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Abstract Group-wise analysis of time series of images re-
quires to compare longitudinal evolutions of images ob-
served on different subjects. In medical imaging, longitudi-
nal anatomical changes can be modeled thanks to non-rigid
registration of follow-up images. The comparison of lon-
gitudinal trajectories requires the transport (or “normaliza-
tion”) of longitudinal deformations in a common reference
frame. We previously proposed an effective computational
scheme based on the Schild’s ladder for the parallel trans-
port of diffeomorphic deformations parameterized by tan-
gent velocity fields, based on the construction of a geodesic
parallelogram on a manifold. Schild’s ladder may be how-
ever inefficient for transporting longitudinal deformations
from image time series of multiple time points, in which the
computation of the geodesic diagonals is required several
times. We propose here a new algorithm, the pole ladder, in
which one diagonal of the parallelogram is the baseline-to-
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reference frame geodesic. This drastically reduces the num-
ber of geodesics to compute. Moreover, differently from the
Schild’s ladder, the pole ladder is symmetric with respect
to the baseline-to-reference frame geodesic. From the the-
oretical point of view, we show that the pole ladder is rig-
orously equivalent to the Schild’s ladder when transporting
along geodesics. From the practical point of view, we es-
tablish the computational advantages and demonstrate the
effectiveness of this very simple method by comparing with
standard methods of transport on simulated images with pro-
gressing brain atrophy. Finally, we illustrate its application
to a clinical problem: the measurement of the longitudinal
progression in Alzheimer’s disease. Results suggest that an
important gain in sensitivity could be expected in group-
wise comparisons.

Keywords Parallel transport - Affine connection -
Riemannian geometry - Lie group theory - Imaging -
Non-rigid registration

1 Introduction

Modeling the temporal evolution of the tissues of the body
is an important goal of medical image analysis, for instance
for understanding the structural changes of organs affected
by a pathology, or for studying the physiological growth
during the life span. For such purposes we need to analyze
and compare the observed anatomical differences between
follow-up sequences of anatomical images of different sub-
jects. Non-rigid registration is one of the main instruments
for modeling anatomical differences from images. The aim
of non-rigid registration is to encode the observed structural
changes as deformation fields densely represented in the im-
age space, which represent the warping required to match
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the observed differences. This way, the anatomical changes
can be modeled and quantified by analyzing the associated
deformations.

1.1 Normalizing Longitudinal Deformations in a Common
Reference Frame

We can identify two distinct settings for the application
of non-rigid registration: longitudinal and cross-sectional.
In the former, non-rigid registration estimates the deforma-
tion field which explains the longitudinal anatomical (intra-
subject) changes that usually reflect biological phenom-
ena of interest, like atrophy or growth. In the latter, the
deformation field accounts for the anatomical differences
between different subjects (inter-subject), in order to match
homologous anatomical regions. These two settings are pro-
foundly different, since in the cross-sectional setting we
want to compare different anatomies which might have dif-
ferent topologies. In this case the deformations are often a
scale of magnitude higher than the ones characterizing the
usually subtle variations of the longitudinal setting.

In case of group-wise analysis of longitudinal deforma-
tions, longitudinal and cross-sectional settings must be in-
tegrated in a consistent manner. In fact, the comparison of
longitudinal deformations is usually performed after nor-
malizing them in a common reference frame through the
inter-subject registration, and the choice of the normaliza-
tion method might have a deep impact on the following anal-
ysis. In order to preserve and accurately quantify longitudi-
nal deformations in a reference frame space, a rigorous and
reliable procedure need thus to be defined.

Normalization of longitudinal deformations can be done
in different ways, depending on the analyzed feature. For
instance, the scalar Jacobian determinant of longitudinal de-
formations represents the associated local volume change,
and can be compared by scalar resampling in a common
reference frame via inter-subject registration. This simple
transport of scalar quantities is the basis of the classical de-
formation/tensor based morphometry techniques [3, 21].

If we consider vector-values characteristics of defor-
mations instead of scalar quantities, the transport is not
uniquely defined anymore. For instance, a simple method
of transport consists in reorienting the longitudinal intra-
subject displacement vector field by the Jacobian matrix
of the subject-to-reference deformation. Another intuitive
method was proposed by [20] and uses the transforma-
tion conjugation (change of coordinate system) in order to
compose the longitudinal intra-subject deformation with the
subject-to-reference one. As pointed out in [7], this prac-
tice could potentially introduce variations in the transported
deformation and relies on the inverse consistency of the es-
timated deformations, which can raise numerical problems
for large deformations.
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1.2 Parallel Transport in Diffeomorphic Registration

Among these different normalization methods, the paral-
lel transport of longitudinal deformations is a powerful and
promising tool which can be used within the “diffeomor-
phic registration” setting, thanks to its rich mathematical
background. Mathematically, parallel transporting a vector
X along a curve y(¢) consists in translating it across the
tangent spaces to the curve by preserving its parallelism, ac-
cording to a given derivative operation called (affine) con-
nection, and indicated with V,, ;) (X). The connection V is a
bilinear function which maps tangent vectors across nearby
tangent spaces, and a vector is parallel transported along a
curve if V(1) (X) =0, for all ¢.

