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We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of
segmentation are considered. We study different similarity measures used in non-rigid registration. We
show that intensity differences for intensity normalised images can be used instead of standard normalised
mutual information in registration without compromising the accuracy but leading to threefold decrease in
the computation time. We study and validate also different methods for atlas selection. Finally, we propose
two new approaches for combining multi-atlas segmentation and intensity modelling based on
segmentation using expectation maximisation (EM) and optimisation via graph cuts. The segmentation
pipeline is evaluated with two data cohorts: IBSR data (N=18, six subcortial structures: thalamus, caudate,
putamen, pallidum, hippocampus, amygdala) and ADNI data (N= 60, hippocampus). The average similarity
index between automatically and manually generated volumes was 0.849 (IBSR, six subcortical structures)
and 0.880 (ADNI, hippocampus). The correlation coefficient for hippocampal volumes was 0.95 with the
ADNI data. The computation time using a standard multicore PC computer was about 3–4 min. Our results
compare favourably with other recently published results.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Brain MR imaging is playing an important role in neuroscience.
Neurodegenerative brain diseases mark the brain with morpholog-
ical signatures; detection of these signs may be useful to improve
diagnosis, particularly in diseases for which there are few other
diagnostic tools. For example, early and significant hippocampal
atrophy in people who have memory complaints points to a
diagnosis of Alzheimer's disease. Quantitative analysis and objective
interpretation of images usually require segmentation of various
structures from images. Reliable and accurate segmentation is a
prerequisite for comprehensive analysis of images. Current state-of-
the-art brain segmentation algorithms can be classified into
algorithms that label voxels (a) into brain/non-brain (Ségonne et
al., 2004; Smith, 2002); (b) into different tissue types such as white
).
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matter (WM), grey matter (GM), or cerebral spinal fluid (CSF)
(Ashburner and Friston, 2005; Bazin and Pham, 2007; Pham and
Prince, 1999; Scherrer et al., 2008; van Leemput et al., 1999; Zhang
et al., 2001); or (c) algorithms that identify anatomical areas, e.g.,
hippocampus, thalamus, putamen, caudate, amygdala, and corpus
callosum (Bazin and Pham, 2007; Chupin et al., 2009; Corso et al.,
2007; Desikan et al., 2006; Fischl et al., 2002; Heckemann et al.,
2006; Klein et al., 2005; Morra et al., 2008; Scherrer et al., 2008).

Atlas-based segmentation is a commonly used technique to
segment image data. In atlas-based segmentation, an intensity
template is registered non-rigidly to a target image and the resulting
transformation is used to propagate the tissue class or anatomical
structure labels of the template into the space of the target image.
Many different approaches have been published using registration-
based segmentation, for example, for segmenting subcortical
structures (Avants et al., 2008; Bhattacharjee et al., 2008; Han and
Fischl, 2007; Pohl et al., 2006). A comparison of different atlas-based
segmentation algorithms was recently published by Klein et al.
(2009). A review of registration techniques is presented in
Gholipour et al. (2007).

The segmentation accuracy can be improved considerably by
combining basic atlas-based segmentation with techniques from
machine learning, e.g., classifier fusion (Heckemann et al., 2006;
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Klein et al., 2005; Rohlfing et al., 2004; Warfield et al., 2004). In this
approach, several atlases from different subjects are registered to
target data. The label that the majority of all warped labels predict
for each voxel is used for the final segmentation of the target image.
Babalola et al. (2008) compared in a recent study different algo-
rithms for the segmentation of subcortical structures. They found
that multi-atlas segmentation produced the best accuracy from the
algorithms tested. However, the major drawback of multi-atlas
segmentation is that it is computationally expensive, limiting its
every day use in clinical practice.

Several factors affect the segmentation accuracy and computation
time in multi-atlas segmentation (Fig. 1). First, all atlases are non-
rigidly registered to the target (patient) image. During the non-rigid
registration, an atlas is deformed in such a way that a similarity
measure between the atlas and the target data is maximised. The
selection of the similarity measure and the deformation model are
central components in optimising the performance of non-rigid
registration. A prolific number of solutions are available for similarity
measures and for ways to deform the atlas. In this work, we study
similarity measures although the deformation model also plays an
important role. Second, when themajority voting is applied after non-
rigid registration, the objective is to keep the number of atlases as low
as possible because the computation time increases correspondingly.
As shown in Heckemann et al. (2006), segmentation accuracy
increases in a logarithmic way when new atlases are included, i.e.,
first rapidly and finally very slowly when the number of atlases is
high. For these reasons, a compromise must be made when selecting
the number of atlases. On the other hand, not only the number of
atlases matters but also their quality. If an atlas is very similar to the
target data, the inclusion of this atlas probably increases the
segmentation accuracy more than less similar atlases. Appropriately
implemented atlas selection improves the accuracy of multi-atlas
segmentation (Aljabar et al., 2009). Third, the standard multi-atlas
segmentation does not model and utilise the statistical distributions
of intensities in different structures although this information could
be highly valuable in improving the segmentation accuracy. Combin-
ing multi-atlas segmentation and intensity modelling as a post-
Fig. 1. Steps of multi-atlas segmentation: (I) non-rigid registration used to register all atlases
all voxels, and (III) post-processing of multi-atlas segmentation result by various algorithm
processing step improves the segmentation accuracy (van der Lijn
et al., 2008). This work investigates these three factors in more detail.

The ultimate objective of this study is to develop a segmentation
method for the clinical practice. This means that we aim (1) to
search methods to further improve the segmentation accuracy and
(2) to speed up processing without compromising segmentation
accuracy, in the context of multi-atlas segmentation. To be clinically
feasible, the automatic segmentation algorithm should produce
accuracy comparable with manual segmentation made by an expert,
and require only a few minutes computation time in a stand-alone
PC workstation. The major contribution of this work is the opti-
misation of the whole multi-atlas segmentation pipeline. We deve-
lop and compare different (1) similarity measures in non-rigid
registration, (2) atlas-selection methods, and (3) methods to com-
bine multi-atlas segmentation and intensity modelling.

In this article, methods for non-rigid registration, atlas-selection,
and combination of multi-atlas segmentation and intensity model-
ling are first described. This is followed by describing the expe-
riments to assess the multi-atlas segmentation pipeline. Finally,
results for two data cohorts are shown and discussed. Part of the
research presented in this work appeared previously in conference
articles (Lötjönen et al., 2009; Wolz et al., 2009).

Materials and methods

In this section, the whole pipeline for multi-atlas segmentation is
described: pre-processing, non-rigid registration, atlas selection, and
combination of multi-atlas segmentation and intensity modelling as a
post-processing step.

