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Multiple Kernel Learning in the Primal for
Multi-modal Alzheimer’s Disease Classification
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Abstract—To achieve effective and efficient detection of
Alzheimer’s disease (AD), many machine learning methods have
been introduced into this realm. However, the general case of
limited training samples, as well as different feature representa-
tions typically makes this problem challenging. In this work, we
propose a novel multiple kernel learning framework to combine
multi-modal features for AD classification, which is scalable and
easy to implement. Contrary to the usual way of solving the
problem in the dual space, we look at the optimization from a new
perspective. By conducting Fourier transform on the Gaussian
kernel, we explicitly compute the mapping function, which leads
to a more straightforward solution of the problem in the prim al
space. Furthermore, we impose the mixedL21 norm constraint
on the kernel weights, known as the group lasso regularization, to
enforce group sparsity among different feature modalities. This
actually acts as a role of feature modality selection, whileat the
same time exploiting complementary information among different
kernels. Therefore it is able to extract the most discriminative
features for classification. Experiments on the ADNI data set
demonstrate the effectiveness of the proposed method.

Index Terms—Alzheimer’s disease (AD), multiple kernel learn-
ing (MKL), multi-modal features, random Fourier feature, g roup
Lasso.

I. I NTRODUCTION

As the most common type of dementia among the elders,
Alzheimer’s disease (AD) is now affecting millions of people
all over the world. It is characterized by progressive brain
disorder that damages brain cells, leading to memory loss,
confusion and eventually to death. The huge price of caring
AD patients has made it one of the most costly diseases in
the developed countries, and also caused great physical, as
well as psychological burdens on the caregivers. From this
perspective, early diagnosis of AD can be of great significance.
Identified in an early stage, the disease can be made well under
control.

Previous diagnosis mainly depends on evaluation of the
patient history, clinical observation, or cognitive assessment.
Recent AD related research showed promising prospect in
finding reliable biomarkers for automatic early detection [37],
which is a promising yet challenging task. Many projects
such as ADNI [1] have been launched, to collect data of
candidate biomarkers to promote the development of AD
research. Several biomarkers have been studied and proved to
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be sensitive to Mild Cognitive Impairment (MCI) - an early
stage of AD,e.g., brain atrophy detected by imaging [12],
protein changes in blood or spinal fluid [11], genetic variations
(mutations) [25]etc. With accurate early diagnosis of MCI, the
progression of converting to AD can be possibly slowed down
and well controlled.

Recent studies [4], [33] indicate that image analysis of brain
scans is more reliable and sensitive in detecting the presence of
early AD than traditional cognitive evaluation. In this context,
many machine learning methods have been introduced to per-
form neuroimaging analysis for automatic AD classification.
Early attempts mainly focused on applying off-the-shelf tools
in statistical machine learning to differentiate AD, with the
most popular one being support vector machines (SVMs).

Klöppel et al. [19] trained a linear SVM to classify AD
patients and cognitively normal individuals using magnetic
resonance imaging (MRI) scans. More SVM based approaches
can be found in [10], [31]. Besides SVMs, other learning
methods are also introduced. Tripolitiet al. [33] applied
Random Forests on functional MRI (fMRI) obtained from
41 subjects to differentiate AD and health control. In [4],
Casanovaet al. implemented a penalized logistic regression
to classify sMRI images of cognitive normal subjects and AD
patients from ADNI datasets. Note that they all used single
feature modality for classification.

However, as indicated by [11], different biomarkers may
carry complementary information. Therefore combining multi-
modal features, instead of depending on one is a promising
direction for improving classification accuracy. Intuitively, one
can combine multiple results from different classifiers with
voting technique, or ensemble method. Daiet al. [8] proposed
a multi-classifier fusion model through weighted voting, using
maximum uncertainty linear discriminant analysis (MLDA) as
base classifiers, to distinguish AD patients and healthy control.
They used features from both sMRI and fMRI images. Polikar
et al. [26] proposed an ensemble method based on multi-
layer perceptron to combine Electroencephalography (EEG),
positron emission tomography (PET) and MRI data. A linear
program boosting (LP Boosting) algorithm was proposed by
Hinrichs [14] to jointly consider features from MRI and
fluorodeoxyglucose PET (FDG-PET).