A first formulation of diffeomorphic registration was pro-
posed with the “Large Deformation Diffeomorphic Metric
Mapping (LDDMM)“ setting [5, 23]. In this framework the
images are registered by minimizing the length of the tra-
jectory of transformations in the space of diffeomorphism,
once specified an opportune right invariant metric. The so-
lution is the endpoint of the flow of a time-varying velocity
field, which is a geodesic parameterized through the Rie-
mannian exponential. The LDDMM deformations are thus
Riemannian (metric) geodesics, which are also geodesics of
the Levi-Civita connection, which is the unique torsion-free
connection which preserves the metric. !

Since LDDMM is generally computationally intensive, a
different diffeomorphic registration method was later pro-
posed with the stationary velocity field (SVF) setting [2]. In
this case the diffeomorphisms are parameterized by station-
ary velocity fields through the Lie group exponential. The
restriction to stationary velocity fields simplifies the regis-
tration problem and provides efficient numerical schemes
for the computation of deformations. This time the flow
associated to SVFs is a one-parameter subgroup, which is
a geodesic with respect to the Cartan-Shouten connections
[14, 17]. One-parameter subgroups are generally not metric
geodesics, since there do not exist any left and right invariant
metric on non-compact and non-commutative groups.

In both the LDDMM and SVF settings, the longitudinal
deformation is encoded by the initial tangent velocity field.
The transport of longitudinal deformations can be then nat-
urally formulated as the parallel transport of tangent vectors
along geodesics according to the underlying connection, i.e.
the Levi-Civita connection in LDDMM, and the canonical
symmetric Cartan-Shouten connection in the SVF setting.

As illustrated in abstract form in [1], parallel translation
can be approximated infinitesimally by Jacobi fields. Fol-
lowing this intuition, a computational method for the par-
allel transport along geodesics of the right invariant metric

For a more detailed discussion we refer to classical books on Rieman-
nian geometry, for example to [8].
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was proposed in the LDDMM context by [25]. This frame-
work enables to transport diffeomorphic deformations of
point supported and image data, and it was applied to study
the hippocampal shape changes in Alzheimer’s disease [18,
19] . Although it represents a rigorous implementation of
the parallel transport, it comes to the price of the computa-
tionally intense scheme for computing geodesics. More im-
portantly, it is limited to the transport along geodesics of the
right invariant metric, and does not allow to specify differ-
ent metrics for longitudinal and inter-subject registrations.
While from the theoretical point of view parallel transport-
ing along a generic curve can be approximated by the paral-
lel transport on piecewise geodesics, the effectiveness of the
above methods was shown only on LDDMM geodesics, and
no general computational schemes were provided.

The parallel transport in the SVF setting was investi-
gated in [14], in which an explicit formula for the parallel
transport with respect to the standard Cartan-Shouten con-
nections (left, right and symmetric) in the case of finite di-
mensional Lie groups was derived. Then it was proposed to
seamlessly apply these formulas in the infinite dimensional
case of the diffeomorphic registration of images. Although
further investigations would be needed to better understand
the impact of generalizing to infinite dimensions the con-
cepts and tools defined for the Lie Group theory in finite
dimension, practical examples of parallel transport of longi-
tudinal diffeomorphisms in synthetic and real images with
respect to the Cartan-Shouten connections showed to be an
effective and simple way to transport tangent SVFs.

2 Contributions and Paper Structure

In this paper we focus on explicit discrete algorithms for
parallel transport.

More specifically, we contribute the pole ladder, a new
general and computationally efficient method for parallel
transport derived from the Schild’s ladder. The proposed
method rely on a solid mathematical background and can
be easily used in the LDDMM and SVF registration settings
where diffeomorphic transformations are parameterized by
their initial tangent vectors.

Fig. 1 The Schild’ ladder
parallel transports a vector A ’ P,
along the curve C by iterative

construction of geodesic Y
parallelograms

Py
‘P, Po

Although the Schild’s ladder was known in gravitation
theory for 40 years, there does not seem to be any nu-
merical implementation of this algorithm before [13], in
which we turned it into an effective algorithm for the par-
allel transport of deformation vectors. This manuscript is
an extension of our recent conference submission [15], and
elaborates over these preliminary works to provide a novel
construction called the pole ladder. We show that is equiv-
alent to the Schild’s ladder when transporting along arcs of
geodesics, but with the computational advantage of mini-
mizing the number of estimation of geodesics when applied
to the parallel transport of time series of deformations over
multiple time points.

In Sect. 3 we detail the mathematical basis of the pro-
posed method, while in Sect. 4 we show how these theoret-
ical concepts can be effectively translated in the image reg-
istration context. Finally in Sect. 5 the methods are tested
on the transport of synthetic longitudinal progressions, and
on the statistical analysis of the longitudinal atrophy in the
brain of patients affected by Alzheimer’s disease.

3 Schild’s and Pole Ladders for the Parallel Transport
of Longitudinal Deformations

Before presenting the pole ladder, we first recall the Schild’s
ladder and its theoretical basis.