Pre-processing

Intensity normalisation of atlases
The intensity values of CSF, GM, and WM in the atlases were first

normalised; the mean intensity values of CSF, GM, and WM were
computed and mapped to pre-defined intensity values (see details
in Intensity difference as a similarity measure section).
to patient data, (II) classifier fusion using majority voting for producing class labels for
s taking into account intensity distributions of different structures.
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Affine registration
Atlases and target images were registered using 9-parameter

affine transformation. Normalised mutual information (NMI)
(Studholme et al., 1997) was maximised between images using a
gradient-descent algorithm. NMI was used because intensities were
not yet normalised between atlases and target image making the
use of intensity differences unstable as a similarity measure.

Inhomogeneity correction
Intensity inhomogeneities were removed from the images

using the algorithm proposed by Studholme et al. (2004). The
bias field was obtained by dividing intensity values of a low-pass
filtered image by intensity values of a low-pass filtered template,
which had been registered non-rigidly to the image. As the images
were, at this point, only affinely registered, the bias field was
estimated within the white matter region after two morphological
erosion operations had been performed. In addition, the mean and
standard deviation were computed for the bias field, which was
modelled as a multiplicative term. Values exceeding 95% confi-
dence interval were excluded. Finally, the bias field in other
regions was extrapolated and low-pass filtered. In addition to
inhomogeneity correction, the algorithm performs intensity nor-
malisation as intensities in the WM region become approximately
equal.

Non-rigid registration

Background
Normalised mutual information (NMI) (Studholme et al., 1997)

is a widely used similarity measure for atlas-to-image registration
(Heckemann et al., 2006; van der Lijn et al., 2008). In this work, we
study atlas-to-image registration techniques that replace NMI by a
much simpler and faster intensity difference similarity measure.
Intensity differences have been used as a similarity measure for a
long-time but comparison with NMI and requirements for using it
in atlas-to-image registration need clarification.

The challenge in using the intensity difference is that the
intensity of a specific tissue type can vary across different magnetic
resonance (MR) images even if the same imaging parameters were
used. Therefore, some form of intensity normalisation is needed.
Several approaches have been reported. One strategy is to align the
intensity histograms of images; Nyúl et al. (2000) defined several
landmarks (percentiles and modes) from histograms and matched
the landmarks. Hellier (2003) estimated a mixture of Gaussians
that approximates a histogram, and matched the mean intensities
of the histogram peaks between images. Jäger and Hornegger
(2009) proposed recently a method for normalisation of multi-
spectral images. They computed joint histograms for multi-spectral
images and aligned histograms using non-rigid registration. Spatial
tissue correlations between images can also be used to normalise
intensities. Guimond et al. (2001) estimated the intensity mapping
between two images by a high-dimensional polynomial. The
polynomial minimised the difference between the images in the
least square sense. Their algorithm alternates between intensity
and spatial normalisations. Schmidt (2005) defined, for intensities
of a template image, a scaling factor that minimised the absolute
value of the difference between the template and target images.
The images were assumed to be aligned non-rigidly before the
normalisation. The difference was computed only for regions that
were well aligned. The neighbourhood of each pixel is considered
to be aligned if the local intensity distributions are similar, mea-
sured by their joint entropy. In addition, the computation is only
performed in the region of interest, e.g., in the brain region. In this
work, we propose a technique for intensity normalisation based on
spatial tissue correlations using ideas similar to Guimond et al.
(2001) and Schmidt (2005). We demonstrate two techniques
where spatial and intensity normalisations are done iteratively
during the registration.

Framework for non-rigid registration
In atlas-based segmentation, an atlas image A=A(x, y, z) is

mapped to a target image, I= I(x, y, z). In the following, the
intensity value of the voxel p at location (x, y, z) is denoted by
Ap and Ip. The transformation that maps the atlas to the target
image is denoted by a vector field T=T(x, y, z). In addition to
the intensity values, each voxel p in the atlas includes a label fp,
which defines the tissue class for the voxel. The segmentation of
the target image is produced by transforming the labels fp by the
transformation T.

Non-rigid registration is often formulated as a maximisation or
minimisation problem of the cost function:

E = Edata + γEmodel; ð1Þ

where Edata represents similarity or dissimilarity between atlas and
target image, and Emodel is a regularisation term that constrains the
transformation T to be smooth. We constrained the curvature of the
transformation as defined in Rueckert et al. (1999). The parameter
γ is a user-defined weight that determines the trade-off between
both terms.

Normalised mutual information is one of the most widely used
similarity measures allowing fully automatic registration even of
multi-modal images such as MR and PET. NMI is defined as:

Edata =
H Að Þ + H Ið Þ

H A; Ið Þ ; ð2Þ

where H(A) and H(I) are marginal entropies and H(A,I) is a joint
entropy of the images. In this work, the computation of NMI was
implemented as described in Maes et al. (1997).

The spatial transformations were defined using our in-house
proprietary VolumeWarp registration software package (http://
volumewarp.vtt.fi). The software is based on local registrations and
the multi-resolution framework, an approach very similar to the
method proposed in Andronache et al. (2008). The floating image,
i.e., in our case the atlas, is divided to sub-images, and the
similarity of each sub-image and the target image is maximised by
a rigid registration stage. Linear interpolation is applied to
transformation parameters between sub-images to guarantee a
continuous transformation. One major reason for the improved
speed is the careful optimisation of various components of the
registration. The optimisation of registration includes approxima-
tions and simplifications of different routines, e.g., replacing NMI
by intensity difference, and the maximised usage of the cache
memory.

Intensity difference as a similarity measure
When intensity difference is used as a similarity measure, the

following measure is maximised:

Edata =
X
paA\I

−NTBA
0

p − IpN; ð3Þ

where Ap′=Ap′(x, y, z) is an intensity normalised image at voxel p,
and T ∘ Ap′ denotes a spatially transformed image.

In this work, intensity normalisation was implemented via a
piecewise linear function, m=m(g), which transforms intensity g
to intensity m(g) (Fig. 2). For brain MRI, the mapping function was
determined by defining values for m(gCSF), m(gGM), and m(gWM)
where gCSF , gGM, and gWM are mean intensity values of CSF, GM,
and WM, respectively. As the segmentations of these structures
were included in the atlas, the intensities can be computed easily. If
segmentation is not available, it can be computed using an auto-

http://volumewarp.vtt.fi
http://volumewarp.vtt.fi


Fig. 2. Intensity normalisation via a piecewise linear mapping function, m=m(g). Intensity values are first defined for the CSF (gCSF), gray-matter (gGM) and white matter (gWM),
indicated in the gray-scale histogram of the atlas (on left). The values of the mapping function m(gCSF), m(gGM), and m(gWM) are optimised (demonstrated by arrows, on right) in
such a way that the absolute value of the difference between the target image and intensity normalised atlas is minimised.
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matic tissue classifier, e.g., proposed by van Leemput et al. (1999) or
Pham and Prince (1999). Alternatively, these three values can be
specified manually by the user.