Moreover, concatenating several features into one single
vector and then training a classifier can also be a practical
option. Walhovd et al. [34] performed logistic regression
analysis by concatenating MRI, PET and cerebrospinal fluid
(CSF) features. However, such concatenation requires proper
normalization of features extracted from different sources;
otherwise the prediction score would be easily dominated
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by a single feature. One more disadvantage of this method
is that it treats multiple features equally, being incapable of
effectively exploring the complementary information provided
by different feature modalities.

In addition to the above stated fusion approaches, another
method is multiple kernel learning (MKL) [20], [32], which
works by simultaneously learning the predictor parameters
and the kernel combination weights. The multiple kernels can
come from different sources of feature spaces, thus providing
a general framework for data fusion. It has found successful
applications in genomic data fusion [20], protein function
prediction [21]etc. As for AD data fusion and classification,
Hinrichs et al. [15] proposed an MKL method, which casts
each feature as one or more kernels and then solves for support
vectors and kernel weights using simplex constraints, known
as SimpleMKL [29]. Cuingnetet al. [7] evaluated ten methods
for predicting AD, including linear SVM, Gaussian SVM,
logistic regression, MKLetc., also based on SimpleMKL.
More recently, Zhanget al. [38] proposed an SVM based
model to combine kernels from MRI, PET and CSF features.
Their formulation does not involve kernel coefficients learning.
Instead, they use grid search to find kernel weights, which can
be very time consuming or even intractable when the number
of kernels or features gets large. It is worth noting that they all
solve the MKL problem in the Lagrange dual space. Therefore
the time complexity scales at leastO(n2.3) [9] with respect
to the sizen of the training set.

Here, we propose to directly solve the primal MKL problem.
This is achieved by explicitly computing the mapping function
through Fourier extension of the kernel function, inspiredby
the random features proposed by Rahimi [28]. By sampling
components from the Fourier space of the Gaussian kernel
using Monte Carlo methods, we can obtain an approximate
embedding, and hence reduce the complexity of the kernel
learning problem toO(n). Furthermore, instead of the most
commonly usedL1, L2 norm, we impose the mixedL21 norm
constraint on the kernel weights, known as the group Lasso,
to enhance group sparsity among different feature modalities.
In summary, we highlight the main contributions of this work
as follows:

1) We use random Fourier features (RFF) to approximate
Gaussian kernels, leading to the straightforward primal
solution of the MKL problem. Therefore the learning
complexity is reduced to linear scale.

2) We enforce anL21 norm constraint on the kernel
weights, to promote group sparsity among different
feature modalities, while simultaneously exploiting the
complementary information among different kernels. It
can be used to select the most discriminative features to
improve classification accuracy.

3) The proposed RFF+L21 norm MKL framework is used
to perform feature selection on ROI feature of AD
datasets, therefore identifying brain regions that are most
related to AD. The proposed method yields a simple
primal solution and provides a general framework for
heterogeneous feature integration.

The rest of the paper is organized as follows. Section II

first briefly reviews some preliminaries of SVMs and MKL,
and then gives our formulation and the detailed algorithm.
Experimental results are reported and discussed in SectionIII,
and conclusions are made in Section IV.

II. M ETHODS

Before getting into the details of the method, we first define
some notation. A column vector is denoted by a bold lower-
case letter (x) and a matrix is represented by a bold upper-
case letter (X). ξ � 0 indicates all elements ofξ being non-
negative.

A. MKL Revisit

Support Vector Machines (SVMs) [6] is a large margin
method, based on the theory of structural risk minimiza-
tion. In case of binary classification, SVMs finds a linear
decision boundary that best separates the two classes. When
it comes to non-linear separable cases, a mapping function
Φ : Rd → R

d′

(d′ > d) is adopted to embed the original data
into a higher dimensional space, finally yields linear decision
boundaryf(x) = wTΦ(x) + b. Given a labeled training set
{(xi, yi)}ni=1, wherexi ∈ R

d denotes the training sample and
yi ∈ {−1,+1} the corresponding class label, canonical SVM
solves the following problem:

min
w,b

1

2
‖w‖2 + C

∑

i

ξi

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ∀i,
ξ � 0,

(1)

where C is a trade-off parameter between training error and
margin maximization,ξ = [ξ1, . . . , ξn]