3.1 The Schild’s Ladder

Schild’s ladder is a general method for the parallel transport,
introduced in the theory of gravitation in [16] after Schild’s
similar constructions [22]. The method infinitesimally trans-
ports a vector along a given curve through the construc-
tion of geodesic parallelograms (Fig. 1). The Schild’s lad-
der provides a straightforward method to compute a first
order approximation of the parallel transport of a vector
along a curve using geodesics only. Let M a manifold and
C a curve parametrized by the parameter T with % I, =u,
and A € TpyM, a tangent vector on the curve at the point
Po = C(0). Let P; be a point on the curve relatively close to
Py, i.e. separated by a sufficiently small parameter value t.

Py .
P A/ P 3. A

Pa
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The Schild’s ladder computes the parallel transport of A
along the curve C as follows:

1. Define a curve on the manifold parametrized by a param-
eter o passing through the point Py with tangent vector
%l p, = A. Choose a point P, on the curve separated by
Py by the value of the parameters o . The values of the pa-
rameters o and t should be chosen in order to construct
the Schild’s ladder within a single coordinate neighbor-
hood.

2. Let I be the geodesic connecting P, =[(0) and P; =
I(A), we choose the “middle point” Pz = [(1/2). Now,
let us define the geodesic r connecting the starting point
Po and P3 parametrized by p such that P; = r(p). By
extending the geodesic at the parameter 2p we reach the
point P4. We can now pick a curve connecting P; and
Py. The vector A’ tangent to the curve at the point P1 is
the parallel translation of A along C.

3. If the distance between the points Py and Pj is large, the
above construction can be iterated for a sufficient number
of small steps.

The algorithmic interest of the Schild’s ladder is that
it only relies on the geometrical information encoded by
the geodesics. Although the geodesics on the manifold are
not sufficient to recover all the information about the space
properties, such as the torsion of the connection, it has been
shown that the Schild’s ladder describes the parallel trans-
port with respect to the symmetric part of the connection
of the space [10]. An intuitive view of that point is that the
construction of the above diagram is commutative and can
be symmetrized with respect to the points P; and P,. If the
original connection is symmetric, then this procedure pro-
vides a correct linear approximation of the parallel transport
of vectors.

3.2 The Pole Ladder

We propose here a different construction for the parallel
transport of vectors based on geodesics parallelograms. If
the curve C is geodesic, then it can be itself one of the diag-
onals and the Schild’s ladder can therefore be adapted by re-
quiring the computation of only one new diagonal of the par-
allelogram. We define in this way a different ladder scheme,
that we name the “pole ladder”.

We now prove that the pole ladder is actually realizing
the parallel transport. In the diagram of Fig. 2, the paral-
lel transport of the tangent vector v = C to the geodesic
C is specified through the Christoffel symbols Fl]]‘ by the

geodesic equation v + FI-];Vi v/ = 0. In a sufficiently small
neighborhood the relationships can be linearized to give

VE(6) =vE(0) — 1T (x (0)V (0)v/ (0) + O (1),

@ Springer
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Fig. 2 The pole ladder parallel transports the vector A along the
geodesic C. Differently from the Schild’s ladder it requires to compute
only one diagonal geodesic

and by integrating:

2
K@) = x¥(0) + 1v* (0) — %Fi];(x(O))vi OV (0) + O(1?).

By renormalizing the length of the vector v so that C(—1) =
Py, C(0) = M and C(1) = Qg (and denoting Fk = Fk (M)),
we obtain the relations:

Pk = M — —lev v o(vIP),
O - 2 MM

1
00F = Mk 4-vh, — —rkvaM+0(||v|| ).

2

Similarly, we have along the second geodesic:

1 o
Er,iu’Mu{W +O(lul),

lrkul u), + O(llul?).
2 M

Pk =Mk -, -
01F =MF +ub, -

Now, to compute the geodesics joining Py to P; and Qg
to Q1, we have to use a Taylor expansion of the Christof-
fel symbols Fllj‘ around the point M. In the following, we
indicate the coordinate according to which the quantity is

derived by the index after a comma: I' =4, Fk

ij,a
1
I (Po) = I + T}, ( szvafu)
1
t 5 .ap¥ia Vi + OUVIP).

However, the Christoffel symbols are multiplied by a term of
order O(]|A||%), so that only the first term will be quadratic
and all others will be of order 3 with respect to A and vy,.
Thus, the geodesics joining Py to P; and Qg to Q1 have
equations:

1 .
P =Py + AC = STEATAT + O((IAN + Iva D),
1 L
0} = QG+ B" — SIiB' B/ ++ OBl + Ivm D).
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Equating Plk in the previous equations gives

1 o 1 o o
k k k k k
uM—i—EFiju’Mu/ =vy—A —}—El“ij(v’Mv{W_}_AlAJ)

+ OB+ v D).

Solving for u as a second order polynomial in vy, and A
gives

1 .
ut = vl — A"+ S+ T AV, + OUAL+IVm D).
Now equating Qll‘ in the previous equations gives

1 . . 1 o
k_ ~prkpipj _ Ak k kAl g/ STk Al AT
BY = SIB'B) = — AN+ (I + T A}, + S TAA

+ O((IAl+ v D).