The following iterative algorithm was used during the non-rigid
registration:

1. Optimise the spatial transformation T=T(x, y, z) while keeping
m=m(g) constant

2. Optimise the intensity mapping m=m(g) while keeping T=T
(x, y, z) constant.

3. Go to step 1 if the maximum number of iterations has not been
reached, otherwise stop.

Two approaches were tested for producing the piecewise linear
intensity mapping.

Minimise intensity difference (MIN). The intensity mapping was
optimised by an exhaustive search for the function values m(gCSF),
m(gGM), and m(gWM). We searched for the optimal combination of
these three values by maximising Eq. (3). The mapping function
was modified only gradually during each iteration; the search
range for each value was [m(g) − Δ, m(g) + Δ]. In this work, we
used Δ=9 but other small values could be used as well. The
mapping was unity, g=m(g), in the beginning. Schmidt (2005)
used local intensity distributions to exclude regions where the
alignment of images was not good. In this work, we formed a
histogram from differences and excluded upper quartile (75%
percentile) from the summation. This approach rejects voxels on
the borders where the differences can be high due to misalign-
ments. Alternatively, the differences were weighted by the square
root of distances from the closest borders, computed from distance
maps. However, neither of these strategies improved the segmen-
tation accuracy and was not used in computing the final results.

Direct evaluation (DE). In this approach, the values gCSF, gGM, and
gWM for an atlas were estimated by averaging all voxel values
under corresponding structures weighted by the square root of
the distances from the closest border. The values m(gCSF), m(gGM),
and m(gWM) for the target image were estimated in a similar
way. Because segmentations of CSF, GM, and WM for the target
image were not available, the segmentations of the atlas were
used.

The spatial transformations were defined using data from the
whole head but only the brain region was used for the intensity
normalisation. Intensity normalisation was performed only at the
highest resolution level of the multi-resolution registration.
Atlas selection

Background
In the simplest form, atlases can be selected either randomly

or using all the atlases available. However, in Aljabar et al.
(2009), it was shown that the best multi-atlas segmentation
accuracy is obtained by optimally selecting a subset of the atlases
(about 10–20) instead of using all the atlases. There are several
ways how to intelligently select atlases (Aljabar et al., 2009;
Rohlfing et al., 2004; Wu et al., 2007). Most often, the selection is
done based on an intensity-based similarity measure computed
for the atlases and the target image. In addition, the magnitude of
the deformations from the atlases to the target image (Rohlfing
et al., 2004) and demographic data (Aljabar et al., 2009) have
been proposed for atlas selection. Aljabar et al. (2009) performed
atlas selection in a template space. All atlases and a target image
were registered using a 12-affine transformation to a separate
template. This reduced the computational load significantly, as
compared to atlas selection in a target space, i.e., all the atlases
registered to the target image. Artaechevarria et al. (2009)
demonstrated recently an alternative approach where atlas selec-
tion was not performed but a weigh factor, based on a similarity
measure, was defined for each atlas. They showed that defining
the weights locally produces better results than global weighting.
In STAPLE (Warfield et al., 2004), the performance level of each
atlas is estimated using expectation maximisation (EM) algorithm,
and the individual segmentations are combined by weighting the
atlases based on their performance level.

Atlas selection methods studied
Several methods to select atlases for majority voting were tested.

The simplest way is to randomly select atlases from a database, i.e., to
select n atlases randomly from a set of N atlases, where nbN,
providing a baseline for the selection strategies.

Intensity-based selection methods. In the previous atlas selection
studies using intensity-based measures (Aljabar et al., 2009;
Rohlfing et al., 2004; Wu et al., 2007), normalised mutual
information (NMI) has proven to be the best choice and was
chosen also for this study. The NMI value was computed from the
structures of interest by dilating the binary segmentations of the
structures three times and using the resulting binary image as a
mask for the NMI computation. The dilatation was used for
including the borders of the structures and their small surrounding
into the mask.
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Five methods were used for atlas selection:

AS1. The atlases and the target image were affinely registered to a
single template (in template space), the NMI between each atlas
and target image was computed, and the n atlases with the highest
NMI values were selected for the multi-atlas segmentation
(Aljabar et al., 2009).
AS2. After the affine registration, the atlases and the target image
were non-rigidly registered to a template MRI image. Then, the
NMI values between the deformed target image and deformed
atlases were computed and the n atlases with the highest NMI
values were selected.
AS3. In the third method, multiple templates were used. Three
templates were chosen to represent different subgroups of the
datasets: Alzheimer's disease, mild cognitive impairment and
control subgroups for the ADNI data and three age groups for the
IBSR data (see Image data section below). The target image and
all atlases were non-rigidly registered to each template and the
NMIs were computed between the target image and atlases.
Finally, the atlases were ranked based on the maximum value of
the three NMI values. Our hypothesis is that if the template used
is similar to the atlas and the target image, registration errors
are smaller and the similarity value becomes higher than using a
dissimilar template. All methods 1–3 are fast, requiring only a
small number of affine and non-rigid registrations of the target
image. These registrations can be efficiently computed simulta-
neously with multi-processor computers.
AS4. For comparison, all the atlases were first affinely and then
non-rigidly registered to the target image, requiring notably more
computation time than methods 1–3.
AS5. A well-known STAPLE algorithm presented by Warfield et al.
(2004)was used as a referencemethod. The STAPLEwas applied to
the images that were non-rigidly registered to the target image
(same as in AS4). The binary STAPLEwas applied for each structure
of the IBSR data to decrease computation time as compared to the
multi-class method proposed by Warfield et al. (2004).

Non-image-based selection methods. Atlas selection from non-image-
based data is a tempting option as it does not require any image
registrations. In this study, we tested the utilisation of demographic
information in selection. The information used was age and MMSE
(Mini-Mental State Examination) score. The differences of the values
of the target subject and the atlas subjects were computed, and the
atlases were ranked based on the absolute values of the differences.
The combination of intensity-based and non-image-based measures
was also tested by using weighted sum of the measures. Different
values were tested for the weights and the values producing the
highest segmentation accuracy were chosen.