T the slack variables,
and〈·, ·〉 represents inner product. While finding the appropri-
ate mapping functionΦ is always difficult, one usually resorts
to solving it in the Lagrange dual space by the kernel trick:

k(x,xi) = 〈Φ(x),Φ(xi)〉. (2)

As Φ(·) only appears in the inner product form, by such
a simple substitution, one can instead solve the following
Lagrange dual problem (3) without explicitly knowing the
embeddingΦ:

max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyjk(xi,xj)

s.t. 0 ≤ αi ≤ C, ∀i;
∑

i

αiyi = 0. (3)

Hereαi are Lagrange multipliers, andk the kernel, which is
typically predefined. Several frequently involved kernelsare
linear, polynomial, Gaussian, sigmoid kerneletc.

To this end, the algorithm performance relies largely on
the kernel one chooses. While finding the appropriate kernel
may not be straightforward, many researchers turned to using
multiple kernels instead of a single one and tried to find
the optimum combination of them. The different kernels may
correspond to different similarity representations or different
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feature sources. A simple option is to consider the convex
combination of basic kernels:

k(xi,xj) =
∑

m

βmkm(xi,xj) (4)

with
∑

m βm = 1,β � 0, whereβm denotes the weight of
themth kernel function.

The process of learning the kernel weights while simul-
taneously minimizing the structural risk is known as the
multiple kernel learning (MKL). As one of the state-of-the-art
MKL algorithms, SimpleMKL [29] efficiently solves a simplex
constrained MKL formulation. The primal MKL problem with
L1 norm constraint is formulated as:

min
w,β,ξ

1

2

∑

m

1

βm

‖wm‖22 + C
∑

i

ξi

s.t. yi(w
T
∑

l

Φl(xi) + b) ≥ 1− ξi, ∀i
∑

m

βm = 1,

β � 0, ξ � 0,

(5)

While theL1 norm is known as a sparsity inducing norm,
one can easily replace the simplex constraint

∑
m βm = 1 with

the ball constraint
∑

m β2
m ≤ 1, which usually yields the non-

sparse solution. Again, the mappingΦ is conducted implicitly,
which draws its corresponding Lagrange dual problem into
spotlight:

min
β

max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyj
∑

m

βmkm(xi,xj)

s.t.
∑

i

αiyi = 0,

0 ≤ αi ≤ C, ∀i,
∑

m

βm = 1,β � 0,

(6)

whereαi, αj are Lagrange multipliers andkm(xi,xj) is the
mth kernel function.

B. Proposed MKL for Combining multi-modal features

MKL provides a principled way of incorporating multi-
modal features by using multiple kernels. However, due to
the unknown mappingΦ, they usually must be solved in the
Lagrange dual space, which results in a time complexity of at
leastO(n2.3) [9] with respect to the data sizen. We thus seek
to look at the MKL problem from a new perspective. Instead of
solving it in the dual space, we propose to directly approximate
the mapping function through Fourier transform of the kernels,
leading to the primal solution of the problem. This is originally
inspired from the random features proposed by Rahimi [28].
Specifically, we explicitly seek aΨ(·) satisfying

k(xi,xj) ≈ 〈Ψ(xi),Ψ(xj)〉 (7)

Therefore we can simply transform the primal data withΨ and
solve the primal MKL problem in the new feature space. In this
section, we will first introduce the random Fourier features,
and then give our formulation and the detailed algorithm.

TABLE I
GAUSSIAN KERNEL AND ITS CORRESPONDINGFOURIER TRANSFORM

kernel name k(t) p(ω)

Gaussian e
− t

2

2σ2

√
2πσe

−ω
2
σ
2

2

1) Random Fourier Features (RFF):In order to approxi-
mateΦ, we conduct Fourier transform on kernel functions.
Here, we adopt the most commonly used Gaussian kernel,
whose Fourier transform [28] is illustrated in Table. I. As can
be seen from the table, the Fourier transform of a Gaussian
function also conforms to a Gaussian distribution. Moreover,
the bandwidthσ in time space corresponds to1

σ
in Fourier

frequency space. Therefore, we can adopt random Fourier
basiscos(ω′x) and sin(ω′x) to represent the random feature
mappingΨ, where ω ∈ R

d, are random variables drawn
from frequency space of Gaussian kernel using Monte Carlo
sampling.

