note that this group Lasso constraird haorrection, skull stripping, and cerebellum removal.

been widely used and proved to be of great succ¢ess [2], [35]We summarize the features in Talld. Il. The CSF and ROI
To demonstrate the effectiveness of the proposed4REF features are normalized to 0 means with unit variations.

norm framework, we also implemented the RHE, RFF+ Lo

norm formulation, simply by substituting thg, ||3:[l» < 1 TABLE Il
constraint to||3||; < 1, ||8||2 < 1, respectively. The decision FOUR FEATURE REPRESENTATIONS OF THAD DATASET.
function thus can be written as Name Dimension Data Source Representation
K CSF 3 CSF Cerebrospinal fluid
. T 0) HIPL 63 MRI Left hippocampus shape
flz) = &gn(Z Wy, Vi (') 4+ b) 9 HIPR 63 MRI Right hippocampus shape
=1 m=1 ROI 100 MRI ROI volume

The overall framework is described in Algorithm. 2:
B. AD classification

Algorithm 2 Proposed MKL Algorithm

Input: Training samples{(mﬁ”,yi) N |, trade-off parameter”,

Gaussian kernel¥;,,, Fourier sizeD
1. for each kernel matri¥K;,,, do

To give an overall evaluation of the proposed method, in
addition to the prediction accuracy (ACC), we use four indi-
cators, namely, sensitivity (SEN), specificity (SPE), Matt's

Compute¥,,,, by Alg. [ correlation coefficient (MCC)[22] and the area under the ROC
2. Solve the primal MKL formulation[{8) curve (AUC).
Output: Wi, b We run the proposed algorithms 20 times on the AD dataset
with randomly partitioned training and testing sets (2/3 fo
I1l. RESULTS AND DISCUSSION training and 1/3 for testing). The best accuracy results\iS

g_y using different kernels on each single feature represient
work, we conduct experiments on the AD dataset obtainggd on the copcatenated features (denoted as SVM (Al)) are
used as baselines. Tablel 11l reports the results of meth

from ADNI [L]. The Fourier transform parametdp in our . S .
method is set to 2000, and a 5 fold cross validation Y\s"th best scores highlighted in bold. As can be observed,

- - . mong all the four types of features, ROI feature appears to
conducted on the training set to optimize C (rying value%g the most discriminative one, with an accuracy of 82.63%.

0.01, 0.1, 1, 10, 100). We use Gaussian kernels with t - i T
different kernel bandwidths{g—,2-2, ..., 26} multiplied by ombining features from multiple modalm_e; indeed ouI_per
v/d with d being the dimension of the feature) for each featmrgrmS the lt_)est smgle feature based classifier. E\_/en_ a simple
representation, which yields 40 kernels in total, concatenation can improve the performance. _As |nd|_cated by
the MCC values, the proposed RFE-; formulation achieves
) _ the best overall performance, being slightly better thaam th
A. Subjects and data preprocessing SimpleMKL. The L,; norm turns out to be more effective
The AD dataset is composed of 120 subjects, randonilyan theL,, Ly norm.
drawn from the Alzheimer Disease Neuroimaging Initiative For further validation of the proposed method, we design
(ADNI) database. It includes 70 healthy controls (HC) and 58h extra experiment to compare our framework with [38]. We
progressive MCI patients (PMCI) that developed probable Alnplemented their method by exactly following the desdoipt
after the baseline scanning. in their paper. To be more precise, a coarse grid searchghrou
Each subject is represented by a 229 dimensional feaess validation is adopted to find the optimal kernel wedght
ture, coming from two heterogeneous data sources: ceasmd then an SVM is trained (solve e.q.(3)) by the selected
brospinal fluid (CSF) biomarkers and magnetic resonankernel combination weights and linear kernels. The SVM is
imaging (MRI). We categorize the MRI feature into threémplemented by LIBSVM toolbox[[5] withC = 1, as did
groups, namely, left hemisphere hippocampus shape (HIPI),[38]. We use the same experimental settings as_in [38].
right hemisphere hippocampus shape (HIPR) and grey matBgecifically, the whole dataset is equally partitioned it
volumes within Regions of Interest (ROI), as they capturesibsets, and each time one subset is chosen as test set and
different aspects of information. We refer them (CSF, HIPlall the rest are for training. This process is repeated 1@gim
HIPR, ROI) as four feature representations. For more detailor different partitions to ensure unbiased evaluatiorr. the
the CSF biomarkers are provided by ADNI, including basémplementation of [38], a 10-fold cross validation is penfied
line CSF Ab (42), total tau (t-tau) and phosphorylated taan the training data in each round to determine the optimal
(p-tau (181)). The hippocampal shapes are extracted frdwrnel weights3 through a grid search ranging from 0 to 1 at
T1-weighted MRI and represented by spherical harmoniasstep size of 0.1. For our method and SimpleMKL, we also
(SPHARM) for each hemisphere. To mitigate the influend&x C' = 1 and use the same kernel settings as above. Table.
of misalignment, a rotation-invariant SPHARM representat [Vlshows the average performance.