In addition, we studied the segmentation accuracy if the optimal
set of atlases was selected. This accuracy was then compared to the
results obtained with the atlas selection methods presented above. In
this study, the optimal set of atlases was obtained as follows. The
atlases were added to the multi-atlas segmentation one by one. The
combination that produced the best segmentation accuracy was
determined in each iteration. This was continued until all the atlases
were used. This was repeated for all target subjects, and the
segmentation errors were averaged.

Combined multi-atlas segmentation and intensity modelling

Background
If intensity difference is used as a similarity measure, the regis-

tration algorithms implicitly expect that the intensity distributions
of different structures in an atlas and a target image are fairly
similar. This assumption is not strictly valid in practice. Modelling of
intensity distributions of different structures or tissue types
provides data for classifying voxels; in principle the intensity of
each voxel is compared with the intensity distributions and the
most probable class is chosen using, for example, a Bayesian frame-
work (Han and Fischl, 2007; van Leemput et al., 1999). In many
cases, a probabilistic atlas is used as a priori information to cons-
train the segmentation.

van der Lijn et al. (2008) recently proposed a technique to further
improve the accuracy of multi-atlas segmentation taking into account
this intensity modelling aspect. Their method uses graph cuts to
optimise an energy function based on the following terms: a statistical
intensity model, a spatial prior derived from multi-atlas registrations,
and a regularisation term based on Markov Random Field (MRF).

The use of the graph cuts for optimisation is attractive as it pro-
vides the global minimum or maximum of an energy functional.
However, the segmentation produced is optimal only if the energy
function is able to separate perfectly the structure from the back-
ground, i.e., all assumptions are valid and all necessary parameters can
be estimated correctly. One limitation of the method proposed by van
der Lijn et al. (2008) is the reliance on an intensity model derived
from manual training, which restricts its application to images
acquired with the same MRI sequence.

We used two alternative methods for the problem (1) based on a
modification of the graph cuts approach presented in van der Lijn et al.
(2008) and 2) based on the well-known expectation maximisation
(EM) algorithm (van Leemput et al., 1999).

Graph cuts approach
In Wolz et al. (2009) , we proposed a modified version of van

der Lijns graph cuts approach that does not rely on manual training
and that can be applied to more than one structure of interest. A
Markov Random Field (MRF) is defined for the segmentation of an
unseen image with graph cuts. As in van der Lijn et al. (2008), the a
priori probability of a voxel being in foreground or background of a
structure of interest is determined from a subject-specific probabi-
listic atlas obtained from multi-atlas segmentation. This spatial prior
is combined with an intensity model for foreground and back-
ground that is directly estimated from the target image. This
generalised intensity model makes the approach more robust to a
variation in grey-level intensities resulting from different MRI
sequences and therefore the method applicable to a broader range
of images. For more details of this approach, see Appendix A or
Wolz et al. (2009).

Expectation maximisation (EM) approach
We used energy terms similar to those of van der Lijn et al.

(2008). As in the graph cuts approach, the intensity model was
computed directly from the target volume. The details of the energy
terms are described in Appendix B.

The classification algorithm used was as follows:

1. Estimate model parameters mean μ and standard deviation σ
(maximisation step of the EM algorithm, M-step).

2. For each voxel vp∈V, define classes C in the 6-neighborhood
including also voxel vp.

3. Classify voxel vp to a class from C according to the maximum
a posterior probability (expectation step of the EM algorithm,
E-step).

4. Iterate until the segmentation does not change.

The motivation for defining the classes (C) in the neighbourhood
of each voxel is that the number of possible classes becomes small, in
most cases only two. As only voxels on the borders are processed
during each iteration (number of classes in CN1), the object is
updated in a similar way to the well-known region-growing
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approach. This reduces the need for the regularity prior. Because we
noticed that the use of the regularity prior does not improve the
segmentation accuracy, it was not used in computing the final results.

The algorithm requires that segmentations of objects surrounding
the object of interest are available. Otherwise, the classes C in the
neighbourhood of each voxel cannot be defined. As only hippocampus
segmentations were available in ADNI data (see below), the following
procedure was adopted: WM, GM, and CSF were segmented from the
atlases using the method by van Leemput et al. (1999), and pro-
pagated to the target space using the deformations obtained. Then,
the surroundings of the hippocampus segmentation were replaced by
this tissue segmentation. In this case, the surroundings of the object of
interest did not contain segmentations of anatomical structures but
only tissue classes.

Image data

The experimental validation of the developed algorithms was
performed using data from two publicly available datasets containing
manual segmentations.

IBSR data

T1 weighted MR image volumes from 18 subjects (4 females
and 14 males) with age between 7 and 71 years were used (Fig. 3).
The size of the volumes were 256 × 256 × 128 voxels with the
voxel size from 0.8 × 0.8 × 1.5 mm to 1.0 × 1.0 × 1.5 mm. The
images were spatially normalised into the Talairach orientation
(rotation only). In addition to intensity images, the data contained
two separate segmentations: one with a tissue classification into
Fig. 3. Coronal slices fro
CSF, GM, and WM and another for 34 different structures. In multi-
atlas segmentation, cross-validation was used, that is, the case to be
segmented was left out from the set of atlases which contained
therefore 17 atlases. The MR brain data sets and their manual
segmentations were provided by the Center for Morphometric
Analysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/.

ADNI data

The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organisations, as
a $60 million, 5-year public–private partnership. The primary goal
of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biolo-
gical markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer's disease (AD). Determination of
sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the time
and cost of clinical trials. The principle investigator of this initiative
is Michael W. Weiner, M.D., VA Medical Center and University of
California—San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over
50 sites across the US and Canada. The initial goal of ADNI was to
recruit 800 adults, aged 55 to 90 years, to participate in the
m nine IBSR cases.

http://www.cma.mgh.harvard.edu/ibsr/


Table 1
Demographic data and clinical scores for 60 ADNI cases used in the study; the mean
value and standard deviation are shown.

Number Male/Female Age MMSE

Control 20 6/14 76.5±6.3 [63–88] 28.8±1.3 [25–30]
MCI 20 14/6 75.9± 8.0 [61–88] 26.6± 2.4 [21–30]
AD 20 8/12 75.5± 8.1 [57–89] 22.3± 3.4 [10–26]

The minimum and maximum values are in brackets. The abbreviations used are MCI,
mild cognitive impairment; AD, Alzheimer's disease; MMSE, Mini-Mental State
Examination.
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research—approximately 200 cognitively normal older individuals
to be followed for 3 years, 400 people with MCI to be followed
for 3 years, and 200 people with early AD to be followed for
2 years.

