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Abstract

In conventional multi-modality based classification framework, feature selection is typically

performed separately for each individual modality, ignoring potential strong inter-modality

relationship of the same subject. To extract this inter-modality relationship, L2,1 norm-based

multi-task learning approach can be used to jointly select common features from different

modalities. Unfortunately, this approach overlooks different yet complementary information

conveyed by different modalities. To address this issue, we propose a novel multi-task feature

selection method to effectively preserve the complementary information between different

modalities, improving brain disease classification accuracy. Specifically, a new constraint is

introduced to preserve the inter-modality relationship by treating the feature selection procedure of

each modality as a task. This constraint preserves distance between feature vectors from different

modalities after projection to low dimensional feature space. We evaluated our method on the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and obtained significant

improvement on Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) classification

compared to state-of-the-art methods.
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1 Introduction

Alzheimer’s Disease (AD) that is highly related to the central nervous system is a

genetically complex and irreversible neurodegenerative disorder. AD is the most common

form of dementia diagnosed in people over 65 years of age, and is characterized by a decline

in cognitive and memory functions [1]. Efforts have been made for the past few decades to

understand the pathophysiological underpinnings of AD and its intermediate stage, i.e., Mild

Cognitive Impairment (MCI) [2]. Previous study suggest that individuals with MCI tend to

progress to AD at a rate of approximately 10% to 15% per year, compared to Normal

Controls (NC) who tend to develop dementia at a rate of 1% to 2% per year [3]. Due to high
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progression rate, it is crucial to accurately identify AD in its early stage for possible

treatment and intervention.

There is ample evidence showing individuals with AD are significantly affected in their

brain functions and structures. For example, Greicius et al. found that disrupted connectivity

between posterior cingulate and hippocampus accounted for the posterior cingulate

hypometabolism [4]. In addition, Guo et al. reported that patients with AD exhibited

significant decrease of gray matter volume in the hippocampus, parahippocampal gyrus,

insula and superior temporal gyrus, suggesting the potential of using these regions as an

imaging marker for AD [5]. However, these findings are solely based on univariate or

group-level statistical methods, and thus are of limited utility for individual-level disease

diagnosis. In fact, disease diagnosis at individual level is important for clinical usage that

can be accomplished through pattern classification technique. This technique is sensitive to

the fine-grained spatial discriminative patterns and is effective in providing predictive value

to diseases. To date, pattern classification method has been widely used on neuroimaging

data to identify AD and MCI from NC [6, 7].

Recent studies demonstrate that complementary information from different neuroimaging

modalities can be used jointly to improve AD/MCI diagnosis [8, 9]. However, feature

selection procedure in these studies is typically performed separately for each individual

modality, ignoring strong within-subject inter-modality relationship. Recently, L2,1 norm-

based multi-task learning has been proposed to simultaneously select features from different

tasks based on intrinsic relationship between different tasks [10]. Learning multiple related

tasks simultaneously has shown to often perform better than learning each task separately

[11]. This learning approach, although enables the joint selection of common features from

different modalities, unfortunately may overlook different yet complementary information

conveyed by different modalities.

To address this issue, a novel multi-task learning based feature selection method is proposed

to better preserve the complementary information conveyed by different modalities. In the

proposed feature selection method, a new constraint is imposed to preserve the inter-

modality relationship after feature projection while enforcing the sparseness of the selected

features. A multi-kernel Support Vector Machine (SVM) is then adopted to combine these

selected features. The proposed method has been evaluated on ADNI dataset and obtained

promising results.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing

Data used in this study are obtained from the ADNI dataset (http://www.loni.ucla.edu/

ADNI). In total, we use 202 subjects from ADNI dataset: 51 patients with AD, 99 patients

with MCI, and 52 NC. Image preprocessing is carried out separately for magnetic resonance

imaging (MRI) and Fluorodeoxyglucose (FDG) Positron-Emission Tomography (PET) data.

The preprocessing steps of MRI data include skull-stripping [12], dura removal, intensity

inhomogeneity correction, cerebellum removal, spatial segmentation and registration. We

then parcellate the preprocessed images into 93 regions according to the template in [13].
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Only gray matter volume of these 93 regions-of-interest is used in the study. For the

preprocessing of PET images, we align the PET image of each subject to its corresponding

MRI image using a rigid transformation and the average intensity of each regions-of-interest

is calculated as a feature. Therefore, we have two 93-dimensional feature vectors for each

subject.