The algorithm of computing random feature mapΨ can be
described as Algorithm. 1:

Algorithm 1 Compute random Fourier feature
Input: Matrix of training samplesX, Fourier sizeD, Gaussian
kernel bandwidthσ
1. Compute gaussian kernel matrixK.
2. Compute the Fourier transformp of the kernel.
3. DrawD samplesω1,ω2, . . . ,ωD ∈ R

d from p by Monte Carlo
sampling.
4. Ψ(X) = 1√

D
[cos(ω′

1X), . . . , cos(ω′
DX), sin(ω′

1X), . . . ,

sin(ω′
DX)]

Output: Ψ(X)

2) Proposed MKL Framework:Given p different fea-
ture groups, the samples are represented asX =

{(x(1)
i , . . . ,x

(p)
i )}Ni=1. For each feature group, we useq kernel

functions to produceq embeddings. After explicitly computing
the random fourier featuresΨ according to each kernel, we
propose to solve the following primal objective function:

min
w,β,ξ

1

2

p∑

l=1

q∑

m=1

1

βlm

‖wlm‖2 + C

N∑

i=1

ξi

s.t. yi(

p∑

l=1

q∑

m=1

wT
lmΨlm(x

(l)
i ) + b) ≥ 1− ξi, ∀i

p∑

l=1

‖βl‖2 ≤ 1,

β � 0, ξ � 0,

(8)

wherel indexes different feature groups andm indexes mul-
tiple kernels used for a single feature group. This is a convex
optimization problem, which can be efficiently solved using
off-the-shelf solvers like CVX [3], MOSEK [24].

It is worth noting that we use the well known group
Lasso (L21 norm) constraint of the kernel weights instead
of the commonly usedL1 norm. As according to Yan et
al. [36], the L1 norm is less effective when the combined
kernels carry complementary information. While as stated
above, different biomarkers of AD may carry complementary
knowledge, which serves as a reason why theL1 norm
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underperforms other formulations, as indicated by experiments
later. Instead, the mixedL21 norm formulation enforces group
sparsity among different feature modalities, which actually
performs as a role of feature modality selection, while at the
same time exploiting complementary information among the
different kernels. Note that this group Lasso constraint has
been widely used and proved to be of great success [2], [35].
To demonstrate the effectiveness of the proposed RFF+L21

norm framework, we also implemented the RFF+L1, RFF+L2

norm formulation, simply by substituting the
∑

l ‖βl‖2 ≤ 1
constraint to‖β‖1 ≤ 1, ‖β‖2 ≤ 1, respectively. The decision
function thus can be written as

f(x) = sign(

p∑

l=1

k∑

m=1

wT
lmΨlm(x(l)) + b) (9)

The overall framework is described in Algorithm. 2:

Algorithm 2 Proposed MKL Algorithm

Input: Training samples{(x(l)
i
, yi)}

N

i=1, trade-off parameterC,
Gaussian kernelsKlm, Fourier sizeD
1. for each kernel matrixKlm do

ComputeΨlm by Alg. 1
2. Solve the primal MKL formulation (8)
Output: wlm, b

III. R ESULTS AND DISCUSSION

To evaluate the performance of the proposed MKL frame-
work, we conduct experiments on the AD dataset obtained
from ADNI [1]. The Fourier transform parameterD in our
method is set to 2000, and a 5 fold cross validation is
conducted on the training set to optimize C (trying values
0.01, 0.1, 1, 10, 100). We use Gaussian kernels with ten
different kernel bandwidths ({2−3, 2−2, ..., 26} multiplied by√
d with d being the dimension of the feature) for each feature

representation, which yields 40 kernels in total.

A. Subjects and data preprocessing

The AD dataset is composed of 120 subjects, randomly
drawn from the Alzheimer Disease Neuroimaging Initiative
(ADNI) database. It includes 70 healthy controls (HC) and 50
progressive MCI patients (PMCI) that developed probable AD
after the baseline scanning.

