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Assessment of temporal lobe atrophy from magnetic resonance images is a part of clinical guidelines for the
diagnosis of prodromal Alzheimer's disease. As hippocampus is known to be among the first areas affected by
the disease, fast and robust definition of hippocampus volume would be of great importance in the clinical
decision making. We propose a method for computing automatically the volume of hippocampus using a
modified multi-atlas segmentation framework, including an improved initialization of the framework and the
correction of partial volume effect. The method produced a high similarity index, 0.87, and correlation
coefficient, 0.94, with semi-automatically generated segmentations. When comparing hippocampus volumes
extracted from 1.5 T and 3 T images, the absolute value of the difference was low: 3.2% of the volume. The
correct classification rate for Alzheimer's disease and cognitively normal cases was about 80% while the
accuracy 65% was obtained for classifying stable and progressive mild cognitive impairment cases. The
method was evaluated in three cohorts consisting altogether about 1000 cases, the main emphasis being in
the analysis of the ADNI cohort. The computation time of the method is about 2 minutes on a standard laptop
computer. The results show a clear potential for applying the method in clinical practice.
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Introduction

In current guidelines (Dubois et al., 2007), the diagnostic criteria
for probable Alzheimer's disease (AD) require a presence of both
impairment in episodic memory and one supportive feature, either
medial temporal lobe atrophy, abnormal cerebrospinal fluid (CSF)
biomarker, specific pattern in PET or proven AD autosomal dominant
mutation. In addition, the guidelines specify a list of exclusion criteria.
Similar components can be found also from the recent EFNS guideline
(Waldemar et al., 2007). The revision of criteria for AD, mild cognitive
impairment (MCI) and preclinical AD is also ongoing and will include
further emphasis on biomarkers and imaging.

In medial temporal lobe (MTL), the volume loss of hippocampi,
entorhinal cortex and amygdala is a hallmark indicating AD. The
guidelines (Dubois et al., 2007) suggest that the volume loss is
“evidenced on MRI with qualitative ratings using visual scoring”.
Qualitative and subjective ratings may, however, lead to different
results between interpreters and the diagnosis made by even a single
interpreter may vary when re-examining images. Therefore, there is a
clear need for objective methods for the assessment of hippocampal
volume. Although automated tools are developed actively in many
research groups, thedevelopment of robust, accurate and fast automatic
methods is a highly challenging problem and automatic methods are
still very much lacking in clinical practice.

Several methods have been published for segmenting hippocampus
(Chupin et al., 2009a,b; Fischl et al., 2002; Lötjönen et al., 2010; Morra
et al., 2008; van der Lijn et al., 2008; Wolz et al., 2010a). All these
methods segment the hippocampus as a whole although in reality it
contains sub-structures. However, the accurate segmentation of these
structures is difficult from most images currently available in clinical
practice. We therefore concentrate in this work on the segmentation of
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the hippocampus as a single structure. One of themain objectives of this
work is to develop tools for clinical decision making.

Although many published methods are promising, some space
remains for interpretations, either in accuracy, robustness or computa-
tional speed. First, there is no real gold-standard for defining the
accuracy of segmentation. Currently manual segmentations by clinical
experts represent the clinical gold-standard for hippocampal segmen-
tation. Therefore, if the difference between automatically and manually
generated segmentations is equal to the difference between twomanual
segmentations, automatic segmentation is typically considered to have
corresponding accuracy to the manual segmentation. There are
numerous methods characterizing the accuracy of segmentations:
differences in various overlap measures between manually and
automatically generated segmentations, such as the Dice similarity
index, recall and precision values, or distances between the surfaces of
objects, or differences in the volumes of objects, or differences in the
ability to classify a subject to a correct class or group. Classification
accuracy is an important measure if the ultimate goal is to use a certain
biomarker in diagnostics. Classification accuracy reflects the robustness
of segmentation not segmentation accuracy as such. For example, if an
automatic method is consistent but systematically overestimates the
volume, i.e., the measure is biased, the accuracy of the segmentation is
obviously decreased. This systematic and consistent error does not,
however, affect classification accuracy or ability to detect statistical
difference between two populations. A less robust or consistent
algorithm introduces noise into measurements and thus makes the
classification less accurate. In diagnostics, the consistency of segmen-
tation is even more important than ensuring that segmentation is not
biased. As there are different guidelines for manual segmentation of the
hippocampus, even the clinical gold-standards are biased relative to
each other; efforts for harmonizing these guidelines are ongoing
(Boccardi et al., 2010). All these indicators may lead to conflicting
interpretations making the evaluation of results sometimes cumber-
some. Second, methods are often validated using a relatively small
database or somehow constrained data, e.g., from a single site or using
only a device from onemanufacturer. A clear problem in the evaluation
of the accuracy is a limited number of manually segmented cases
available because producing a representative set of manual segmenta-
tions is a highly laborious task. These issues make the extensive
evaluation of the robustness in real clinical conditions difficult. Third,
the computation time of a segmentation method is not considered in
many scientific publications although it is a relevant issue in clinical
practice. Computation times of hours or the requirement of special
computer facilities or a need for careful and laborious tuning of the
parameters of the method decrease the feasibility of a method in the
clinical setting. In summary, demonstrating the usefulness of a method
for clinical practice is a laborious task and still often leaves some space
for interpretations.