Solving for B as a second order polynomial in vy, and A
gives:

B = —A* 4+ (Ff + THAY + 0l + vm D). (1)

To verify that this is the correct formula for the parallel
transport of A, let us observe that the field A(x) is parallel in
the direction of v/ if Vy A =0, i.e. if 9,A% + I"ilj‘.Aivj =0,
which means that A*(x + ev) = AK — eFl’J‘ Alvi 4+ 0(?). If
the connection is symmetric, i.e. if F/j‘ = F,kp Eq. (1) shows
that the pole ladder leads to BX ~ —AK + Zl“i’;Ai v/. Thus
the pole ladder is realizing the parallel transport for a length
€ = 2 (remember that our initial geodesic was defined from
—1to1).

We have thus demonstrated that the vector — B of Fig. 2
is the transport of A and, due to the locally linear construc-

tion, it corresponds necessarily to the one transported by the
Schild’s ladder.

4 Application to Images

Let I; (i =1...n) be a time series of images with the base-
line Iy as reference. Consider a template image Ty, the aim
of the procedure is to compute the image 7; in order to de-
fine the transport of the sequence Iy, ..., I; in the reference
of Tp. In the sequel, we focus on the transport of a single
image /.

To apply the ladders in the context of the images, we
define the paths in the space of images by action from the
space of diffeomorphism. Let I = {f : R? — R} the image
space and let us define the action * : M x I — I given by
(¢, ) @I =Tog~!, where M is the space of the diffeo-
morphisms. If the distance between two images in the image
space is defined in terms of diffeomorphisms [25], then the

Algorithm 1 Schild’s ladder for the transport of a longitudi-
nal deformation

Let Ip and I; be a series of images, and Tp a reference
frame.

1. Compute the geodesic /(A) in the space I connecting I}

and T such that [(0) = Iy, and I[(1) = Tp.

Define the half-space image [(1/2) = I%.

3. Compute the geodesic r(p) connecting Ip and [/ 1 such

that r(0) = Iy and r(1) = 1.

Define the transported folléw-up image as 71 =r(2) =

h(2) * .

5. The transported deformation is given by registering the
images Ty and 7.

N

b

Algorithm 2 Pole ladder for the transport of a longitudinal
deformation

Let Ip and I; be a series of images, and Ty a reference
frame.

1. Compute the geodesic C(w) in the space I connecting Iy
and Tj such that C(0) = Iy and C(1) = Ty.

2. Define the half-space image C(1/2) =1 L

3. Compute the geodesic g(n) connecting /1 and [/ 1 such
that g(0) =11 and g(1) = 1%.

4. Define the transported image as 7| = g(2)

5. Compute the path p(#) such that p(0) = Tp and p(1) =
T|. The transported deformation is the inverse of the reg-
istration of p(0) =Ty to p(1) =T7.

geodesics in the image space are defined by the action of the
geodesic paths in the space of the diffeomorphisms.

The Schild’s ladder can be naturally translated in the im-
age context (Algorithm 1), by requiring the computation of
the two diagonal geodesics / and r.

The pole ladder is similar to the Schild’s one, with the
difference of explicitly using as a diagonal the geodesic C
which connects /y and Ty (Algorithm 2). This is an inter-
esting property since, given C, it requires the computation
of only one additional geodesic, thus the transport of time
series of several images is based on the same baseline-to-
reference curve C (Fig. 3).

4.1 Effective Ladders by Using SVFs

We showed that Schild’s and pole ladder are equivalent
methods for transporting vectors with geodesic parallelo-
gram. In this paragraph we provide an efficient implemen-
tation for the application to images within the SVF setting.
Due to the similar nature of the proposed ladders schemes,
in the following we refer generally to “ladder” to indicate
the two techniques.

@ Springer
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Fig. 3 Geometrical schemes in
the Schild’s ladder (/eft), and in
the pole ladder (right). By using
the curve C as diagonal, the pole
ladder requires the computation
of half times of the geodesics
required by the Schild’s ladder

Despite the straightforward formulation, Algorithms 1
and 2 require multiple evaluations of geodesics in the space
of diffeomorphisms and a consequent high cost in terms of
computation time and resources.

Moreover, they assume an exact matching, which is
bound to lead to important numerical problems. For in-
stance, the definition of /; using the forward deformation on
Iy or the backward from 72"0 leads to very different results. Fi-
nally, numerical approximations introduced by exponential
and logarithm maps can introduce important errors that can
propagate during the iteration of the ladder. For all of these
reason, we propose here to reformulate the above scheme in
a computationally efficient framework using only transfor-
mations.

We use the setting of the SVFs (SVF) diffeomorphic
registration as provided for example by the log-Demons
[24] algorithm. In particular we base the ladder on the
geodesic defined by the Lie group exponential of vector
fields. Given a pairs of images I;, i € {0, 1}, the SVF frame-
work parametrizes the diffeomorphism ¢ required to match
the reference Iy to the moving image /; by a SVF u. The
velocity field u is an element of the Lie Algebra g of the Lie
group of diffeomorphisms G, i.e. an element of the tangent
space at the identity 7;4G. The diffeomorphism ¢ belongs
to the one parameter subgroup ¢ = exp(f u) generated by u.
Notice that we use here the Lie group exponential and not
the Riemannian exponential to parameterize deformations
with SVFs. We can therefore define the paths in the space
of the diffeomorphisms from the one parameter subgroup
parametrization

[(A) =exp(X-u),

and the correspondent paths in the image space.