Each subject is represented by a 229 dimensional fea-
ture, coming from two heterogeneous data sources: cere-
brospinal fluid (CSF) biomarkers and magnetic resonance
imaging (MRI). We categorize the MRI feature into three
groups, namely, left hemisphere hippocampus shape (HIPL),
right hemisphere hippocampus shape (HIPR) and grey matter
volumes within Regions of Interest (ROI), as they captures
different aspects of information. We refer them (CSF, HIPL,
HIPR, ROI) as four feature representations. For more details,
the CSF biomarkers are provided by ADNI, including base-
line CSF Ab (42), total tau (t-tau) and phosphorylated tau
(p-tau (181)). The hippocampal shapes are extracted from
T1-weighted MRI and represented by spherical harmonics
(SPHARM) for each hemisphere. To mitigate the influence
of misalignment, a rotation-invariant SPHARM representation

[18] is employed, which also reduces the dimensionality of the
shape descriptors. The brain regional grey matter volumes are
measured within 100 Regions of Interest (ROI) via an ROI
atlas [30] on tissue segmented brain images that have been
spatially normalized into a template space [16] after intensity
correction, skull stripping, and cerebellum removal.

We summarize the features in Table. II. The CSF and ROI
features are normalized to 0 means with unit variations.

TABLE II
FOUR FEATURE REPRESENTATIONS OF THEAD DATASET.

Name Dimension Data Source Representation
CSF 3 CSF Cerebrospinal fluid
HIPL 63 MRI Left hippocampus shape
HIPR 63 MRI Right hippocampus shape
ROI 100 MRI ROI volume

B. AD classification

To give an overall evaluation of the proposed method, in
addition to the prediction accuracy (ACC), we use four indi-
cators, namely, sensitivity (SEN), specificity (SPE), Matthews
correlation coefficient (MCC)[22] and the area under the ROC
curve (AUC).

We run the proposed algorithms 20 times on the AD dataset
with randomly partitioned training and testing sets (2/3 for
training and 1/3 for testing). The best accuracy results of SVM
by using different kernels on each single feature representation
and on the concatenated features (denoted as SVM (All)) are
used as baselines. Table. III reports the results of mean±std,
with best scores highlighted in bold. As can be observed,
among all the four types of features, ROI feature appears to
be the most discriminative one, with an accuracy of 82.63%.
Combining features from multiple modalities indeed outper-
forms the best single feature based classifier. Even a simple
concatenation can improve the performance. As indicated by
the MCC values, the proposed RFF+L21 formulation achieves
the best overall performance, being slightly better than the
SimpleMKL. The L21 norm turns out to be more effective
than theL1, L2 norm.

For further validation of the proposed method, we design
an extra experiment to compare our framework with [38]. We
implemented their method by exactly following the description
in their paper. To be more precise, a coarse grid search through
cross validation is adopted to find the optimal kernel weights
and then an SVM is trained (solve e.q.(3)) by the selected
kernel combination weights and linear kernels. The SVM is
implemented by LIBSVM toolbox [5] withC = 1, as did
in [38]. We use the same experimental settings as in [38].
Specifically, the whole dataset is equally partitioned into10
subsets, and each time one subset is chosen as test set and
all the rest are for training. This process is repeated 10 times
for different partitions to ensure unbiased evaluation. For the
implementation of [38], a 10-fold cross validation is performed
on the training data in each round to determine the optimal
kernel weightsβ through a grid search ranging from 0 to 1 at
a step size of 0.1. For our method and SimpleMKL, we also
fix C = 1 and use the same kernel settings as above. Table.
IV shows the average performance.
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TABLE III
COMPARISON OF PERFORMANCE USING SINGLE AND MULTI FEATURE REPRESENTATION CLASSIFICATION METHODS ON THEAD DATASET OVER 20

INDIVIDUAL RUNS .