2.2 Multi-Task Feature Selection

Feature selection is treated as a multi-task regression problem that incorporates the

relationship between different modalities. Let  be a n × d matrix

that represents d features of n training samples for modality j, j = 1, …, m, where m is the

total number of modalities. Let  be a n dimensional corresponding

target vector (with classification labels as values of +1 or −1 in this study) for modality j. In

our application, we have two modalities (MRI and PET) and the same target vectors, i.e., m

= 2 and y1 = y2. According to [14], the linear model used for prediction is defined as

follows:

(1)

where wj ∈ Rd×1 and ŷj are the regression coefficient vector and the predicted label vector of

the j-th modality, respectively. One of the popular approaches to estimate W = [w1, …, wj,

… , wm] is by minimizing the following objective function:

(2)

where λ1 > 0 is a regularization parameter, and ||W||1 is the L1 norm of W defined as

. The first term of Eq. (2) measures the empirical error on the training data

while the second term controls the sparseness. This regression model is known as Least

Absolute Shrinkage and Selection Operator (LASSO) [15].

The limitation of this regression model is that all tasks are assumed to be independent.

Although we can use group sparsity (i.e., L2,1 norm) to guide the selection of features for

same regions from different modalities, the complementary information conveyed by

different modalities might be eliminated after this group constraint. To address this problem,

one effective way is to preserve the relative distance between feature vectors of different

modalities of the same subject (also called as inter-modality relationship) after feature

projection via the following constraint:

(3)

where  and  denote the feature vectors of the j-th and k-th modalities in the i-th subject,

respectively.  measures the relative distance between the feature vectors  and 
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before feature projection, and  measures the respective distance after

feature projection (or the distance between the corresponding predictions). Basically, for two

initial vectors with small distance, they are constrained to have small distance after

projection. While for the two initial vectors with very large distance, we will put less

constraint on their mapping since the inverse of their initial distance is almost zero. This

constraint preserves the inter-modality relationship after projection of feature vectors from

different modalities onto the low-dimensional feature space.

By incorporating this constraint into Eq. (2), we can obtain a new objective function:

(4)

where λ2 > 0 is the regularization parameter that controls the degree of preserving the inter-

modality relationship. Of note, features from different modalities are normalized to have

zero mean and unit standard deviation to enable direct combination of different types of

features. In this study, we use Accelerated Proximal Gradient method [16] to optimize the

objective function in Eq. (4). After feature selection, only those features with non-zero

regression coefficients are used for final classification.

2.3 Multi-kernel SVM Classification

A multi-kernel SVM method is applied to integrate features from different modalities (i.e.,

PET and MRI) for classification via a weighted linear combination [8]. In brief, for each

modality, we calculate the corresponding kernel on the basis of the features selected by the

aforementioned feature selection method. Subsequently, multi-kernel SVM is used to

construct a mixed kernel matrix by linearly combining kernels from different modalities. It

is worth noting that the optimal parameters used for combining different kernels are

determined by using grid search approach. SVM classifier with linear kernel is implemented

via the LIBSVM toolbox [17].

A nested ten-fold cross-validation strategy is used to evaluate classification performance.

Specifically, the inner cross-validation loop is used to determine the parameters, i.e., the

regularization parameters λ1, λ2 and the above-mentioned kernel combination parameter

from training set. The outer loop is then used to evaluate the generalizability of the SVM

model by using an independent testing set. SVM model that perform the best during the

inner cross-validation stage is considered as the optimal model and is used to classify unseen

test samples. This process is repeated 10 times to avoid the bias introduced by randomly

partitioning dataset in the cross-validation. Accuracy, sensitivity, and specificity are

calculated to quantify the performance of all compared methods.

An overview of the proposed AD/MCI classification pipeline is illustrated in Fig. 1.