T1-weighted 1.5-T MR images were studied from 60 subjects in
the ADNI database, http://www.loni.ucla.edu/ADNI (Fig. 4). The
ADNI consortium has classified data into three groups: Alzheimer's
patients (AD), mild cognitive impairment (MCI) and control
subjects (controls). In this study, 20 subjects, having manual seg-
mentations available, were chosen randomly from each group
(Table 1). The images were acquired using MRI scanners from
three different manufacturers (General Electric Healthcare (GE),
Siemens Medical Solutions, Philips Medical Systems) and using a
standardised acquisition protocol. Acquisition parameters on the
SIEMENS scanner (parameters for other manufacturers differ
slightly) were echo time (TE) of 3.924 ms, repetition time (TR) of
8.916 ms, inversion time (TI) of 1000 ms, flip angle 8°, to obtain 166
slices of 1.2-mm thickness with a 256×256 matrix. The size of the
volumes were from 192 × 192 × 160 to 256 × 256 × 180 voxels
with the voxel size from 0.9 × 0.9 × 1.2 mm to 1.3 × 1.3 × 1.2 mm.
Fig. 4. Coronal slices fro
For each image, a manual segmentation of the hippocampus was
provided by ADNI. The set of atlases used in multi-atlas segmen-
tation consisted of 30 ADNI images, different from the 60 cases used
for evaluation. The atlas contained cases from AD, MCI and controls,
10 from each.

As manual segmentations were available only for hippocampus
in ADNI, a subvolume was automatically extracted containing left
and right hippocampus. This was done to speed up the computation.
The size of the subvolume used was 100 × 100 × 100 voxels.
m nine ADNI cases.

http://www.loni.ucla.edu/ADNI
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Evaluation tools

Because the Dice similarity index (SI) is one of the most widely
used measures in assessing the performance of segmentation, it was
a basis for the comparison. In addition, we report some other
commonly known measures when summarising the results:

• Similarity index ðSIÞ = 2 A\B
A + B

• Precision=A\B
B

• Recall=A\B
A

• Distance=[d(A→B)+d(B→A))]/2

where A and B represent automatically and manually generated
segmentations and d(A→B) is the distance of the surface A from the
surface B.

The statistically significant differences between groups were
studied by Wilcoxon Rank Sum test for paired samples (SPSS 14.0
For Windows, Chicago, USA). The difference between similarity
indices was considered statistically significant if pb0.05.

In addition, correlation coefficients between hippocampus
volumes based on automatic and manual segmentations were com-
puted for the ADNI data.

Results

Intensity difference as a similarity measure

The similarity indices produced after applying different intensity
normalisation methods are shown in Table 2 for different sub-
cortical structures using IBSR data. In the single-atlas case, the
values are averages over all atlases (N= 17). Each atlas from the
database was used separately to segment the data. In multi-atlas
Table 2
Similarity index produced after applying different intensity normalisationmethods using sing
approach).

Thalamus Caudate Putam

Single atlas
NMI 0.830 0.748 0.815
ID NO 0.812⁎ 0.729⁎ 0.743⁎
ID Hellier (2003) 0.813 0.728 0.733⁎
ID Nyúl et al. (2000) 0.809⁎ 0.728⁎ 0.762⁎
ID MIN 0.838⁎ 0.754 0.792⁎
ID DE 0.838⁎ 0.753 0.793⁎
ID MIN+ 0.849⁎ 0.764⁎ 0.845⁎
Bhattacharjee et al. (2008) 0.820 0.750 0.840

Multi-atlas
NMI 0.882 0.836 0.881
ID NO 0.872 0.824 0.847⁎
ID Hellier (2003) 0.860 0.800 0.818⁎
ID Nyúl et al. (2000) 0.878 0.836 0.860⁎
ID MIN 0.890⁎ 0.841 0.876
ID DE 0.891⁎ 0.843 0.876
ID MIN+ 0.888⁎ 0.847 0.898⁎

Multi-atlas + EM
NMI 0.889 0.853 0.896
ID NO 0.871⁎ 0.843 0.857⁎
ID Hellier (2003) 0.861⁎ 0.827 0.840⁎
ID Nyúl et al. (2000) 0.888 0.855 0.881⁎
ID MIN 0.899⁎ 0.865⁎ 0.890
ID DE 0.898⁎ 0.864⁎ 0.888⁎
ID MIN+ 0.896⁎ 0.866⁎ 0.905⁎
Han and Fischl (2007) 0.88 0.84 0.85
Heckemann et al. (2006) 0.90 0.90 0.90
Artaechevarria et al. (2009) 0.88 0.83 0.87

Results are reported for six subcortical structures. Statistically significant differences are ind
used: NMI , normalised mutual information; ID , intensity difference; NO , no intensity norm
et al. (2000); MIN , minimise ID; DE , direct evaluation (Section 3.2.1); MIN+ , as MIN but g
used; AVG , average over six subcortical structures. For comparison, results from four other
segmentation, all available cases were used in the voting (N=17),
i.e., no atlas selection was performed.

The results indicate an expected finding that intensity norma-
lisation is needed if intensity difference is used as a similarity
measure. Two previously published methods for intensity norma-
lisation, published by Nyúl et al (2000) and Hellier (2003), were
tested but the average of similarity values was lower than obtained
with NMI-based segmentation (difference statistically significant,
except for ‘ID Hellier (2003)’ in the Multi-atlas approach). When
the intensity normalisation methods developed in this work were
applied and the AVG column was analysed, no difference compared
with the NMI-based method was observed except for the direct
evaluation (DE) in the single-atlas approach. No statistically signifi-
cant difference was identified between minimise intensity diffe-
rence (MIN) and direct evaluation methods.

The results show also the well-known result that the multi-atlas
method performs better than the single-atlas method (sub-tables
‘Single-atlas’ vs. ‘Multi-atlas’; difference statistically significant for the
averages of structures). In addition, the combination of multi-atlas
segmentation and intensity modelling improves the accuracy com-
pared with the situation when only multi-atlas segmentation is used
(sub-tables ‘Multi-atlas’ vs. ‘Multi-atlas+EM’; difference statistically
significant for all intensity normalisationmethodswhen computed for
the AVG column).

