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Abstract

The accurate diagnosis of Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) is

important in early dementia detection and treatment planning. Most of current studies formulate

the AD diagnosis scenario as a classification problem and solve it using various machine learners

trained with multi-modal biomarkers. However, the diagnosis accuracy is usually constrained by

the performance of the machine learners as well as the methods of integrating the multi-modal

data. In this study, we propose a novel diagnosis algorithm, the Multifold Bayesian Kernelization

(MBK), which models the diagnosis process as a synthesis analysis of multi-modal biomarkers.

MBK constructs a kernel for each biomarker that maximizes the local neighborhood affinity, and

further evaluates the contribution of each biomarker based on a Bayesian framework. MBK adopts

a novel diagnosis scheme that could infer the subject’s diagnosis by synthesizing the output

diagnosis probabilities of individual biomarkers. The proposed algorithm, validated using multi-

modal neuroimaging data from the ADNI baseline cohort with 85 AD, 169 MCI and 77 cognitive

normal subjects, achieves significant improvements on all diagnosis groups compared to the state-

of-the-art methods.

1 Introduction

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder among aging

people and its dementia symptoms gradually deteriorate over years. Mild Cognitive

Impairment (MCI) represents the transitional state between AD and cognitive normal (CN)

with a high conversion rate to AD. The accurate diagnosis of AD, especially the early

diagnosis of MCI converters who develop into AD in a short term, is important in

identifying subjects at a high risk of dementia, thereby planning appropriate treatments

accordingly.

Neuroimaging, such as Magnetic Resonance Imaging (MRI) and Positron Emission

Tomography (PET), is a fundamental component in the diagnosis and prognosis of AD and

MCI. More recently, the large neuroimaging data repositories, e.g., the Alzheimers Disease
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Neuroimaging Initiatives (ADNI) [1], boost the research in AD and MCI. Many non-

imaging biomarkers, such as cerebrospinal fluid (CSF) measures, genetic biomarkers and

clinical assessments, are also provided for the researchers to design algorithms to achieve

more accurate diagnosis. Most of the current studies formulate the diagnosis scenario as a

classification problem and solve it using various machine learners. These studies are

conducted in a similar fashion. The primary features are usually extracted from the MRI data

[2–9] and/or PET data [4–8], and sometimes combined with other biomarkers, e.g., CSF

measures [4, 6, 8], genetic biomarkers [4, 6, 7] and clinical assessments [6]. The features are

then fed into the classifiers, which are trained for future classifications. A challenge of this

workflow is how to combine the multi-modal data. Many studies select a subset of features

[5, 7, 9], based on the assumption that certain features are not important and therefore could

be discarded. However, it is difficult to compare the multi-modal features on the same basis,

and the grouping effects of features are usually ignored in feature selection. Several studies

attempt to embed the multi-modal features into a unified feature space by linear analysis,

e.g., Partial Least Squares (PLS) [4], or non-linear analysis, e.g., ISOMAP [2], yet the

existing embedding algorithms could not sufficiently smooth the embeddings of multi-

modal features. Another limitation is that the classification accuracy is always constrained

by the performance of the classifiers, e.g., support vector machine (SVM) enforces the

global consistency and continuity of the boundaries and ignores the local information. The

domain knowledge can be used to manipulate the classifiers to further boost the performance

[5]. However, the performance gain of such classifier-oriented manipulation might not be

transferable when combined with other classifiers. In addition, the domain knowledge might

lead to biased classification.

In this study, we propose a novel diagnosis algorithm, the Multifold Bayesian Kernelization

(MBK), to model the diagnosis process as a synthesis analysis of multi-modal biomarkers.