Atlas-based segmentation is a commonly used technique to
segment image data. In atlas-based segmentation, an intensity
template is registered non-rigidly to an unseen image and the
resulting transformation is used to propagate tissue class or anatom-
ical structure labels of the template into the space of the unseen image.
The segmentation accuracy can be improved considerably by combin-
ing basic atlas-based segmentation with techniques from machine
learning, e.g. classifier fusion (Heckemann et al., 2006; Klein et al.,
2005; Rohlfing et al., 2004; Warfield et al., 2004). In this approach,
several atlases from different subjects are registered to unseen data.
The label that themajority of all warped labels predict for each voxel is
used for the final segmentation of the unseen image. This multi-atlas
segmentation was shown to produce the best segmentation accuracy
for subcortical structures in a comparison study (Babalola et al., 2008).
However, themajor drawback of themulti-atlas segmentation is that it
is computationally expensive. For example, van der Lijn et al. (2008)
reported computation times of several hours for multi-atlas
segmentation.
In (Lötjönen et al., 2010), we recently presented a method for fast
and robust multi-atlas segmentation of volumetric image data. The
tool was based on a fast non-rigid registration algorithm, use of atlas-
selection and use of intensity information via graph-cut or expecta-
tion maximisation (EM) algorithms. The use of atlas selection and the
use of intensity modeling improved significantly the segmentation
accuracy. The computation time for segmenting the hippocampus was
3–4 minutes using an 8-core workstation. The computation time was
clearly shorter than inmany publishedmethods and it is not a limiting
factor in many applications anymore. However, even shorter
computation time would make online segmentation more attractive
in clinical practice and allow more freedom in planning clinical work-
flows. Other requirements for clinical use include that no manual
tuning of segmentation parameters should be needed, and complex
and expensive computer facilities and maintenance should not be
required. In this work, we propose two major methodological
contributions to our previously published method: 1) use of an
inter-mediate template space between unseen data and atlas spaces
for speeding up the computation time, and 2) use of partial volume
modeling in segmenting hippocampus for improving the classification
accuracy.

In (Lötjönen et al., 2010), atlas selection was performed first: the
unseen data and all atlases were registered non-rigidly to a template,
and atlases beingmost similar to the unseen data were selected. Then,
multi-atlas segmentation was applied: each of the selected atlases
was registered separately non-rigidly to the unseen data and classifier
fusion was performed. The innovation of our current work is that
transformations computed in the atlas selection step are used to
initialize the multiple transformations when registering atlases to
unseen data. The process becomes much faster as only small tuning of
the transformations from atlases to unseen data is needed. The
intermediate template space, used in our atlas-selection step, has
been previously utilized to speed-up and to improve the accuracy of
non-rigid registration by Tang et al. (2010) using initialization based
on principal component analysis and by Rohlfing et al. (2009) using
subject-specific templates generated by a regression model.

The volume of the hippocampus is typically 1–3 ml in elderly
subjects, including Alzheimer's disease cases. In a typical clinical
setting, the voxel size of MR images is around 1×1×1 mm3 which
means that hippocampus is presented only by 1000–3000 voxels. Up
to 80–90% of these voxels are on the surface of the object whichmeans
that partial volume effect may affect dramatically the estimate of the
volume. There are multiple approaches published for estimating the
partial volume effects in the EM framework (Acosta et al., 2009;
Shattuck et al., 2001; Tohka et al., 2004). In this work, we used the
method proposed by Tohka et al. (2004).

In addition to the methodological contributions, we demonstrate
using large data cohorts the performance of automatically computed
hippocampus volumes 1) in diagnostics of Alzheimer's disease and 2)
compared with semi-automatically generated volumes. Data from
almost 1000 cases originating from three different patient cohorts are
used. For comparison, only 60 cases were used in our previous paper
(Lötjönen et al., 2010).

In this article, we first introduce a method utilizing the template
space to speed up the computation and an approach for modeling the
partial volume effect. Thereafter, the data used and experiments
performed are described. Finally results are shown and discussed.

Materials and methods

Classification based on multi-atlas segmentation

Fig. 1 summarizes our multi-atlas segmentation pipeline (Lötjönen
et al., 2010) including also the contributions made in this work
(indicated by the blue text). Step 1: Both unseen data and atlases are
registered non-rigidly to a template. The atlases most similar to the



Fig. 1. The segmentation pipeline showing also transformations between the unseen data, template and atlas spaces.
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unseen data, measured by normalized mutual information in the
template space, are selected to be used in the next step. Step 2: Non-
rigid transformations between the unseen data and the selected
atlases are computed. Our contribution in this work is to initialize
these transformations using the transformations computed in the step
1. After propagating the tissue labels of the selected atlases to the
space of the unseen data using the transformations computed, tissue
probabilities can be computed for each voxel of the unseen data
leading to a probabilistic atlas. Step 3:We perform tissue classification
using the standard EM classification framework (van Leemput et al.,
1999). In the standard multi-atlas segmentation, the tissue class
having the highest probability in a voxel is chosen producing the final
segmentation. The use of the EM framework allows including
statistical modeling of tissue intensities in addition to the use of a
priori spatial information utilized in the standard multi-atlas
segmentation. The modeling of tissue intensities improves the
segmentation accuracy as shown in (Lötjönen et al., 2010). In this
work we study, if the partial volume (PV) correction improves the
estimate of the volume and produces better classification accuracy
when used as a biomarker.

Initialization of transformations to atlases

In the standard multi-atlas segmentation, the unseen data (in
unseen data space) is non-rigidly registered directly to each atlas (in
atlas space), or vice versa producing the transformation TUA. In this
work, we propose to perform non-rigid registration via a separate
template as an inter-mediate step between atlas and unseen data
spaces. The approximation of the transformation unseen-to-atlas, TUA,
is generated by the concatenation of the transformations unseen-to-
template TUT and template-to-atlas, TTA,i, (the parameter i indicates
the index of an atlas):

T�
UA;i = TUT -TTA;i:

As the transformations TTA,i are independent on the unseen data,
they can be pre-computed. The transformation TUT is computed
already during the atlas selection step (Fig. 1). Therefore, no extra
registration steps are needed to generate T⁎UA,i. Our non-rigid
registration tool outputs a displacement vector for each voxel making
the concatenation simple. Tri-linear interpolation is used in concat-
enating the displacement vectors.

The transformation T⁎UA,i is used as an initialization for the accurate
transformation TUA,i . Computing the TUA,i is exactly similar to our
multi-atlas segmentation protocol (Lötjönen et al., 2010) except that
the computation of the transformation is not initialized by the identity
transformation but by an already quite good approximation of the
final transformation T⁎UA,i. This means that much less iterations are
needed in subsequent non-rigid registration as only small updates are
required to the transformation.