3 Experimental Results

The performance of our method is compared with the 1) Single-Task feature selection (i.e.,

LASSO) integrated with the Multi-modality Multi-kernel (STMM) SVM, 2) Single-Task
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feature selection integrated with the Single-modality Single-kernel (STSS) SVM, and 3)

Joint feature Selection (i.e., L2,1 norm) integrated with Multimodality Multi-kernel (JSMM)

SVM. It is worth noting that we use the same training and testing data across the

experiments for all the methods for fair comparison. For each comparison, the performance

of each comparison method is evaluated through the classification of AD vs. NC and MCI

vs. NC, respectively.

As shown in Table 1 and Fig. 2, the proposed method outperforms all comparison methods

in AD/MCI classification. Specifically, for distinguishing AD from NC, our method

achieves accuracy of 94.37%, with a sensitivity of 94.71%, a specificity of 94.04%, and the

Area Under the receiver operating characteristic Curve (AUC) of 0.9724. On the other hand,

for distinguishing MCI from NC, our method achieves a classification accuracy of 78.8%,

with a sensitivity of 84.85%, a specificity of 67.06%, and the AUC of 0.8284. We also

perform paired t-tests on the accuracies of all comparison methods with our method and

obtain p values smaller than 0.05 for all comparisons, indicating significant improvement by

our method on AD/MCI classification. These results demonstrate that preserving inter-

modality relationship improves the classification performance. The numbers of support

vectors used in our method are 29~40 and 57~69 for AD and MCI classifications,

respectively. The numbers of selected features used for final classification are 8~14 and

41~64 for AD and MCI classifications, respectively. The whole classification pipeline

requires 10 and 30 minutes for AD and MCI classifications, respectively.

In order to validate the effectiveness of the proposed feature selection method, we compare

the AD/MCI classification performance with and without the proposed feature selection

step. The same multi-kernel SVM framework is applied for both the comparison methods.

As seen in Table 2, the proposed feature selection method outperforms the approach without

feature selection. For further comparison, we summarize the results of recent multi-modal

classification studies. Hinrichs et al. used 48 AD patients and 66 NC for classification, and

obtained an accuracy of 87.6% by using two modalities (PET + MRI), and an accuracy of

92.4% by using five types of features (MRI + PET + cerebrospinal fluid (CSF) +

Apolipoprotein E (APOE) + cognitive scores) [8]. Gray et al. used 37 AD patients, 75 MCI

patients and 35 NC, reporting an accuracy of 89% for AD classification and an accuracy of

74.6% for MCI classification by using four types of features (CSF + MRI + PET + Genetic

features) [9]. As seen in Table 3, our method performs better than the two aforementioned

studies, even though they used more modalities. Although direct comparison with these

studies is not appropriate due to possible use of different subjects (although from the same

ADNI dataset), the obtained results validate the promising performance of our method for

AD classification to some extent.

4 Conclusion

We propose a novel multi-task learning based feature selection method to effectively

integrate the complementary information from multiple modalities neuroimaging data to

improve AD/MCI identification. Specifically, we treat the selection of features from each

modality as a task and preserve the inter-modality relationship after projection of feature

vectors from different modalities onto the low-dimensional feature space. Experimental

Liu et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



results on ADNI dataset demonstrate that our proposed multitask feature selection

technique, integrated with the multi-kernel SVM, outperforms all comparison methods. In

the future, we will extend our work to include more modalities (such as CSF or genetic

features) to improve AD/MCI classification performance.
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Fig. 1.
Schematic diagram illustrating the proposed AD/MCI classification framework
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Fig. 2.
Receiver Operating Characteristic (ROC) curves of different methods (with feature

selection) for AD (left) and MCI (right) classifications
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Table 2

Classification performance with and without feature selection step

Method Subjects Modalities AD vs. NC (%) MCI vs. NC (%)

Without 51AD+99MCI+52NC PET+MRI 89.90 70.89

With 51AD+99MCI+52NC PET+MRI 94.37 78.80
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Table 3

Comparison of classification accuracies reported in the literature

Method Subjects Modalities AD vs. NC (%) MCI vs. NC (%)

Hinrichs et al. [8] 48AD+66NC PET+MRI 87.60 -

Hinrichs et al. [8] 48AD+66NC MRI+PET+CSF+APOE+cognitive scores 92.40 -

Gray et al. [9] 37AD+75MCI+35NC PET+MRI+CSF+Genetic 89.00 74.60

Proposed 51AD+99MCI+52NC PET+MRI 94.37 78.80
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