MBK constructs non-linear kernels to obtain the diagnosis probabilities based on individual

biomarkers. It derives the weights of the biomarker-specific kernels with the minimum cost

of diagnostic errors and kernelization encoding errors using a Bayesian framework, and

infers the subjects diagnosis by synthesizing the output diagnosis probabilities of individual

biomarkers. One prominent advantage of MBK is its multi-class nature, unlike other multi-

modal methods based on two-class classifications [6–8]. We evaluate the MBK algorithm

with 4 diagnosis groups from the ADNI baseline cohort, and the preliminary results show

that the MBK algorithm outperforms the state-of-the-art classification-based methods in the

diagnosis of AD and MCI.

2 Multifold Bayesian Kernelization

2.1 Algorithm Overview

The goal of the Multifold Bayesian Kernelization (MBK) algorithm is to construct a set of

kernels for multi-modal biomarkers and find an optimal way to integrate the diagnosis

probabilities of individual biomarkers to enhance the AD and MCI diagnosis. It takes three

steps to achieve this goal.

Assume we have a feature set X of N subjects with a collection of B biomarkers, M, the

labels of the subjects represented as Y = {y1, …, yN}, the feature for the ith biomarker, M(i),
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represented as , where V(i) is the dimension of the features.

In the K-step, we aim to learn a kernel, K(i), for each biomarker to encode X(i) in such a way

to maximize the local neighborhood affinity. Then in the B-step, the contribution of each

kernel is evaluated based on the Bayesian framework by iteratively minimizing two types of

errors: the overall diagnostic errors and the sum of individual kernelization encoding errors.

Finally, in the M-step, MBK infers the diagnosis of an unknown subject, , by synthesizing

the diagnosis probabilities of individual biomarkers available to . The proposed diagnosis

scheme could take arbitrary biomarkers for analysis. Figure 1 illustrates the workflow of this

algorithm.

2.2 K-Step: Single-Fold Kernelization

Single-fold kernelization aims to preserve the local information and provides a way to infer

the subjects label from its affinity to its labeled neighbors. Such local information is

essential in AD diagnosis because the features usually have high noise to signal ratio and the

data points may not be linearly separable in the feature space.

We construct the kernels for the biomarkers individually by codebook quantization [10]. To

begin with, we employ affinity propagation algorithm [11] to select a set of exemplars with

least square errors to represent the dataset. The kernel, K(i), is defined as the kernelization

codebook of the derived T exemplars, i.e., . Each exemplar, εt, represents a

cluster, Ct, in the feature space, and the marginal distribution of labels given εt is defined as:

(1)

where Nt is the number of members in Ct, and P(x(i)) is the label distribution for x(i)

estimated from itself and its k nearest neighbors. K(i) is used to encode the original features

of an unknown subject, , into a new codeword as:

(2)

The diagnosis probability of  is derived as the label distribution of its nearest exemplar,

i.e., , and the predicted label of  is defined as:

(3)

2.3 B-step: Bayesian Inference

In the B-step, we seek to optimally integrate the kernels, K, that could not only achieve more

accurate diagnosis, but also preserve the local information of the original features [10], i.e.,

K = arg max(I(K, Y) + I(X, K)), where I(*,*) is the mutual information between two items.

This optimization problem is equivalent to deriving the weights of each kernel, W, with the
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minimum cost of the two types of errors, i.e., the overall cost of diagnostic errors and the

sum of cost of individual kernelization encoding errors, as in Eq. (4):

(4)

where  is the synthesized diagnosis using all the biomarkers as defined in Eq. (6),

D(*,*) is the Kullback-Leibler divergence, and β is the trade-off parameter between these

two types of errors. We initialize W equally, assuming the contributions of all the

biomarkers are the same and then iteratively update W as follows: we recalculate the cost

derived from each kernel after each iteration and then normalize the costs by the total cost as

the inferred posterior weights, W′; we subtract the average weights of all kernels from W′ to
derive the change rates of the kernels, dW, then use (W − dW) as the new input to the

Bayesian framework; we repeat this process until the cost is minimized and no further

improvement can be made.