Computing the ladders in the image space requires a
number of interpolations and exponentiations, which could
introduce biases due to the numerical approximations.
Moreover the registration is constrained to be smooth and
it is therefore impossible to reach a perfect match of corre-
spondent intensities in the registered images. We take ad-
vantage of the symmetry of the geodesic parallelogram in
order to define the following robust scheme.

@ Springer

Schild's Ladder

Pole Ladder
-
(v,) T

Ii(v,) -T(v)

Iy

exp(u)

Fig. 4 Ladder with the one parameter subgroups. The transport
exp(/1(u)) is the deformation exp(v/2) o exp(u) o exp(—v/2)

With reference to Fig. 4:

. Let I = exp(u) *x Ip.
. Compute

v = argmin E (Ty o exp(—v/2), Iy o exp(v/2)),
veG

where E is a generic registration energy functional to be
minimized.

The half space image 1 1 can be defined in terms of
v/2 as exp(—v/2) * Tp or exp(v/2) * Ip. While from the
theoretical point of view the two images are identical, the
choice of one of them, or even their mean, introduces a
bias in the construction. The definition of the half step
image can be bypassed by relying on the symmetric con-
struction of the parallelogram.

. The transformation from /; to [ 1 is p =exp(v/2) o
exp(—u) and the symmetry leads to

exp (IT(u)) = exp(v/2) o p~ "

=exp(v/2) o exp(u) o exp(—v/2).

The transport of the deformation ¢ = exp(u) can be
therefore obtained through the conjugate action operated by
the deformation parametrized by v /2.

Since the direct computation of the conjugation by com-
position is potentially biased by the spatial discretization, we
propose a numerical scheme to correctly evaluate the trans-
port directly in the Lie Algebra.
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4.2 BCH Formula for the Conjugate Action

The Baker Campbell Hausdorff (BCH) formula was intro-
duced in the SVF diffeomorphic registration in [6] and pro-
vides an explicit way to compose diffeomorphisms param-
eterized by SVFs by operating in the associated Lie Al-
gebra. More specifically, if v, u are SVFs, then exp(v) o
exp(u) = exp(w) with w =BCH(v,u) =v+u + %[v, ul +
%[v, [v,u]] — %[u, [v,u]]l + ---. In particular, for small
u, the computation can be truncated to any order to ob-
tain a valid approximation for the composition of diffeomor-
phisms. Applying the truncate BCH to the conjugate action
leads to

1
Mecy(u) ~u +[v/2, u]+§[v/2, [v/2, ul]. 2)

To establish this formula, let consider the following second
order truncation of the BCH formula

BCH((v/2,u) ~v/2+u+ %[v/Z, u] + %[U/Z [v/2,u]]

1
- E[“v [U/z, I/l]].
The composition
IMgcu(u) =BCH (v/2, BCH(u, —v/2))
is

Mu)" =v/2+BCH(u, —v/2) + %[v/Z, BCH(u, —v/2)]
A

B

+ %[U/Z, [v/2,BCH(u, —v/2)]

C

- %[BCH(u, —v/2), [v/2, BCH(u, —v/2)]].

D

The second order truncation of the four terms is:
1 1
A2u+E[u,—v/2]+ﬁ[u,[u,—v/2]]
1
— —[=v/2 —v/2
12[ v/2, [u, —v/2]],
1 1
B~ 5[v/2, ul+ Z[v/Z, [u, —v/2]],
1
C~ E[v/Z, [v/2,ull,
D~ /2.l + S [0/2, [v/2. ul)
_12u,v,u lzv,v,u.

From the additive and anticommutative properties of the Lie
bracket, adding the four terms leads to (2).

Iterative Computation of the Ladder Once defined the for-
mula for the computation of the ladder, we need a con-
sistent scheme for the iterative construction along trajecto-
ries. We recall that the transport by geodesic parallelograms
holds only if both sides of the parallelogram are sufficiently
small, which in our case means that both longitudinal and
inter-subject vectors must be small. This is not the case in
practice, since the inter-subject deformation is usually very
strong. By definition, the ladder requires to scale down vec-
tors to a sufficiently small neighborhood, in order to cor-
rectly approximate the transport by parallelograms.

From the theoretical point of view, the degree of approx-
imation of the ladder is proportional to the curvature of the
space of deformations. This can be seen by the higher order
terms that we dropped off in the proof of Sect. 3.2, which
are all derivatives of the Christoffel symbols. While on a
linear space the ladder is the exact parallel transport, when
working on curved spaces the error resulting from the non-
infinitesimal geodesic parallelogram is proportional to the
distance between the points.

From the numerical point of view, we notice that For-
mula (2) requires the computation of the Lie brackets of the
velocity fields. Lie brackets involve the differentiation of the
vector which is usually computed on images by finite differ-
ences, and which are know to be very sensitive to noise and
to be unstable in case of large deformations.