Method ACC(%) SEN(%) SPE(%) MCC(%) AUC
SVM (CSF) 78.38± 5.58 80.30± 8.13 75.05± 9.53 55.43± 11.56 0.826± 0.064
SVM (HIPL) 77.75± 5.90 84.21± 7.38 69.61± 10.86 54.16± 12.19 0.844± 0.059
SVM (HIPR) 77.50± 6.49 81.53± 8.24 72.97± 13.10 54.30± 13.42 0.832± 0.069
SVM (ROI) 82.63± 5.10 94.02± 5.42 66.50± 7.24 64.58± 9.91 0.899± 0.040
SVM (All) 83.62 ± 6.10 93.91± 5.22 69.75± 9.41 66.87± 10.93 0.913± 0.034
SimpleMKL 85.88± 4.00 90.53± 6.73 79.47± 7.24 70.87± 8.13 0.934± 0.039
RFF+L1 83.12± 6.12 86.35± 7.98 78.29± 13.00 65.32± 13.10 0.905±0.034
RFF+L2 85.12± 4.62 87.97± 6.92 80.83± 12.12 69.42± 9.90 0.921± 0.033
RFF+L21 87.12± 3.37 91.79± 5.08 80.73± 7.35 73.30± 7.37 0.952± 0.038

According to Table. IV, our method outperforms [38] and
SimpleMKL in terms of all the four criteria. The reasons can
be summarized as: 1) Our method uses more powerful Gaus-
sian kernels while [38] uses linear kernels; 2) Our formulation
can easily incorporate more kernels while [38] only uses one
kernel for each feature representation; 3) By combining RFF
with the L21 norm, our method exploits the group sparsity
as well as the complementary information among different
kernels. As for 2), if more kernels are to be added into [38], a
much finer grid search would be required to ensure accuracy,
which leads to more time expense or even intractable situation.
It is also worth noting that in [38], they have used CSF, MRI
as well as PET features for reporting their results. One more
conclusion can be made that theL2 norm always outperforms
the L1 norm, which may be explained by the fact that the
combined kernels carry complementary information.

To better illustrate how the multiple kernel methods work,
we choose one best performed run for each method and give
the kernel weights comparison in Fig. 1. As can be seen,
in all the methods, kernels corresponding to the ROI feature
are assigned the highest weights. In other words, they select
ROI as the most discriminative feature representation, which
is in accordance with the conclusion from single feature based
SVM classifier shown in Table. III.

C. Identify brain regions closely related to AD

In order to identify which areas of the brain region are
closely related to AD, we conduct a further experiment to
select the most discriminative ROI features. As mentioned
above, by imposingL21 norm constraint on the kernel weights,
group sparsity are enforced, which actually acts as a role
of feature selection. Therefore we can treat each dimension
of the ROI (each represents a certain brain region) as an
individual feature to perform the RFF+L21 algorithm, lead-
ing to sparsity among different brain regions. More specif-
ically, we set p = 100 (group size equals 1) and use
XROI = {x(1)

i ,x
(2)
i , . . . ,x

(p)
i }Ni=1 as input to Algorithm.

2, and then rank the regions according to the corresponding
kernel weights.

TABLE IV
AVERAGE PERFORMANCE OF DIFFERENT METHODS ON THEAD DATASET.

Method ACC SEN SPE MCC
[38] 86.39% 85.74% 86.93% 72.02%
SimpleMKL 87.06% 87.89% 86.68% 74.57%
RFF+L1 81.94% 83.83% 78.97% 63.31%
RFF+L2 85.00% 85.49% 84.28% 69.41%
RFF+L21 90.56% 93.26% 87.49% 81.98%

For each dimension of the ROI feature, we use three
Gaussian kernelsσ = {0.5, 1, 2} with C = 1. We randomly
split the dataset into 2/3 for training and 1/3 for testing and
report the average performance over 10 different trials. The
selected top 20 regions and their average kernel weights are
summarized in Table. V. Note that the average kernel weights
are summed over all different bandwidth kernels.