Partial volume modeling

The expectation maximisation algorithm used is described in
detail in Appendix A. In this work, we used the method proposed by
Tohka et al. (2004) to estimate the amount of partial volume effect in
each voxel. In addition to real tissue classes, hippocampus (HC),
cerebrospinal fluid (CSF), gray-matter (GM) and white-matter (WM),
mixed classes HC–CSF and HC–WMwere used in the EM classification.
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As the intensity values of the GM and HC are approximately equal, the
class HC–GM was not used. The prior probabilities of mixed tissue
classes were estimated as proposed in (Cardoso et al., 2009). After
computing the probabilities for each tissue class using the EM
classification, the proportion of the tissues in the mixed classes
were estimated. The volume of HC was the sum of tissue proportions
for HC in all voxels (proportion 1 for the real HC class) multiplied by
the voxel size.

Image data

The experimental validation of the developed algorithms was
performed using data from three cohorts. The descriptive statistical
information of the cohorts is shown in Table 1.

ADNI-cohort

The Alzheimer's Disease Neuroimaging Initiative (ADNI) was
launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the progres-
sion of MCI and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials.
The principle investigator of this initiative is MichaelW.Weiner, M.D.,
VAMedical Center and University of California—San Francisco. ADNI is
the result of efforts of many coinvestigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the US and Canada. The initial
goal of ADNI was to recruit 800 adults, aged 55 to 90 years, to
participate in the research—approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people withMCI to be
followed for 3 years, and 200 people with early AD to be followed for
2 years.

We studied T1-weighted 1.5 T and 3 T MR images from all 838
subjects of the ADNI database, http://www.loni.ucla.edu/ADNI. The
ADNI consortium has classified data into three groups: Alzheimer's
patients (AD), mild cognitive impairment (MCI) and cognitively
normal (CN). This information was available for 776 cases. From these
cases, we used 1.5 T images in 595 cases and 3 T images in 181 cases. A
semi-automated segmentation of the hippocampus was provided by
ADNI for 340 cases (297 images using 1.5 T and 43 images using 3 T).
From these 340 cases, the classification information was available for
321 cases. We found 181 cases for which both 1.5 T and 3 T images
were available and acquired within a short period. These images were
used to verify the consistency of the algorithm, i.e., both 1.5 T and 3 T
were segmented and the volumes were compared (a test–retest
study). Finally, we compared the use of the hippocampus volumes in
Table 1
Descriptive statistical information for the cohorts ADNI, Kuopio and GEHC. Abbreviations use
progressive mild cognitive impairment subject, AD = Alzheimer's disease subject, MMSE =

ADNI

CN SMCI PMCI AD

Sample size 216 216 155 189
Age 76.5±5.1 75.6±7.6 75.0±7.0 76.0±7.4
Females [%] 49 34 40 48
MMSE 29.1±1.0 27.2±1.8 26.7±1.7 23.3±2.0

a The age is 68.7±7.6 yrs for the elderly group (ageN55 yrs, N=15) and 37.9±11.5 yrs
classification with atrophy rates computed using the method byWolz
et al. (2010b). We used 478 cases having both 12- and 24-months
follow-up periods for computing the atrophy rates. For these reason,
we defined ADNI sub-cohorts: N=776, N=478, N=340, N=321
and N=181.

The semi-automated protocol is described in detail on the ADNI
website: http://www.loni.ucla.edu/twiki/pub/ADNI/ADNIPostProc/
UCSFMRI_Analysis.pdf. In summary, the protocol consists of three
steps: 1) the user locates manually altogether 44 landmark points
from hippocampi, 2) a commercially available high dimensional brain
mapping tool (Medtronic Surgical Navigation Technologies, Louisville,
CO, USA) is used to map a template brain with individual brains for
producing hippocampal boundaries (Hsu et al., 2002), and 3) possible
segmentation errors are corrected manually by an expert. Although
the segmentation does not represent a real independent manual
segmentation, the bias caused by automation has been minimized as
the registration is driven by manually located landmarks and the
result is finally manually checked. Because fully manual segmentation
of large databases would be an extremely laborious task, the semi-
automated results represent the best estimate of the ground truth
currently available for the reasonable sized dataset (N=340).

The images were acquired using MRI scanners from three different
manufacturers (General Electric Healthcare (GE), Siemens Medical
Solutions, Philips Medical Systems) and using a standardised
acquisition protocol. Acquisition parameters on the SIEMENS scanner
(parameters for other manufacturers differ slightly) were echo time
(TE) of 3.924 ms, repetition time (TR) of 8.916 ms, inversion time (TI)
of 1000 ms, flip angle 8°, to obtain 166 slices of 1.2-mm thickness with
a 256×256matrix. The size of the volumes were from 192×192×160
to 256×256×180 voxels with the voxel size from 0.9×0.9×1.2 mm
to 1.3×1.3×1.2 mm.

The set of atlases used in this work consisted of 30 ADNI images.
The set contained cases fromAD,MCI and CN, 10 from each. One of the
atlaseswas used as a template (76 years old femalewith AD diagnosis,
MMSE=26) in the atlas selection (Fig. 1). We tested different atlases
and chose the atlas giving best results. The use of a mean shape atlas
could improve further the results. As the atlases were a part of the
ADNI cohort, a specific atlas was not used when it was the case being
segmented, i.e., only 29 atlases were used for those cases. Five atlases
were selected in the atlas selection.

In this work, we analyzed only baseline images, i.e., the first images
acquired from a patient during the ADNI study. As ADNI is a
longitudinal study, some MCI patients convert during the study to
AD, denoted PMCI (progressive MCI), and the others remain non-
converted, denoted as SMCI (stable MCI). The ability to classify
correctly the PMCI and SMCI groups from the baseline data reflects the
ability to predict the conversion which is clinically highly interesting.
The mean time and its standard deviation from the baseline to the
time point when the diagnosis was done, i.e., when the diagnosis flag
in the ADNI database was changed, was 18.1±8.9 months. The
follow-up time in the data used was 33.2±8.4 months.

Although ADNI is a large cohort including data from several clinical
centers and data acquired by devices from different manufactures, we
evaluated the robustness of the method using also two other cohorts:
d: CN= cognitively normal, SMCI = stable mild cognitive impairment subject, PMCI =
mini mental state examination.