For all these reasons we propose the following iterative
scheme based on the properties of SVFs. To provide a suffi-
ciently small vector for the computation of the conjugate we
observe that

exp(v) o exp(u) o exp(—v)

v v v
= exp(—) o... oexp(—) oexp(u) oexp(——)
n n n
v
O...Oexp _—
n

The conjugation can then be recursively computed in the
following way:

1. Scaling step. Find n such that v/n is small.

2. Ladder Step. Compute w = u + [, u] + %[5, Zull.
3. Letu =w.

4. Iterate the steps 2 and 3 n times.

The BCH formula allows to perform the transport directly
in the Lie algebra and avoids multiple exponentiation and
interpolations, thus reducing the bias introduced by the nu-
merical approximations. Moreover, this method preserves
the original “ladder” formulation, operated along the inter-
subject geodesic exp(fv). In fact it iterates the construction
of the ladder along the path exp(zv) over small steps of size
exp(2).
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Fig. 5 Impact of the step-size
on the pole ladder. Left: the
longitudinal deformation of the
shrinking ball was transported in
the ellipsoidal target space with
the pole ladder. The BCH
scheme of Sect. 4.2 was applied
(1) directly on the inter-subject
SVF (step-size = 1), and (2)
iterated by scaling the SVF in
order to satisty the condition
maxyee [v()ll/n <8
(resulting step-size =16). Right:
The log-Jacobian determinant of
the transported deformations
shows that a larger step-size
leads to more unstable results

Source space
longitudinal
deformation

—

Target Space

The stability of the proposed method critically depends
from the initial scaling step n, which determines the step-
size of the numerical scheme. Ideally the step-size should
depend on the curvature, and should be therefore small
enough in order to minimize the error in case of highly
curved space. For this purpose, given the image domain §2,
we define a global scaling factor n in order to guarantee
that the given SVF stays sufficiently close to 0, i.e. in or-
der to satisfy the global condition max,cg |[v(x)]/n < 4,
with § = 0.5 * voxel _size. This condition ensures reason-
ably small SVFs, and thus enables the iterative construction
of the parallelogram in small neighborhoods.

Section 5.1 shows an example of the impact of the step-
size on the transport of longitudinal deformations.

4.3 Conjugate Action from the Exponential Map

In this section we provide a formula alternative to Formula
(2) for computing the transport by conjugate action from the
definition of the exponential:

exp(u) = lim (Id + %) .
We can write:
exp(Iconj (1))

= 1im (exp(v/2) ° (Id + %) o exp(—v/Z))n .
Let y = exp(—v/2)(x) and ¢ (x) = exp(v/2)(x), then
exp(Iconj (1))

-2 2)

1
lim_ (Id +~(D@Mg-1) -0 ¢~ (@)

+ 0(||u||2>)) :
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By the definition of the exponential map, we obtain then a
first order approximation for the transported vector given by

Heonj(u) = D (exp(v/2)) lexp(—v/2) - u 0 exp(=v/2). (3

We note that D(exp(v/2))|exp(—v/2) = D(exp(—v/Z))_l.
This method provides a formula which enables to com-
pute the transport by reorienting the field u o exp(—v/2) by
the matrix field D(exp(v/2)) resampled by exp(—v/2), or
equivalently, by the matrix field D(exp(—v/2)) .

From a theoretical point of view the results obtained from
formula (2) and (3) are equivalent in the continuous domain:

Meonj(u) =+ D(/2) -u — Du-v/2+ O(|v]*)

>~ ITgcu(u).

Formula (3) is however potentially more unstable from
the numerical point of view, since it requires to interpolate
matrix fields which should be computed with specific nu-
merical schemes. For this reason the following experimental
section focuses only on the ladders computed with the BCH
scheme of formula (2).

5 Experiments on Synthetic and Real Data
5.1 Impact of the Step-Size of the Pole Ladder

A synthetic longitudinal deformation was created by shrink-
ing a spherical reference image (Fig. 5, left). The longitudi-
nal deformation of the shrinking sphere was transported in
an ellipsoidal target space with the pole ladder. The BCH
scheme was first directly applied on the inter-subject SVF
(step-size = 1), and then iteratively applied as proposed
in Sect. 4.2 by scaling the inter-subject SVF. The condi-
tion max,eg |[v(x)||/n < 0.5 - voxel _size led to a step-size
n=16.
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Table 1 Different methods of -
transport and transported SVF Transformation Scalar measure
features. From the SVF we can (w) (¢ =exp(u)) ., logJ)
infer transformations from
which we can extract scalar Interpolation of scalar No No Yes
measures, while the reverse is Conjugate action No Yes Yes
not possible Schild’s ladder Yes Yes Yes
Pole ladder Yes Yes Yes
Reorientation Yes Yes Yes
Fig. 6 Transport of time series baseline 1

of images. Top row: original
longitudinal trajectory for the
ventricular expansion at the
different scaling factors. Bottom
row: transported longitudinal
sequence in the target space.
The vertical lines indicate
reference ventricles boundary

Source space

Target space

The analysis of the log-Jacobian determinant maps asso-
ciated to the transported deformation shows that when the
step-size is large the transport is more noisy and unstable
(Fig. 5, right). On the contrary, the proposed iterative com-
putation leads to smooth and more stable results. This is
confirmed by observing the histogram profile of the log-
Jacobian determinant maps. The iterative scheme leads to
values that are closer to the ones of the original longitudinal
deformation, while when using a large step size the differ-
ences are more remarkable.