2.4 M-step: Multifold Synthesis

The M-step is used to infer the diagnosis probabilities of a given testing subject with a set of

biomarkers, . The subjects are first encoded into the codewords with the single-fold

kernels of  to derive the diagnosis probabilities based on each biomarker. The diagnosis

probabilities using individual kernels are further combined using W to compute the

integrated diagnosis probabilities as:

(5)

where  is the codeword of  derived from the ith single-fold kernelization. Thus the

synthesized diagnosis of  is defined as:

(6)

Note that  is not required to be equal to M. This is because the outputs of the M-step are

the diagnostic probabilities and the diagnosis can be made based on arbitrary number of

biomarkers without a need to re-train the model, although more biomarkers may lead to

more deterministic diagnoses. This flexibility makes the MBK algorithm more practical than

the metric-based classifiers.
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3 Experiments

3.1 Data Acquisition and Feature Extraction

The experiment datasets were obtained from the ADNI database [1]. Totally 331 subjects

were selected from the ADNI baseline cohort, including 85 AD-, 169 MCI- and 77 CN-

subjects. The MCI group was further divided into two sub-groups. There were 67 MCI

subjects converted to AD in half to 3 years from the first scan, and they were considered as

the MCI converters (cMCI). The other 102 MCI subjects were then considered as the non-

converters (ncMCI). For each subject, an FDG-PET image and a T1-weighted volume

acquired on a 1.5 Tesla MR scanner were retrieved. All the 3D MRI and PET data were

processed following the ADNI image correction protocols [1, 12]. The PET images were

aligned to the corresponding MRI image using FSL FLIRT [13]. We then nonlinearly

registered the MRI images to the ICBM 152 template [14] with 83 brain functional regions

using the Image Registration Toolkit (IRTK) [15]. The outputted registration coefficients by

IRTK were applied to warp the aligned PET images into the template space. We finally

mapped all brain functional regions on each registered MRI and PET image using the multi-

atlas propagation with enhanced registration (MAPER) approach [16]. Four types of features

were extracted from each of the 83 brain regions, including the average cerebral metabolic

rate from PET data, and the grey matter volume, solidity, and convexity features from MRI

data. Totally 332 sets of features were extracted for each subject. In this study, we used each

set of features to represent a biomarker, thus, the feature dimension was 1 for all biomarkers,

i.e., . Figure 2 shows the process of the data pre-processing and feature

extraction.

3.2 Performance Evaluation

We compared the diagnosis performance of the proposed MBK algorithm to three state-of-

the-art neuroimaging classification algorithms. We used ISOMAP, same as in [2], as the

benchmark of the feature embedding algorithms. Elastic Net was used as the benchmark of

the feature selection algorithms, same as in [7]. We further implemented a domain-

knowledge-learning graph cuts (DKL-GC) algorithm, a variant of [5], as the benchmark of

supervised learning algorithms. More specifically, we designed a cost function to encode the

different AD conversion rates and minimize the type II error for cMCI, The features

processed by EN and ISOMAP were fed into the SVM with Gaussian kernels. The optimal

trade-off parameter (C) and the kernel parameter (γ) for Gaussians in SVM, and the cost

function weight parameters in DKL-GC were estimated via grid-search. The parameter

settings of MBK were set by pilot experiments ([k, β] = [5, 0.5] in this study). A 5-fold

cross-validation paradigm was adopted throughout all the algorithms for performance

evaluation with a separate subset of the dataset as the testing set and the rest subset as

training set each time. SVM was implemented using LIBSVM library [18] and the DKL-GC

optimization was solved by the GCO V3.0 library [19]. Note that for the MBK method, the

same training set was used to construct the single-fold kernels in K-step as well as to derive

the kernel parameters in B-step for each fold. The average classification accuracy of 4

diagnosis groups was used to evaluate the performance of different algorithms.
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3.3 Results

We divided the biomarkers into two groups according to their modalities, including 83

biomarkers from PET data, and 249 biomarkers from MRI data. We then conducted the

Bayesian inference in the B-step in MBK using the PET group, MRI group and the merged

group (PET + MRI). Figure 3 demonstrates the average diagnosis accuracy and the cost of

errors based on the updated weights derived during iteration. The error bars indicate the

mean values and standard deviations of the 5 measures by cross-validation. We found that

the merged group achieved the highest accuracy with the lowest error cost after 11 iterations

and its performance stays stable after 15 iterations.