Kuopio GEHC

SMCI PMCI CN MCI AD

64 42 25 20 27
72.7±4.7 71.3±7.4 68.7±7.6a 72.7±7.1 69.6±7.0
70 62 48 45 55
24.6±3.3 23.2±3.3 29.4±1.0 28.0±0.9 23.3±2.2

for younger group (ageb55 yrs, N=10).

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/twiki/pub/ADNI/ADNIPostProc/UCSFMRI_Analysis.pdf
http://www.loni.ucla.edu/twiki/pub/ADNI/ADNIPostProc/UCSFMRI_Analysis.pdf
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Kuopio and GEHC cohorts. These cohorts are independent on the
ADNI, i.e., the ADNI acquisition protocol has not been followed.

Kuopio-cohort

Kuopio cohort included 106 MCI subjects pooled from population-
based study databases gathered in the University of Kuopio (Kivipelto
et al., 2001, Hänninen et al., 2002). MCI was diagnosed using the
following criteria originally proposed by the Mayo Clinic Alzheimer's
Disease Research Center (Petersen et al., 1995, Smith et al. 1996):
(1) memory complaint by patient, family, or physician; (2) normal
activities of daily living; (3) normal global cognitive function; (4)
objective impairment in memory or in one other area of cognitive
function as evident by scores N1.5 S.D. below the age-appropriate
mean; (5) CDR score of 0.5; and (6) absence of dementia. As in the
ADNI cohort, the MCI subjects who developed AD during the course of
the follow-up were considered as PMCI subjects (N=42) and those
whose status remained stable or improved (i.e., those who were later
diagnosed as controls) were considered having SMCI (N=64).

All the MR images were acquired with two different 1.5 T MRI
scanners in the Department of Clinical Radiology, Kuopio University
Hospital (Julkunen et al., 2010). Two sets of imaging parameters were
used with both scanners. In the first set, the parameters were: coronal
slices with repetition time [TR]=9.7 ms, echo time [TE]=4.0 ms, flip
angle=12°, slice thickness=2.0 mm, field of view=240×240 mm,
voxel volume=1.9 mm3, matrix size=256×256 and number of
slices=128. In the second set, the parameters were: axial slices with
repetition time [TR]=13.5 ms, echo time [TE]=7.0 ms,flip angle=12°,
slice thickness=1.5 mm, field of view=240×240 mm, voxel volu-
me=1.3 mm3,matrix size=256×256 and number of slices=128. The
cohort did not includemanual segmentations. As the voxelswere clearly
anisotropic, we resampled the voxels to isotropic resolution using
simple and fast trilinear interpolation.

GEHC-cohort

The GEHC cohort include of PET and MR data from the GEHC [18F]
flutemetamol Phase II study (Vandenberghe et al., 2010). The study
sample size was 27 clinical probable AD (MMSE 15–26, CDR 0.5–2), 20
amnestic MCI (MMSE 27–30, CDR 0–0.5) and 15 elderly CN
(ageN55 yrs) and 10 younger CN (ageb55 yrs). For this work, we
used only theMR data from this cohort. TheMR images were obtained
at four imaging sites using both 3 T and 1.5 T scanners. Imaging was
performed using a 3D MPRAGE T1 weighted sequence with isotropic
voxels not larger than 1 mm3. The actual imaging parameters varied
slightly across the different scanners. The cohort did not include
manual segmentations.

Evaluation tools

Because the Dice similarity index (SI) is one of the most widely
used measures in assessing the performance of segmentation, it will
be used in the comparison:

Similarity index SIð Þ = 2
A ∩ B
A + B

where A and B represent automatically and semi-automatically
generated segmentations. The similarity index gives the value zero
if the segmentations are not overlapping, and the value one for the
perfect overlap. In addition, intra-class correlation coefficients
between hippocampus volumes based on automatic and semi-
automatic segmentations were computed.
When the consistency of the segmentations was studied, the test–
retest variability (in %) was defined as:

v1:5−3 %ð Þ = 100
V1:5−V3j j

V1:5 + V3ð Þ = 2 ;

where V1.5 and V3 are the volumes of hippocampus computed from
1.5 T and 3 T images. In addition, the correlation coefficient between
V1.5 and V3 was defined.

One way to evaluate segmentation indirectly is to study the
performance of the volumes in classifying subjects to correct
diagnostic groups (cognitively normal, stable MCI, progressive MCI
or Alzheimer's disease patient; measured by the correct classification
rate, CCR). More robust and accurate segmentation should perform
better in classifying patients if a measure extracted from images is a
good biomarker for detecting a disease. In the classification, we used
the simplest possible linear classifier:

C = β0 + β1F1;

where βi is the weight of the feature (independent variable) F1
(volume of hippocampus) and C represents a dependent variable used
to predict the class, e.g. class AD if C≥0 and class CN if Cb0. When
building a linear classifier, the task is to define the weights βi.
Typically, they are obtained by solving the matrix equation β=F+C
where the matrix F and the vector C consist of rows retrieved from
data samples, i.e., feature values and class information of different
cases, and the superscript ‘+’ indicates pseudo-inverse. A widely used
extension of this approach is logistic regression, where the vector C is
formulated as a probabilitymeasure. However, in the linear classifiers,
the way to compute the pseudo-inverse of F affects the result andmay
lead to a sub-optimal classifier. Therefore, we chose a method where
we define the weights βiusing an extensive search producing an
optimal linear classifier, i.e., we tested all possible combinations of
weights and chose the one producing the highest classification
accuracy.

Separate training and test sets were chosen to avoid over-learning.
We used 2/3 of cases in the training set to build the classifier and 1/3
of cases to test the correct classification rate (CCR). As two randomly
chosen training and test sets may produce very different classification
results, we repeated the selection 1000 times and computed different
statistical measures (mean, standard deviation, confidence interval)
for the results.

The statistically significant differences between groups were
studied by Wilcoxon Rank Sum test for paired samples (Matlab
R2009b, The MathWorks Inc, USA). The difference was considered
statistically significant if pb0.05.