5.2 Comparison of Different Methods of Transport

We created a series of simulated deformations based on
the deformation field that matches the baseline scan (Ip)
of a patient from the ADNI dataset to the 1-year follow-
up of the same patient, computed using the LCC-Demons
algorithm [11]. The ventricular expansion was extracted by
masking the corresponding SVF v with a mask including the
ventricles. The deformations in the remaining areas of the
brain were imposed to be negligible multivariate Gaussian
noise. The SVF v was then increasingly scaled (v; = fiv,
with f; =0.5,1,2,3) and the resulting deformations fields
@; = exp(v;) were used to warp the baseline scan I to gen-
erate a longitudinal progression of serial images /; with in-
creasing ventricular expansions.

The longitudinal progression was then transported in five
new reference spaces given by the images of five other pa-
tients (target space Té‘, k=1,...,5) along the deformation
wé‘. using different methods:

[~

i

e Schild’s and pole ladders (BCH scheme).
e Conjugate Action: Adﬁ (i) = w;f(_l) o@; o w;.
e Reorientation of the SVF v; by the Jacobian Matrix of the

deformation 1/f§: Jﬁ ;.

As summarized in Table 1, not all the methods operate
on the same features and a direct comparison is not always
possible. To test the accuracy of the transport, the different
methods were quantitatively compared on the scalar mea-
sures representing the amount of change induced in the ven-
tricles. The ventricles masks were segmented for Iy and T(;‘
using a semi-automated method [26]. The analyzed features
were the average Jacobian and log-Jacobian determinant of
the transported deformation, representing respectively the
average volume change of the ventricles and the flux of
the deformation across the ventricles boundaries (boundary
shift) [11].

We note that conjugate action, reorientation, and sim-
ple interpolation of scalar fields, are transport methods that
are currently majorly employed in applied medical imaging
studies [4, 7, 9, 20].

5.3 Results

In Fig. 6, we see an example of synthetic time series of im-
ages transported by our pole ladder. The series is consistent
with the original trajectory of ventricular expansion while
adapting to the new reference.

Figure 7 compares the log-Jacobian scalar image derived
from the different methods for a sample subject. The Conju-
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Fig. 7 Log-Jacobian maps of
the transported deformation
field from the source space Iy to
a patient’s target space. Left:
log-Jacobian map corresponding

to the synthetic intra-subject L
source space

deformation ¢; in the source
space. Right: log-Jacobian maps
of the deformation in the target
space transported thanks to:
pole ladder, Schils’s ladder,
Reorientation, Conjugation, and
scalar interpolation of the
original log-Jacobian map.
Schild’s and pole ladders
provide stable results which are
consistent with the simple scalar
transport

o
[

c
=
a

©

o

©
=

o
8

0

-0.3
Synthetic deformation

A i

b B

target space

Scalar
transport

Vector transport

Table 2 Average measures

(standard deviation) of Scaling factor 0.5

ventricular changes associated
to the initial longitudinal

Jacobian determinant

deformations in the source Source space 1.052 1.074 1.091 1.106

space (first row), and to the Schild’s ladder (BCH)  1.062 (0.8¢-2) 1.094 (le-2) 1119 (13e2) 113 (1.8¢-2)
deformations transported with

the different methods in the Pole ladder (BCH) 1.052 (1e-2) 1.063 (1.2e-2) 1.075 (1.3e-2) 1.086 (1.3e-2)
target spaces. Pole ladder Reorientation 1.038 (0.6e-2) 1.039 (1le-2) 1.033 (1.5e-2) 1.02 (2.1e-2)

performs similarly to the scalar

: . . . Conjugate Action
interpolation while transporting

Scalar Interpolation

1.026 (0.2e-2)
1.054 (0.59¢-2)

1.038 (0.3e-2)
1.077 (1.12e-2)

1.049 (0.4e-2)
1.092 (1.7e-2)

1.063 (0.4e-2)
1.100 (2.4e-2)

in addition the full SVF
log Jacobian determinant
Source Space 0.419 0.63 0.834 1.03
Schild’s ladder (BCH) 0.49 (5e-2) 0.8 (6.1e-2) 1.14 (5.4e-2) 1.47 (5.7e-2)
pole ladder (BCH) 0.37 (9.4e-2) 0.56 (14e-2) 0.75 (18e-2) 0.93 (23e-2)
Reorientation 0.5 (8.9¢-2) 0.76 (13e-2) 1.02 (19e-2) 1.26 (21e-2)
Conjugate Action 0.21 (0.5e-2) 0.32 (1.2e-2) 0.43 (2e-2) 0.38 (29¢-2)
Scalar Interpolation 0.44 (9.5e-2) 0.66 (17e-2) 0.86 (26e-2) 1.03 (36e-2)

gate method and the Reorientation led to more noisy maps,
while for the pole and Schild’s ladder (BCH scheme) the
resulting Jacobian map adapts to the new reference space
while remaining sufficiently smooth, consistently with the
simple scalar interpolation of the original log-Jacobian map
in the target space.