Table 1 shows the results of the proposed MBK algorithm compared to ISOMAP and EN

with SVMs, and DKL-GC. The MBK algorithm outperformed the other classification-based

algorithms in all diagnostic groups, achieving an average accuracy of 74.2% compared to

38.4% of the ISOMAP, 54.3% of EN, and 63.29% of DKL-GC. The ISOMAP method had

the lowest performance, which indicated that it was not suitable for multi-modal feature

embedding. EN introduced l1 and l2 penalties on the feature variables to encourage the

grouping effect, therefore the correlation between features were better preserved and it

achieved better results than ISOMAP. DKL-GC algorithm was specifically designed for

prediction of cMCI, as a result the cMCI classification rate of DKL-GC was markedly

higher than ISOMAP and EN. However, it required the prior knowledge to assign higher

penalty for a cMCI type II error to achieve better cMCI detection; the performance of

ncMCI classification was compromised due to such penalty function design. The MBK

algorithm requires no domain knowledge and it will not bias the performance of certain

diagnosis groups. Table 1 also shows the performance of MBK on 83 PET biomarkers alone

using the average weights derived by 5-fold cross-validation for 332 PET+MRI biomarkers.

The performance of PET biomarkers alone is not as high as the merged PET+MRI

biomarkers, but is comparable with other algorithms. This demonstrates that the MBK

works well with varying biomarker set.

4 Conclusions

In this study, we presented a novel diagnosis algorithm, the Multifold Bayesian

Kernelization, for the diagnosis of AD and MCI. It differs from the classification-based

methods in that: 1) it models the diagnosis process as a synthesis analysis of multi-modal

biomarkers; 2) it adopts a novel diagnosis scheme synthesizing the outputted diagnosis

probabilities of individual biomarkers instead of combining the inputted features of the

biomarkers. The preliminary results showed that the MBK algorithm outperformed the state-

of-the-art classification-based methods and had a great potential in computer aided AD

diagnosis.
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Fig. 1.
The workflow of MBK algorithm with three steps shown by the boldfaced letters
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Fig. 2.
The procedure for data pre-processing and feature extraction
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Fig. 3.
The cost and accuracy of B-step outputs in MBK
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Table 1

The diagnosis accuracy (%) of all algorithms, evaluated using PET+MRI biomarkers. Dgns. is the ground

truth diagnosis, Prdt. is the predicted diagnosis.

Algorithm Dgns. \Prdt. CN ncMCI cMCI AD

Feature Embedding:
ISOMAP-SVM

CN 34.33 38.80 15.60 11.27

ncMCI 26.64 38.86 15.12 19.38

cMCI 20.30 34.46 21.08 24.16

AD 16.81 25.66 18.56 38.96

Feature Selection:
EN-SVM

CN 60.57 29.13 4.13 6.17

ncMCI 27.43 43.56 11.69 17.32

cMCI 17.96 33.64 25.06 23.33

AD 5.71 19.05 11.43 63.81

Supervised Learning:
DKL-GC

CN 64.29 0.00 0.65 35.06

ncMCI 26.96 38.24 2.94 31.86

cMCI 21.64 6.72 51.49 20.15

AD 8.24 7.06 2.94 81.76

The Proposed:
MBK

CN 86.00 6.50 1.00 6.50

ncMCI 10.00 66.96 0.43 22.61

cMCI 8.48 8.48 60.61 22.42

AD 5.65 8.70 2.17 83.48

PET Biomarkers
MBK

CN 59.74 15.58 9.09 15.58

ncMCI 24.51 43.14 3.92 28.43

cMCI 16.42 8.96 46.27 28.36

AD 3.53 16.47 8.24 71.76
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