Results

ADNI cohort

Table 2 shows the similarity index and its standard deviation, the
intra-class correlation coefficient of volumes and computation times
for two computers: 8-core workstation (Intel Xeon E5420 @
2.50 GHz) and dual-core laptop (Intel Core2 Duo P8600 @ 2.4 GHz).
When compared with the accuracy between two different raters,
reported in four publications, our method gives comparable results.
The computation times are also on the range that is clinically
acceptable.

There is no threshold for the similarity index to define when
segmentation failed but in general values over 0.7 can be considered
good (Bartko, 1991). Using our method, 3.1% of segmentations had
SIb0.8 and only 0.6% of segmentations produced SIb0.7 demonstrat-
ing the robustness of our method. Fig. 2 shows the Bland–Altman plot
for semi-automatically and automatically defined volumes containing



Table 2
Similarity index, correlation coefficient of volumes and computation times.

Hippocampus from MRI Similarity
index

Correlation
of volumes

Time 8
cores

Time 2
cores

Proposed method
(ADNI N=340)

0.869±0.035 0.94 1 min 25 s 1 min 59 s

Manual segmentation (inter-rater):
Morra, NeuroImage, et al.,
2008 (N=21)

0.85 0.71

van der Lijn, NeuroImage,
et al., 2008 (N=20)

0.86 0.83

Leung, NeuroImage,
et al., 2010 (N=15)

0.93 0.95

Niemann, Psych. Res, et al.,
2000 (N=20)

– 0.93
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no clear outliers. Semi-automatic segmentations (N=340) contained
297 images using 1.5 T and 43 images using 3 T. The similarity index
computed separately for 1.5 T and 3 T images was 0.870 and 0.859,
respectively (the difference is statistically significant). Fig. 3 shows
both semi-automatic (top row) and automatic (bottom row)
segmentations superimposed on the images for two cases having
SI≈0.87 (a–b) and for four cases having the lowest SI values (c–f).

The test–retest variability v1.5–3 between the hippocampus
volumes segmented from 1.5 T and 3 T images (N=181) was 4.23±
10.7%. The results contained two outliers: the background of 3 T
images was extremely noisy in those two cases and the affine
registration between the template and the 3 T image failed when
using a simple algorithm based on the maximization of normalized
mutual information using a gradient descent optimization. When
these two outliers were excluded from the results, the variability was
3.17±2.47%. The corresponding value for semi-automatic vs. auto-
matic segmentations was 4.69±3.94%. The intra-class correlation
coefficient between1.5 T and 3 T volumeswas 0.98. The Bland–Altman
plot is shown in Fig. 4. These results demonstrate a high consistency of
the segmentations.

Fig. 5 shows the distributions of hippocampus volumes computed
for the ADNI data. The plots on the left and on the center are for the
ADNI N=321 cohort when using semi-automatically and automat-
ically generated segmentations, respectively. The distributions look
very similar. The plot on the right shows the distribution for thewhole
ADNI N=776 cohort.

The mean classification accuracy and its standard deviation are
shown for the cohorts N=321 and N=776 in Tables 3 and 4,
respectively. When using semi-automatically segmented volumes
(Table 3), the classification accuracies were 82.5% for the CN and AD
Fig. 2. Bland–Altman plot for semi-automatically and automatically defined volumes in
groups and 71.4% for the SMCI and PMCI groups. The corresponding
values for the automatic volumes were 83.4% and 64.9% which shows
that semi-automatic volumes gave slightly lower classification rate for
the CN–AD classification but higher for the SMCI–PMCI classification.
The differences were statistically significant for all four columns in
Table 3 when comparing semi-automatic and automatic segmenta-
tions. The results show also that partial volume correction improves
the classification accuracy (difference statistically significant).

The remarkable difference in the classification rate of the SMCI and
PMCI groups when using semi-automatically or automatically defined
volumes requires detailed considerations (Table 3). The better quality
of the semi-automatic segmentations in the ADNI cohort might
explain the difference but we made an interesting finding which
explains most of the difference. Inspecting more carefully the semi-
automatic segmentations we noticed that the classification accuracy
for the cases surrounding the optimal threshold (3.57 ml) was very
high. For example, the classification accuracy was 93% for 15 cases
closest to the optimal threshold (the cases were within the range
3.48–3.66 ml). By definition, the classification accuracy should be
close to 50% near the threshold, i.e., equal to tossing a coin. The
probability of classifying correctly at least 14 cases out of 15 cases
randomly is 0.05%, being an extremely improbable event. We are not
aware of all details by which semi-automatic segmentations were
performed in ADNI but it seems probable that there is somemistake or
a very improbable event has appeared. Table 5 shows results when
the cases with semi-automatically defined hippocampus volumes
between 3.48 and 3.66 ml were excluded. The difference between
results computed using semi-automatically and automatically gener-
ated volumes becomes clearly smaller (the difference still statistically
significant). We did not observe by visual inspection any systematic
errors in automatic or semi-automatic segmentations that could
explain this issue.

Fig. 6 shows the receiver operating characteristic (ROC) curve for
the semi-automatic and automatic segmentations. The areas under
the curve (AOC) are 89.0% and 88.9% for the classification CN-AD, and
72.8% and 72.4%, for the classification SMCI–PMCI, when using semi-
automatic and automatic segmentations, respectively. These values
indicate that the performance is very similar. The difference observed
in Table 3 can be seen as a ‘hill’ in themiddle of the SMCI–PMCI curves.