In Lötjönen et al. (2009), we showed that a combination of NMI
and image gradient-based features increases the segmentation
accuracy. The row ‘ID MIN+’ shows for comparison results when
this gradient term was used in addition to regulating the curvature
of the transformation, i.e., using the term Emodel in Eq. (1).
Statistically significant differences compared with the row ‘NMI’
are shown in the table. If ‘ID MIN+’ is compared with ‘ID MIN’, the
le-atlas, multi-atlas, and combinedmulti-atlas and intensity modelling approaches (EM

en Pallidum Hippoc Amygdala AVG

0.693 0.689 0.591 0.728
0.607⁎ 0.680 0.555⁎ 0.688⁎
0.619⁎ 0.674 0.534⁎ 0.683⁎
0.602⁎ 0.696 0.574 0.695⁎
0.645⁎ 0.695 0.578 0.718
0.644⁎ 0.695 0.580 0.717⁎
0.760⁎ 0.724⁎ 0.659⁎ 0.767⁎
0.760 0.660 0.610 0.740

0.785 0.802 0.726 0.819
0.740 0.793 0.699⁎ 0.796⁎
0.739 0.790 0.663⁎ 0.778
0.721⁎ 0.804 0.716 0.803⁎
0.757⁎ 0.805 0.720 0.815
0.749⁎ 0.805 0.719 0.814
0.833⁎ 0.804 0.752⁎ 0.837⁎

0.803 0.818 0.737 0.833
0.756⁎ 0.811 0.725 0.811⁎
0.767⁎ 0.810 0.703 0.801⁎
0.753⁎ 0.817 0.731 0.821⁎
0.780⁎ 0.819 0.740 0.832
0.775⁎ 0.818 0.738 0.830
0.844⁎ 0.814 0.767 0.849⁎
0.76 0.83 0.75 0.818
0.80 0.81 0.80 0.852
0.81 0.75 0.72 0.810

icated by asterisk (⁎) when compared with the values on the NMI row. Abbreviations
alisation; Hellier , method presented in Hellier (2003); Nyul , method presented in Nyúl
radient features (Lötjönen et al., 2009) and the regularisation of transformation is also
publications are given.



Table 3
Computation times in seconds for normalised mutual information (NMI) and intensity
difference (ID) as a similarity measure in non-rigid registration.

Non-rigid (1 Core) Total (8 Core)

NMI 126 s 416 s
ID 44 s 266 s

The first column shows the computation time for registering non-rigidly single atlas to
a target image using 1 Core. The second column shows the total computation time of
multi-atlas segmentation including also pre- and post-processing steps and using 14
atlases in a standard 2 processor 4 Core PC computer.
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average of all structures is higher in ‘ID MIN+’ (difference statis-
tically significant, not shown in Table 2). The difference is also
statistically significant separately for all structures in the single-atlas
approach but not in the multi-atlas approaches. For example, the
segmentation accuracy of the hippocampus does not improve in the
multi-atlas segmentation by using image gradients and curvature
regularisation.

For comparison, results from four other publications are shown.
When compared with the results from (Bhattacharjee et al., 2008)
using also IBSR data and single-atlas approach, the accuracy is
comparable. However, Bhattacharjee et al. (2008) reported that
8 min were needed for registration, which is slower than our algo-
rithm (44 s). Results are also comparable when the accuracy of multi-
atlas segmentation is compared with three other previously
published methods (Artaechevarria et al., 2009; Han and Fischl,
2007; Heckemann et al., 2006). Detailed comparisons with Han and
Fischl (2007) and Heckemann et al. (2006) are not possible as the
data used in those two publications are not from the IBSR database.
However, Artaechevarri et al. (2009) used IBSR data.

The computation times are presented in Table 3. The results show
that NMI-based registration is three times slower than non-rigid
registration based on intensity differences. The value is only indicative
as the actual implementation of the measures affects the results.
However, we have tried to optimise also the computation of NMI but
further optimisation might still be possible. The relative difference in
the total computation time is not as dramatic because time needed for
pre- and post-processing operations is equal in both cases.

Similarity index, precision, recall, and the distance between
surfaces are reported in Table 4 for the segmentations produced
using the gradient component and the curvature regularisation (the
row ‘ID MIN+’ in Table 2).

Atlas selection

The mean similarity indices for IBSR and ADNI data are shown in
Figs. 5a and b, respectively. The number of non-rigid registrations
needed for atlas selection using different methods studied is listed in
Table 4
Similarity index, precision, recall, and the average distance in millimetres between surfaces
(N=18).

Thalamus Caudate Putamen

Single atlas
Similarity index 0.849 0.764 0.845
Precision 0.818 0.763 0.817
Recall 0.890 0.790 0.879
Distance (average) 0.96 0.86 0.70
Distance (SD) 0.38 0.34 0.11

Multi-atlas + EM
Similarity index 0.896 0.866 0.905
Precision 0.872 0.863 0.889
Recall 0.926 0.876 0.924
Distance (average) 0.74 0.57 0.50
Distance (SD) 0.32 0.22 0.06

The values are for the segmentations produced by the ‘ID MIN+’ configuration in Table 2.
Table 5. In addition, the affine registration of a target image to the
template space and the non-rigid registrations of the atlases selected
to the target image need to be taken into account when considering
the total computation time.

Both datasets showed similar behaviour. With the optimal atlas
selection, the best segmentation accuracy was obtained with
relatively few atlases, about 8–15. After this, the segmentation
accuracy worsened when more atlases were added. Consequently,
the possible saving in the computation time obtainable with atlas
selection is remarkable, especially for large datasets of atlases.

From the atlas selection methods studied, one based on NMI after
non-rigidly aligning atlases to a target image (AS4) turned out to be
best. Non-rigid registration of atlases to a single template space (AS2)
gave slightly worse results for the IBSR data but almost identical
results for the ADNI data, but this strategy required only one non-rigid
registration. Utilisation of three templates instead of just one (AS3)
improved the results close to the results of the NMI in the target space
for the IBSR data. All these selection methods performed better than
the STAPLE algorithm (AS5) on the ADNI data (difference statistically
significant), whereas on the IBSR data, the STAPLE algorithm
outperformed atlas selection. However, the STAPLE was applied
separately for each structure, but atlas selection and voting were
applied simultaneously for each structure when using the IBSR data.
When atlas selection and voting were performed separately for each
structure, the similarity index of AS4 increased from 0.805 to 0.814,
which was close to the accuracy of the STAPLE (0.815, difference not
statistically significant). Affine registration to template space (AS1)
gave clearly worse results but still better than the results of random
selection. The selection based on age was better than NMI after affine
registration in the case of the IBSR dataset, and the combination of
these two still improved the results. On the other hand, the selection
using demographic data did not give as good results for the ADNI
dataset (not shown in the Fig. 6b for clarity). This may be due to the
smaller age range of the ADNI dataset and the different structures to
be segmented. In addition, we tested the performance of the Mini-
Mental State Examination (MMSE) score in atlas selection. However,
no increase in the accuracy was obtained when combined with the
method where the data were registered non-rigidly to the template
space (curve ‘non-rigid, template space’ in Fig. 5).