To evaluate the performance of the proposed MKL fram



TABLE Il
COMPARISON OF PERFORMANCE USING SINGLE AND MULTI FEATURE REFESENTATION CLASSIFICATION METHODS ON THEAD DATASET OVER 20
INDIVIDUAL RUNS .

Method ACC(%) SEN(%) SPE(%) MCC(%) AUC

SVM (CSF)  78.38L 558 80.30L 8.13  75.05% 953 55.43L 11.56 0.826L 0.064
SVM (HIPL) 77.754+ 590 84.21+ 7.38 69.61+ 10.86 54.16+ 12.19  0.844+ 0.059
SVM (HIPR)  77.504 6.49 81.53+ 8.24 72.97+ 13.10 54.30+ 13.42  0.832+ 0.069
SVM (ROl)  82.63+ 510 94.02+ 542 6650+ 7.24  64.58+ 9.91  0.899+ 0.040
SVM (All) 83.62+6.10 9391+ 522 69.75+ 941 66.87+ 10.93 0.913+ 0.034
SimpleMKL ~ 85.884 4.00 90.53+ 6.73  79.47+ 7.24  70.87+ 8.13  0.934+ 0.039
RFFR+ L, 83.12+ 6.12 86.35+ 7.98 78.29+ 13.00 6532+ 13.10  0.905+0.034
RFFf Lo 85.12+ 4.62 87.97+6.92 80.83+ 1212 69.424+9.90  0.921+ 0.033
RFF+ Loy 87.12+ 3.37 91.794+ 5.08 80.73+ 7.35  73.30+ 7.37  0.952+ 0.038

According to Table[ 1V, our method outperfornis [38] and For each dimension of the ROI feature, we use three
SimpleMKL in terms of all the four criteria. The reasons cataussian kernels = {0.5,1,2} with C = 1. We randomly
be summarized as: 1) Our method uses more powerful Gasplit the dataset into 2/3 for training and 1/3 for testingl an
sian kernels while [38] uses linear kernels; 2) Our formialat report the average performance over 10 different trialee Th
can easily incorporate more kernels whilel[38] only uses oselected top 20 regions and their average kernel weights are
kernel for each feature representation; 3) By combining RFeEmmarized in Tabl€.]V. Note that the average kernel weights
with the Lo; norm, our method exploits the group sparsitare summed over all different bandwidth kernels.
as well as the complementary information among different To quantitatively evaluate the effect of the feature sedect
kernels. As for 2), if more kernels are to be added intd [38],we test the classification accuracy with respect to differen
much finer grid search would be required to ensure accuranymbers of the selected ROI regions. For a comparison,
which leads to more time expense or even intractable situatiwe also implement an SVM Recursive Feature Elimination
It is also worth noting that in_[38], they have used CSF, MRhethod described in_[13], referred as SVM-RFE, which is
as well as PET features for reporting their results. One magiepopular feature selection method. Then according to the
conclusion can be made that the norm always outperforms feature rankings, we use an increasing number of ROI festure
the L; norm, which may be explained by the fact that theo train a Gaussian SVM with bandwidth = v/d (d is
combined kernels carry complementary information. the number of ROI features) and = 1. The evaluation is