We computed for comparison results using also our previous
version (Lötjönen et al., 2010) for the cohort N=340/321 (in the
previous report N=60). The similarity index was 0.872 (previous
0.885), the correlation coefficient was 0.95 (previous 0.94) and the
classification accuracies were 84.4% (training set) and 80.2% (test set)
for the CN and AD groups, and 68.6% (training set) and 63.4% (test set)
for the SMCI and PMCI groups. The values are corresponding to the
the ADNI N=340 cohort. Horizontal lines show the mean±2*standard deviation.
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Fig. 3. Segmentation results of six cases from which the first two show one cognitively normal (a) and one AD case (b) with average segmentation accuracy (SI≈0.87) and the rest
four (c–f) the cases with the lowest SI values from the cohort N=340. The top and bottom rows show the semi-automatic and automatic, respectively, segmentations superimposed
on the image. On the locations where the thickness of the yellow line is higher than a voxel, the surface and the image plane are partially parallel and the surface cross-sects several
neighboring voxels. The left and right hippocampi are shown in a sagittal view and in a transaxial view for each case. The similarity index is reported both for the left and right sides,
the volume of hippocampi when using semi-automatic and automatic segmentations (S/A), and the ADNI classification of the patient (C): a) SI(L/R)=0.844/0.868, V(S/A)=4.3/
4.4 ml, C=CN, b) SI(L/R)=0.852/0.892, V(S/A)=3.1/3.5 ml, C=AD, c) SI(L/R)=0.743/0.671, V(S/A)=2.8/2.9 ml, C=PMCI, d) SI(L/R)=0.702/0.817, V(S/A)=4.5/4.5 ml,
C=PMCI, e) SI(L/R)=0.654/0.697, V(S/A)=4.1/3.8 ml, C=not known, and f) SI(L/R)=0.635/0.863, V(S/A)=3.3/3.3 ml, C=not known.
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values reported in Tables 2 and 3. The computation time with a laptop
computer was 4 min 24 s which is more than double compared with
the approach proposed in this work.

We computed the hippocampus volumes for the ADNI cohort
using the method presented in (Wolz et al., 2010a). In the ADNI
(N=321) cohort, the classification accuracy was 75.0% for the CN and
AD groups, and 60.0% for the SMCI vs. PMCI groups, and the intra-class
correlation coefficient was 0.88. The corresponding values in this
work were 83.4%, 64.9% and 0.94, respectively (Tables 2 and 3). In the
ADNI (N=776) cohort, the classification accuracy was 71.6% for the
CN and AD groups, and 60.0% for the SMCI and PMCI groups. The
corresponding values in this work were 79.7% and 63.3%, respectively
(Table 4). The improvements in classification accuracy achieved with
the proposed method were statistically significant.

We compared the classification performance of the hippocampus
volume from this work with the atrophy rates computed by the
method proposed by Wolz et al. (2010b). The results are shown in
Table 6. We used the ADNI cohort (N=478) and computed atrophy
rates using 12 months and 24 months follow-up period. The data with
24-months follow-up period produced clearly the best accuracy



Fig. 4. Bland–Altman plot for hippocampus volumes computed using 1.5 T and 3 T images in the ADNI N=181 cohort. Horizontal lines show the mean±2*standard deviation.
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(difference statistically significant compared with the hippocampus
volume and the 12-months follow-up). The hippocampus volume and
the 12-months follow-up period produced comparable classification
accuracies: the atrophy rate produced higher accuracy for the CN and
AD groups whereas the hippocampus volume was better in the SMCI
and PMCI groups for the test sets.

Kuopio and GEHC cohorts

As Kuopio and GEHC cohorts do not include manual segmenta-
tions, the validation will be based only on the classification accuracy.
Fig. 7 shows the distributions of hippocampus volumes in the Kuopio
and GEHC cohorts. The classification accuracies are shown in Table 7.
The 30 atlases from the ADNI cohort were used to make the multi-
atlas segmentations. The accuracies correspond to results reported in
Tables 3–5 demonstrating the robustness of the method also in
different data.

Discussion

In this work, we proposed and validated a method for automatic
segmentation of the hippocampus from MRI images. Our final
objective is to develop a tool for helping decision making in real
Fig. 5. Boxplots computed for volumes of hippocampus (CN= cognitively normal, SMCI = st
using semi-automatic (left) and automatic (center) segmentations in the ADNI cohort N=
clinical conditions. A segmentation tool must be accurate, robust and
fast enough to be attractive in clinical practice. Our preliminary
analysis shows that it is possible to generate fully automatically
segmentations where the accuracy corresponds to semi-automatic
segmentation, and the computation time is two minutes in a standard
laptop computer. The performance of themethodwas evaluated using
data from three cohorts consisting of altogether about 1000 cases. The
parameters of the method were not tuned between the cases.

The performance of the method was validated in four aspects. The
first two performance measures were the overlap of automatically
and semi-automatically generated segmentations (measured by the
similarity index), and the similarity of automatically and semi-
automatically defined hippocampus volumes (measured by the
correlation coefficient). They require semi-automatic segmentations
which were available for 340 cases, only in the ADNI cohort. The
similarity index 0.87 and the intra-class correlation coefficient 0.94
(the Pearson correlation 0.96) obtained in our study correspond to
inter-rater results produced in different studies (Table 2). The
following values (SI=similarity index, r=correlation coefficient)
have been reported for other automatic methods: SI=0.87 (Chupin
et al., 2009a), SI=0.89, r=0.83 (Collins and Pruessner, 2009),
SI=0.89 (Leung et al., 2010), SI=0.89, r=0.94 (Lötjönen et al.,
2010), SI=0.85, r=0.71 (Morra et al., 2008), and SI=0.85, r=0.81
able MCI-patient, PMCI-progressive MCI-patient and AD=Alzheimer's disease patient)
321 and automatic segmentations in the ADNI cohort N=776 (right).

image of Fig.�4


Table 3
The mean classification rate (the highest value of the column in bold) and standard
deviation for the ADNI N=321 cohort using both semi-automatic and automatic
segmentations with and without partial volume (PV) correction. The results are
reported both for the training and test sets. The difference between semi-automatically
and automatically (both with and without PV correction) generated volumes is
statistically significant for all columns (not indicated in the table). The statistically
significant difference with and without partial volume correction is shown by ‘*’.