Segmentation of hippocampus from ADNI data

Both left and right hippocampi were segmented from 60 ADNI
cases. The results for multi-atlas segmentation with all 30 atlases
and for 13 atlases (maximum in Fig. 5b) selected either in target
space or template space are shown in Table 6. In addition, the
graph cuts and EM approaches have been applied to all the
segmentation results. The similarity indices are shown for each
and its standard deviation for segmentation of six subcortical structures from IBSR data

Pallidum Hippoc Amygdala AVG

0.760 0.724 0.659 0.767
0.741 0.692 0.646 0.746
0.787 0.766 0.701 0.802
0.84 0.96 1.21 0.92
0.14 0.22 0.33 0.17

0.844 0.814 0.767 0.849
0.824 0.763 0.722 0.822
0.871 0.878 0.829 0.884
0.64 0.74 0.93 0.69
0.11 0.18 0.27 0.13



Fig. 5. Similarity indices for different number of atlases and for different atlas selection
methods for (a) IBSR dataset and (b) ADNI dataset.

Table 5
Number of non-rigid registrations needed for atlas selection.

Random 0
Affine, template space 0
Non-rigid, template space 1
Multi-template Number of templates
Non-rigid, target space Number of atlases
Demographics 0
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case (120 segmentations) in Fig. 6 using atlas selection in template
space and the graph cuts approach. The best average SI of the
methods studied was 0.885. Morra et al. (2009) studied the
similarity index between two human raters using ADNI data
(N= 21). They obtained the value SI=0.853. These values indicate
that our segmentation pipeline produced results comparable to the
accuracy of manual segmentation.

In Wolz et al. (2009), 60 images and 30 atlases from ADNI were
used for multi-atlas segmentation with the well-known registration
algorithm by Rueckert et al. (1999). The cases were the same as we
used in this work. In their article, an average overlap of SI=0.86
without atlas selection was reported. Applying the same strategy
with our algorithm leads to an average overlap of SI=0.87. Using
atlas selection (13 atlases) with registrations produced using the
algorithm by Rueckert et al. leads to an average overlap of SI=0.88,
which is identical to the value reported in this work. In Wolz et al.
(2009), the computation time of one registration was around 1 h on
a multi-core PC computer.

We studied also the correlation of the automatically and
manually computed volumes of hippocampus. Fig. 7 shows a scatter
plot of the hippocampus volumes when 13 atlases were selected in
template space and the graph cuts approach was used. The
correlation coefficient was 0.95 (R2=0.9037). The value 0.854
was reported in Morra et al. (2009) for two human raters.

The total computation time for segmenting one case including
also pre- and post-processing steps and using 13 atlases selected in
template space was about 3 min using a standard 2 processor 4
Core PC computer. For comparison, van der Lijn et al. (2008)
reported that non-rigid registration required 5 to 8 h for each 19
atlases using a single core computer. The time needed for non-rigid
registration using only a single core in our system was 17 s for a
subvolume of 100 × 100 × 100 voxels and 2 min 20 s for the
original volume of 256 × 256 × 166 voxels. When compared with
the IBSR results (Table 3), much more iterations were performed
with ADNI data to maximise the segmentation accuracy.

Discussion

In this work, different steps of multi-atlas segmentation were
studied: non-rigid registration, atlas selection, and post-processing
steps. All these factors have an important role in multi-atlas
segmentation. We demonstrated that the segmentation accuracy
can be clearly improved when optimising these factors. The results of
automatic segmentation showed a good overlap with manual
segmentations: the average SI was 0.849 for six subcortical
structures (IBSR data) and 0.885 for the hippocampus (ADNI data).
The correlation coefficient for hippocampal volumes in ADNI was
high, 0.95.

Intensity normalisation is a prerequisite for using intensity
difference as a similarity measure. We proposed two methods that
produced piecewise linear transformation for intensities. Intensities
of CSF, GM, and WM were matched between images. We demon-
strated that using intensity difference as a similarity measure pro-
duced equal segmentation accuracy compared with standard NMI-
based segmentation. The computation time needed for non-rigid
registration was, however, decreased by a factor of 3. With IBSR data,
the registration time of an atlas to target image reduced from 126 to
44 s (Table 3). This finding makes multi-atlas segmentation more
attractive to clinical practice where computation time plays a crucial
role. The major limitation in using intensity differences is that images
to be segmented and atlases used should be acquired with



Table 6
Similarity index, precision, recall, distance in millimetres between surfaces and correlation coefficients for segmentation of hippocampus from ADNI data (N= 60).

ADNI data, hippocampus (N=60) Similarity
index

Precision Recall Distance
(average±SD) [mm]

Correlation
of volumes

Multi-atlas (30 atlases) 0.846 0.872 0.833 0.54±0.14 0.66
Multi-atlas (30 atlases)+ GC 0.869 0.894 0.851 0.48±0.09 0.89
Multi-atlas (30 atlases)+ EM 0.866 0.863 0.880 0.50±0.16 0.71
AS non-rigid target space (13 atlases) 0.868 0.873 0.867 0.48±0.10 0.91
AS non-rigid target space (13 atlases) + GC 0.882 0.887 0.879 0.44±0.07 0.95
AS non-rigid target space (13 atlases) + EM 0.883 0.870 0.902 0.45±0.09 0.94
AS non-rigid template space (13 atlases) 0.866 0.890 0.849 0.48±0.08 0.93
AS non-rigid template space (13 atlases) + GC 0.880 0.899 0.864 0.45±0.06 0.95
AS non-rigid template space (13 atlases) + EM 0.885 0.884 0.890 0.44±0.07 0.94
Morra et al. (2009), ADNI data (N=21) AUT 0.856 0.845 0.875 0.005 0.71
Morra et al. (2009), ADNI data (N=21), MAN 0.854 0.877 0.836 0.004 0.71
van der Lijn et al. (2008)Lijn et al (2008), Rotterdam study (N=20), AUT 0.858 0.38±0.08 0.81
van der Lijn et al. (2008)Lijn et al (2008), Rotterdam study (N=20), MAN 0.858 0.33±0.08 0.83

For comparison, the corresponding values from two other recent studies are shown. Abbreviations: GC , graph cuts; AS , atlas selection; AUT , automatic segmentation; MAN, manual
segmentation for van der Lijn et al. (2008) for intra-rater reliability (the values are averages for the left and right hippocampus) and for Morra et al. (2009) for inter-rater reliability.
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approximately similar imaging parameters, for example, both images
should be T1-weighted MRI images.