Table 2 shows the amount of changes measured with the
different methods. We note that the pole ladder provides in
most of the cases results similar to those obtained by the
simple scalar interpolation, and generally very close to the
ones measured in the original reference.

5.4 One Year Follow-up Changes on Alzheimer’s Disease
5.4.1 Experimental Data

Data used in the preparation of this article were obtained

database (adni.loni.usc.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the Na-
tional Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as
a $60 million, 5-year public-private partnership. The Princi-
pal Investigator of this initiative is Michael W. Weiner, MD,
VA Medical Center and University of California—San Fran-
cisco. ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private cor-
porations, and subjects were recruited from over 50 sites
across the US and Canada. For up-to-date information, see
www.adni-info.org.

5.4.2 Longitudinal Analysis

Images corresponding to the baseline /y and the one-year

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) follow-up I; scans were selected for 135 subjects affected
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Fig. 8 One year structural
changes for 135 Alzheimer’s
patients. (A) Mean of the
longitudinal SVFs transported in
the template space with the pole
ladder. We notice the lateral
expansion of the ventricles and
the contraction in the temporal
areas. (B) T-statistic for the
correspondent log-Jacobian
values significantly different
from 0 (p < 0.001 FDR
corrected). (C) T-statistic for
longitudinal log-Jacobian scalar
maps resampled from the
subject to the template space.
Cool color: significant
expansion; Warm color:
significant contraction

(Color figure online)

by Alzheimer’s disease from the ADNI database. For each
subject i, the pairs of scans were rigidly aligned. The base-
line was linearly registered to a reference template and the
parameters of the transformation were applied to / 1’ Finally,
for each subject, the longitudinal changes were measured
by non-rigid registration using the LCC-Demons algorithm
[11].

The resulting deformation fields ¢; = exp(v;) were trans-
ported with the pole ladder (BCH scheme) in the template
reference along the subject-to-template deformation. The
group-wise longitudinal progression was modeled as the
mean of the transported SVFs v;. The areas of significant
longitudinal changes were investigated by one-sample t-test
on the group of log-Jacobian scalar maps corresponding to
the transported deformations, in order to detect the areas of
measured expansion/contraction significantly different from
ZEero.

For sake of comparison, the one sample t-statistic was
tested on the subject specific longitudinal log-Jacobian
scalar maps warped into the template space along the
subject-to-template deformation. This is the classical trans-
port used in tensor’s based morphometry studies [4].

5.4.3 Results

Figure 8 shows a detail from the mean SVF from the trans-
ported one-year longitudinal trajectories. The field flows
outward from the ventricles to indicate a pronounced en-
largement. Moreover, we notice an expansion in the tem-
poral horns of the ventricles as well as a consistent con-
tracting flow in the temporal areas. The same effect can be
statistically quantified by evaluating the areas where the log-
Jacobian maps are statistically different from zero. The ar-
eas of significant expansion are located around the ventricles
and spread in the CSF areas, while a significant contraction

Pole Ladder

Average transported
longitudinal atrophy

istic on the
iated log-jacobian
r maps

Scalar
interpolation

-statistic on the
resampled longitudinal
log-Jacobian scalar maps

is appreciable in the temporal lobes, hippocampi, parahip-
pocampal gyrus and in the posterior cingulate. The statistical
result is in agreement with the one provided by the simple
scalar interpolation of the longitudinal subject specific log-
Jacobian maps. In fact we do not experience any substan-
tial loss of localization power by transporting SVFs instead
of scalar log-Jacobian maps. However by parallel transport-
ing we preserve also the multidimensional information of
the SVFs that, as experienced in [12], potentially leads to
more powerful voxel-by-voxel comparisons than the ones
obtained with univariate tests on scalars.

6 Conclusions and Perspectives

In this study we proposed a novel framework for the trans-
port of longitudinal deformations in a reference space from
time series of images. The mathematical formulation was
combined with an effective computational scheme in order
to provide a solution for the transport of vector fields.

From the applicative point of view, the availability of
multivariate features in a common space could provide novel
information for the understanding of biological processes.
Moreover, although designed for transporting vector quan-
tities, the method showed also good results in transport-
ing scalar measures, by preserving smoothness of the cor-
responding spatial maps and providing accurate numerical
evaluations. This is an interesting feature which could in-
crease the power in TBM-like group-wise statistical analysis
as well as opening the way to reliable multivariate group-
wise analysis. The high spatial resolution of the statisti-
cal results on the experiment on the real data suggests a
high precision of the procedure in transporting the different
subject-specific trajectories. When associating the proposed
transport with specific frameworks for the estimation of lon-
gitudinal trajectories, we were able to consistently model
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the longitudinal changes in clinical populations by including
multiple time points, and to compare the progression of dif-
ferent clinical groups on a multidimensional basis [12]. As
shown in the experimental section, the stability of the pro-
posed ladder critically depends on the choice of the scaling
factor.

Even though the proposed scheme seems to provide rea-
sonable and stable results, further perspective studies are re-
quired in order to investigate the numerical issues related to
the step-size of the iterative computation. Finally, the com-
parison of the pole ladder with other computational schemes
of the parallel transport, such as with the one proposed in
[25], might shed more light on the theoretical and numerical
properties of different methods of transport.
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