Classification rate CN(N=89)–AD(N=82) SMCI(N=76)–PMCI
(N=75)

ADNI (N=321) Training set Test set Training set Test set

Semi-automatic volumes 85.5±1.9 82.5±4.4 72.9±2.5 71.4±5.4
Automatic volumes — No PV 84.5±2.0 82.1±4.5 68.5±2.5 63.7±5.8
Automatic volumes — PV 84.7±2.0* 83.4±4.4* 68.9±2.5* 64.9±6.1*

Table 5
The mean classification rate and standard deviation for the ADNI N=321 cohort using
both semi-automatic and automatic segmentations. The columns 2 and 3 show the
result for the original cohort (equal to Table 3) and the columns 4 and 5 when all cases
with manually defined volume between 3.48 and 3.66 ml were excluded.

Classification rate SMCI–PMCI SMCI–PMCI

ADNI (N=321) Training set Test set Training set Test set

N=106 N=52 N=96 N=47

Semi-automatic volumes 72.9±2.5 71.4±5.4 71.6±2.5 67.9±5.4
Automatic volumes 68.9±2.5 64.9±6.1 69.9±2.6 64.6±6.1
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(van der Lijn et al., 2008). The magnitude of the values corresponds to
ours but a detailed comparison is impossible as the datasets used are
different.

The third measure evaluated the consistency of segmentations
using 1.5 T and 3 T images from 181 cases. The test–retest variability
was 3.2% without two outliers (4.2% with outliers) and the intra-class
correlation coefficient was 0.98 which indicates the good consistency
of the method even for different strengths of magnetic field.

The fourth approach evaluated the performance in classifying
subjects to correct diagnostic groups. Chupin et al. (2009b) reported
recently classification accuracy of 76% for CN–AD (N=311) and 65% for
SMCI–PMCI (N=294). Using our automatic tool for the ADNI cohort
N=321, the correct classification rates were 83% and 65% for CN–AD
and SMCI–PMCI classifications, respectively. The corresponding values
for semi-automatic segmentations were 83% and 71%. However, we
demonstrated an improbable distribution of volumes computed semi-
automatically for the SMCI andPMCI cases near the classificationborder.
When this bias was removed, the classification accuracy decreased to
68% but the value is still higher by 3% units than in the automatic
method. There are two obvious explanations to the difference. First,
semi-automatic segmentations in ADNI are just highly consistent and of
good quality— not reached by the automatic method. However, we are
not aware of details of the segmentation protocol and whether the
accuracy corresponds to the inter-rater variability reported in other
studies (Table 2). Second, the size of the dataset is still relatively limited
(training set 96 cases and test set 47 cases) causing inaccuracies to CCR
values. The estimate of the mean CCR was relatively precise as the
standard error computed for 1000 repetitions is small: the mean CCR
was 64.2–65.0% (95%–confidence interval). However, the variability of
the CCR values was high: CCR values varied between 53 and 77% (95%-
confidence interval). This means that using a different subset from the
ADNI or a totally different dataset might produce clearly different
results. Even using the whole ADNI, i.e., 371 SMCI and PMCI cases from
which 249 cases in the training set and 122 cases in the test set, the CCR
values varied still between 56 and 71% (95%-confidence interval). In
otherwords, ifwehad a dataset of 371 cases andwedivided it randomly
to training and validation (test) sets, as done typically in life-science
studies, we could obtain any CCR value between 56% and 71% with a
reasonable probability. Therefore, the size of the database hinders
Table 4
The mean classification rate and standard deviation for the ADNI N=776 cohort using
automatic segmentations with and without partial volume (PV) correction. The results
are reported both for the training and test sets. The statistically significant difference is
shown by ‘*’.

Classification rate CN(N=216)–AD
(N=216)

SMCI(N=155)–PMCI
(N=189)

ADNI (N=776) Training set Test set Training set Test set

Automatic volumes — No PV 80.3±1.4 79.1±3.0 65.3±1.6 62.4±3.7
Automatic volumes — PV 80.6±1.3* 79.7±2.8* 65.4±1.7* 63.3±3.9*
certainly the final conclusions. In addition, the classification results of
SMCI and PMCI groups will change in future when the follow-up time
gets longer and more cases convert from the SMCI to the PMCI group.
When this study was performed, the follow-up time was on average
33.2±8.4 months which is still a relatively short time period in the
context of Alzheimer's disease.

In the PredictAD project (www.predictad.eu), we are developing a
software tool for decision support using heterogeneous patient data
(clinical, imaging and electrophysiological data) including also tools
for image segmentation (Mattila et al., 2010). Our objective is that
when a clinician is inspecting the patient data, she/he could analyze
also images online without long waiting times and especially a need
for reserving another session just for studying segmentation results.
As Alzheimer's disease is not an acute disease, the requirement of fast
computation is related mostly to clinical usability: fast methods make
simple and fluent clinical work-flows easier to implement. The
computation time may not be of importance for the productivity
and efficiency at patient visits in amemory clinic but can be an issue in
a neuroradiology department with several thousand studies per year.
Despite the computation time requirement, the segmentation
accuracy and robustness are the most important requirements in
the clinical diagnostics. The computation time could be also an issue,
e.g., in time-critical brain surgery. In that context, the hippocampus is
not a highly interesting structure but as our framework is fully generic
it can be used to segment also other brain structures, as done, for
example, in (Lötjönen et al. 2010).

This work made two technological contributions. First, we
proposed to use a separate template space between the patient data
and atlas for initializing the transformation from the atlas to patient
data. This approach allowed clear improvements in the computation
Fig. 6. ROC-curve for the classification performance using semi-automatically and
automatically generated volumes of hippocampus in the cohort N=321.

http://www.predictad.eu


Table 6
The classification rate for the ADNI (N=478) cohort using the hippocampus volumes
from this work and the atrophy rates from the work by Wolz et al. (2010b). The
differences between all rows of each column are statistically significant.

Classification rate C-AD SMCI–PMCI

ADNI (N=478) Training set Test set Training set Test set

N=171 N=84 N=149 N=73

Hippocampus volume 80.9±1.7 78.2±3.7 63.1±2.2 59.5±5.1
Atrophy rate — 12 months 82.0±1.7 79.6±3.6 65.1±1.9 58.6±4.1
Atrophy rate — 24 months 89.0±1.4 86.8±3.0 67.3±2.1 64.5±4.8

Table 7
The mean classification rate and standard deviation for the Kuopio (N=106) cohort in
the SMCI–PMCI classification and for the GEHC (N=52) cohort in the CN–AD
classification.