To quantitatively evaluate the effect of the feature selection,
we test the classification accuracy with respect to different
numbers of the selected ROI regions. For a comparison,
we also implement an SVM Recursive Feature Elimination
method described in [13], referred as SVM-RFE, which is
a popular feature selection method. Then according to the
feature rankings, we use an increasing number of ROI features
to train a Gaussian SVM with bandwidthσ =

√
d (d is

the number of ROI features) andC = 1. The evaluation is
averaged over 20 different runs using 2/3 for training and 1/3
for testing. Fig. 2 shows the results. As can be seen, using
features selected by our method is similar but statistically
better than SVM-RFE. Moreover, the classification accuracyof
the proposed RFF+L21 reaches its peak at the number of 16,
and better than using all the ROI regions. We further calculate
the pairwise correlations of the top 16 features selected byeach
method and get the average correlation coefficients of 0.3212
and 0.3661 for RFF+L21 and SVM-RFE respectively. This
explains the performance in Fig. 2, as the features selected
by SVM-RFE are more correlated than those selected by

TABLE V
THE SELECTED TOP20 ROIREGIONS WITH THEIR CORRESPONDING

AVERAGE KERNEL WEIGHTS AND CLASSIFICATION ACCURACY.

ROI region Kernel weight ACC (%)
hippocampal formation right 0.1364 75.62
hippocampal formation left 0.1188 80.57
occipital pole left 0.1077 82.75
uncus left 0.1077 80.68
lateral ventricle right 0.1029 81.63
fourth ventricle right 0.0803 80.25
perirhinal cortex left 0.0782 81.35
amygdala left 0.0761 82.38
lateral ventricle left 0.0517 83.75
subthalamic nucleus right 0.0493 83.37
putamen right 0.0491 82.88
inferior frontal gyrus left 0.0457 84.63
middle occipital gyrus right 0.0404 84.12
corpus callosum 0.0391 84.63
precuneus right 0.0379 85.75
medial occipitotemporal gyrus right 0.0373 88.00
nucleus accumbens left 0.0372 87.13
perirhinal cortex right 0.0362 87.62
supramarginal gyrus left 0.0355 87.87
medial occipitotemporal gyrus left 0.0327 87.25
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Fig. 1. Base kernel weights comparison of different MKL algorithms on the AD dataset. (a)[38]; (b)SimpleMKL; (c)Proposed RFF+L21 norm formulation.
In (a), according to [38], only one linear kernel is used for each feature representation. In (b) and (c), from left to right, every ten kernels correspond to CSF,
HIPL, HIPR, ROI respectively.
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Fig. 2. Classification accuracy with respect to different number of selected
ROI regions.

RFF+L21. Inspired from this, we use the top 16 ranked ROI
regions to reproduce the first experiment and get an accuracy
of 90.75%±3.25, even better than the one (87.12%±3.37) we
reported in Table. III. This further demonstrates the efficacy
of the feature selection using the proposed method.

From Fig. 2, we can further identify the most discriminative
features among the top 20. We list the classification accuracy
of the top 20 regions in Table. V. By selecting the one which
significantly increases the accuracy according to the curvein
Fig. 2, we highlight the potential regions closely related to AD
in bold. Among them, ‘hippocampal formation right’, ‘hip-
pocampal formation left’, ‘amygdala left’, ‘precuneus right’,
‘lateral ventricle right’, ‘medial occipitotemporal gyrus’ are
commonly known to be related to AD by many studies in the
literature [23], [17], [27]. As examples, hippocampus, a brain
area closely related to the memory, is especially vulnerable
and always affected in the occurrence of AD [23]; in [27],
agymdala atrophy was claimed comparable to hippocampal
atrophy in AD patients; precuneus atrophy was observed in
early-onset of AD in [17]. Fig. 3 visualizes four examples
of the selected regions (in red) against the atlas MRI with
cerebellum removed.

IV. CONCLUSIONS

We have proposed a general but simple multiple kernel
learning framework for the AD classification problem by
combining multi-modal features. Instead of solving the prob-
lem in the dual space as one commonly does, we propose
to explicitly compute the mapping function through Fourier
transform and random sampling, leading to the primal solution
of the problem. The proposed method is easy to implement and
scales as the linear time of the sample size. Also, we impose
group Lasso constraint on the kernel weights, to enhance group
sparsity among different feature representations, which selects

the most discriminative feature groups, while at the same time
exploiting the complementary information among different
kernels within a group. Experimental results on the AD dataset
demonstrate that the proposed RFF+L21 norm algorithm out-
performs other feature fusion methods. We further utilize the
feature selection of the proposed framework to extract the most
discriminative ROI features, hence identifying brain regions
that most related to AD. Conclusions are in accordance with
studies in the literature.
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