To better illustrate how the multiple kernel methods worlkaveraged over 20 different runs using 2/3 for training argl 1/
we choose one best performed run for each method and giwe testing. Fig[2 shows the results. As can be seen, using
the kernel weights comparison in Figl 1. As can be seeeatures selected by our method is similar but statisticall
in all the methods, kernels corresponding to the ROI featupetter than SVM-RFE. Moreover, the classification accucdcy
are assigned the highest weights. In other words, theytselgte proposed RFFL,; reaches its peak at the number of 16,
ROI as the most discriminative feature representationclwvhiand better than using all the ROI regions. We further cateula
is in accordance with the conclusion from single featureetiasthe pairwise correlations of the top 16 features selectezbiop
SVM classifier shown in Tabl&]Il. method and get the average correlation coefficients of @321

and 0.3661 for RFFLs; and SVM-RFE respectively. This

C. Identify brain regions closely related to AD explains the performance in Fif] 2, as the features selected

In order to identify which areas of the brain region ar8Y SVM-RFE are more correlated than those selected by

closely related to AD, we conduct a further experiment to TABLE V/
select the most discriminative ROI features. As mentioned 1ye seiecTeED TOP20 ROIREGIONS WITH THEIR CORRESPONDING
above, by imposind.o; norm constraint on the kernel weights, AVERAGE KERNEL WEIGHTS AND CLASSIFICATION ACCURACY

group sparsity are enforced, which actually acts as a roleRroi region Kernel weight  ACC (%)
of feature selection. Therefore we can treat each dimensionhippocampal formation right 0.1364 75.62
of the ROI (each represents a certain brain region) as anzg‘?;f;mp%?éf%?at'on left 8'133? gg'%
individual feature to perform the RRH.»; algorithm, lead- uncus left 0.1077 80.68
ing to sparsity among different brain regions. More specif- lateral ventricle right 0.1029 81.63
ically, we setp = 100 (group size equals 1) and use fourth ventricle right 0.0803 80.25
! 1) (2 ?p) N . . perirhinal cortex left 0.0782 81.35
Xgror = {z;/,x;”,...,z;”’}iL; as input to Algorithm. amygdala left 0.0761 82.38
2, and then rank the regions according to the correspondinglateral ventricle left 0.0517 83.75
kernel weiahts subthalamic nucleus right 0.0493 83.37
ghts. putamen right 0.0491 82.88
TABLE IV inferior frontal gyrus left 0.0457 84.63
AVERAGE PERFORMANCE OF DIFFERENT METHODS ON THAD DATASET. middle occipital gyrus right 0.0404 84.12
corpus callosum 0.0391 84.63
Method ACC SEN SPE MCC precuneus right 0.0379 85.75
[38] 86.39% 85.74% 86.93% 72.02% medial occipitotemporal gyrus right 0.0373 88.00
SimpleMKL  87.06% 87.89% 86.68% 74.57% nucleus accumbens left 0.0372 87.13
RFF-Ly 81.94% 83.83% 78.97% 63.31% perirhinal cortex right 0.0362 87.62
RFF+Lo 85.00% 85.49% 84.28% 69.41% supramarginal gyrus left 0.0355 87.87
RFF+ Loy 90.56% 93.266 87.4% 81.98% medial occipitotemporal gyrus left 0.0327 87.25
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08 M-—«« the most discriminative feature groups, while at the same ti
;\30_7;' ] exploiting the complementary information among different
EOGE | kernels within a group. Experimental results on the AD dsttas
Sl SYM-RFE demonstrate that the proposed REE+ norm algorithm out-
éo.s' P p 9 .
s performs other feature fusion methods. We further utilize t
204 feature selection of the proposed framework to extract thstm
£ 03 ] discriminative ROI features, hence identifying brain oet
g—?oz; that most related to AD. Conclusions are in accordance with
o1l studies in the literature.
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