Classification rate Training set Test set

Kuopio (N=106): SMCI–PMCI 69.4±3.0 66.2±7.6
GEHC (N=52): CN–AD 86.1±3.3 80.3±7.9
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time andmade it possible to segment images in less than twominutes.
Second, the need for the inclusion of partial volume correction is
intuitively clear especially for small objects, such as, the hippocampus.
Our results show that the partial volume correction improves the
classification accuracy (difference statistically significant). Although
the improvement is only about 0.5–1% units, it is worth using as the
extra computation time needed is only a few seconds. On the other
hand, the correlation coefficients of volumes between semi-automatic
and automatic (without and with PV correction) were very similar
(difference 0.001). As semi-automatic segmentations are not real gold
standards and are not performed in sub-voxel accuracy, there is no
clear reason to expect higher correlation for PV corrected volumes.
The similarity indices were not compared as the computation of the
index between binary and fuzzy segmentations has not been defined.

Differences in the classification accuracies between semi-auto-
matic and automatic segmentations were statistically significant.
Semi-automatic segmentation performed better in the SMCI–PMCI
classification and automatic segmentation in the CN-AD classification.
However, this result requires careful interpretations. The statistical
analysis is performed for 1000 CCR estimates produced by 1000
randomly selected training and test sets. As the number of samples is
high, even tiny and possibly clinically non-relevant differences
become statistically significant. In addition, the difference is shown
only for the used subset of the ADNI. As described above, the result
could be clearly different if a different dataset was used. For example,
Table 6 shows results which can be explained by this reasoning:
atrophy rate over 12-months performed better than the hippocampus
volume in the training set of the SMCI and PMCI groups while the
hippocampus volume was better in the test set.

Current diagnostic criteria (Dubois et al., 2007; Waldemar et al.,
2007) for probable Azheimer's disease suggest estimating the atrophy
Fig. 7. Boxplots computed for volumes of hippocampus (CN=cognitively normal, SMCI=
stable MCI-patient, PMCI-progressive MCI-patient and AD=Alzheimer's disease patient)
using the Kuopio (N=106) and GEHC (N=72) cohorts.
of the brain fromMRI images. As hippocampus is known to be among
the first areas affected by the disease, automatic measurement of its
volume is clinically interesting. In this work, we demonstrated that
the accurate and robust computation of the volume is possible
automatically in a clinically acceptable time. Our results indicated a
good correspondence in semi-automatically and automatically gen-
erated segmentation accuracies although some space for discussions
remained especially when analyzing the classification accuracies. The
variability in the data was just too high even we used larger databases
than used in most previous studies. As a conclusion, the results were
promising but they must be confirmed with more cases in clinical
conditions.
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Appendix A. Expectation maximisation formulation

The labeling f of the image I minimizing an energy functional was
searched:

f = arg min
f

Eintensity fð Þ + αEpriorS fð Þ + βEpriorR fð Þ;

where Eintensity measures the likelihood that observed intensities are
from specific classes and EpriorS and EpriorR (see definitions below)
describe the prior knowledge of class labels. Different values for the
parameters α and β were tested: in this work the values α=1 and
β=0.1 were used. The segmentation accuracy was not, however, very
sensitive to the parameter values.

http://www.fnih.org
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The intensity of each structure k was assumed to have a
Gaussian density function, described by the mean μ and standard
deviation σ:

Eintensity = −∑
p∈I

lnp Ip j fp = k
� �

;

where

p Ipj fp = k
� �

=
1ffiffiffiffiffiffi
2π

p
σk

e
− Ip−μkð Þ2

2σ2
k :

The parameters μk and σk were estimated from the target volume
by weighting each voxel with the spatial prior probability that it
belongs to the class k. Following van der Lijn et al. (2008), our spatial
prior probabilities are obtained from a subject-specific probabilistic
atlas built from the labels obtained from multi-atlas segmentation
(Heckemann et al., 2006). With multiple (N) label maps f j, the prior
Fig. 8. Probabilistic atlases used as spatial priors in the expectation maximization
segmentation: a) original MR image, and the probabilistic atlas of b) CSF, c) gray-matter,
d) white-matter and e) hippocampus.
probability for a voxel p of its label being the label from the structure
(class) k is therefore:

p fp = k
� �

=
1
N

∑
j=1; ::;N

1; iff jp = k

0; iff jp ≠k
:

8<
:

Fig. 8. shows the spatial prior probability maps computed for CSF,
gray-matter, white-matter and hippocampus. In this work, the
hippocampus was modeled using only one Gaussian distribution
expecting homogeneous signal from the structure. In reality, the
hippocampus contains substructures which become visible in high-
quality images. Different spatial priors could be defined in that case
for these substructures. However, we demonstrated that the proposed
method produces satisfactory results for both 1.5 T and 3 T images
used in the typical current clinical settings.

The prior energy consisted of two components: spatial prior and
regularity prior. The spatial prior was defined as follows:

EpriorS = −∑
p∈I

lnp fp = k
� �

:

The regularity prior, based on Markov Random Fields, was defined
for keeping the structures smooth. The formulation described in
(Tohka et al., 2004) was used:

EpriorR = ∑
p∈I

∑
q∈Np

apq
d p; qð Þ ;

where Np is the 6-neighborhood around voxel p, d(p,q) is the distance
between centers of voxels p and q (in 6-neighborhood always 1), and

apq =

−2 fp = fq

−1 fp and fq share a component

1 otherwise

:

8>>>><
>>>>:

The classification algorithm used was as follows (Lötjönen et al.,
2010):

1. Estimate model parameters mean μ and standard deviation σ
(maximisation step of the EM algorithm, M-step).

2. For each voxel p∈Ι, define classes f in the 6-neighborhood including
also voxel p.

3. Classify voxel p to a class from f according to the maximum a
posterior probability (expectation step of the EM algorithm, E-step).

4. Iterate until the segmentation does not change.
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