Different atlas selection methods were compared. The method
based on the similarity of the atlas and the target image in the
template space after non-rigid registration (AS2) provided a good
compromise between the accuracy and computation time. The
accuracy based on non-rigid registrations was clearly better than
using only affine registrations (AS1), as done in Aljabar et al. (2009).
Although the atlas selection methods evaluated gave better segmen-
tation results than the random selection, there was still a clear dif-
ference to the results of the optimal atlas selection. This demonstrates
that atlas selection is not a trivial task, and the methods should be
further developed.

We also compared our atlas selection with the STAPLE algorithm.
When performed for each structure separately, no difference was
observed between the approaches when using IBSR data. When using
ADNI data, however, atlas selection outperformed the STAPLE. The
reason for the difference remained unclear and requires more studies.

Two methods were proposed for post-processing where multi-
atlas segmentation is combined with statistical modelling of intensity
distributions: a method based on (1) the graph cuts algorithm and (2)
the EM algorithm. When compared with standard multi-atlas
segmentation, the accuracy was increased by 0.01−0.02 by both
algorithms. The improvement is comparable with the results
presented in van der Lijn (2008) but our approach avoids the tedious
and restricting training phase. Our results clearly show that an
intensity-based refinement step improves the accuracy of multi-atlas
segmentation. Both the graph cuts and EM algorithms produce
Fig. 6. Similarity indices for left and right hippocampus of 60 ADNI cases u
approximately similar improvements. One practical difference can
be noticed between the methods proposed. The EM algorithm can be
applied directly to multi-object segmentation while the graph cuts
algorithmmust be applied separately to each object to be segmented.

The techniques proposed in this work increased the segmentation
accuracy. However, the improvements were relatively small in terms
of similarity index. We believe that there is not anymore much space
for dramatic improvements in the accuracy because the segmentation
error of subcortical structures, reported in many publications, start to
approach the inter-observer error of manual segmentations; the
similarity index is about 0.85 for hippocampus between manual
segmentations.

The computation time for the multi-atlas segmentation took 3
−4 min using a standard multi-core PC computer. The value was
clearly lower than what has been reported in many articles
previously. For example, in van der Lijn et al. (2008), the computation
time was several hours. Our results are comparable to the ones
recently reported in Chupin et al. (2009); they reported the similarity
index of 0.85 for hippocampus (average for three cohorts) with a
computation time of 15 min. The registration was done using SPM5.

When the segmentation accuracy of hippocampus is considered, a
clear difference in the similarity index was observed between the
ADNI data (0.88) and the IBSR data (0.82). There are several potential
reasons for this. First, the image quality in ADNI data is better than in
the IBSR data. Second, the protocol used in manual segmentation can
be different making some protocols more favourable to automatic
algorithms. Third, the clinical status and the demographic data of the
subjects were different: IBSR contained data from children to aged
sing 13 atlases selected in a template space and graph-cut approach.



Fig. 7. Manually and automatically defined volumes for hippocampus using 13 atlases
selected in a template space and graph cuts approach.
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subjects while ADNI data consisted of aged controls and Alzheimer's
disease patients. A careful analysis of these reasons and their effect to
the robustness of segmentation is a highly relevant topic for future
studies.

The methods proposed in this work are generic and can be
incorporated also into many other tools available. Comparison of our
results with the ones obtained with multi-atlas segmentation based
on an established registration algorithm (Rueckert et al., 1999)
showed identical results.

If the main results of our pipeline optimisation are summarised,
the following three observations are made: (1) Intensity difference
can be used instead of NMI in non-rigid registration without
compromising the segmentation accuracy if intensities are normal-
ised properly. This leads considerably shorter computation time. (2)
Performing atlas selection in the template space after applying non-
rigid registration provides a good compromise between the
improved accuracy and the computation time needed. (3) Combin-
ing intensity modelling with the multi-atlas segmentation improves
clearly the segmentation accuracy. Either the graph cuts or EM
algorithm can be used.

Accurate and fast segmentation of images is a central component
when the information in MRI images is exploited in the diagnostics.
Despite promising results, several topics remain for future research.
Our development work will focus on further reducing the compu-
tation time. For example, optimising the pre-processing steps, which
have not been optimised yet at all, could lead to clear improvements
in the computation time. Another important topic is guaranteeing
the robustness when heterogeneous and sometimes non-optimal
clinical data are used.
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Appendix A. Graph cuts formulation

To assign a label fp∈L to each voxel p∈I, a MRF-based energy
function is defined as

E fð Þ = λ
X
paI

Dp fp
� �

+
X
p;qf gaH

Vp;q fp; fq
� �

ð4Þ

where H is a neighbourhood of voxels and f is the labelling of I
(Boykov et al., 2001). The data term DP measures the disagreement
between a prior probabilistic model and the observed data. Vp,q(fp, fq)
is a smoothness term penalising discontinuities in H. The parameter λ
was in our experiments empirically set to λ=2.

To optimise the previous equation with graph cuts, a graph G=bV,
EN with a node ν∈V for each voxel p is defined on image I. Its edges
e∈E consist of connections between each node v and two terminal
nodes s, t as well as connections between neighbouring voxels. The
terminals s and t represent the two labels describing foreground and
background. By determining an s–t cut on G the desired segmentation
can be obtained (Boykov et al., 2001). The data term in theMRFmodel
defines the weights of the edges connecting each node with both
terminals and the smoothness term encodes the edge weights of
neighbouring nodes.

Spatial prior

Following van der Lijn et al. (2008), our prior spatial probabilities
are obtained from a subject-specific probabilistic atlas built from the
labels obtained from multi-atlas segmentation (Heckemann et al.,
2006). With multiple label maps fj, the prior probability for a voxel p
of its label being the foreground label ffore is therefore:

PA fp
� �

=
1
N

X
j=1;:::;N

1; f jp = ffore

0; f jp ≠ ffore
:

8<
: ð5Þ

PA defines the spatial prior contribution to the data term in the
graph cuts model.

Intensity model

The intensity prior for tissue classes or specific structures is
usually modelled by a Gaussian probability distribution. To arrive at
a generally applicable model, we directly estimate the parameters of
the Gaussian distribution of the hippocampus from the unseen
target image. It is estimated from all those voxels that at least 95%
of the atlases assign to the hippocampus. The intensity component
of the source link weight for a given voxel p with intensity Ip is
denoted by PS and is estimated from the intensity distribution
model, i.e., PS (p, fp)=P(Ip | fp,fore). Since the background of the
hippocampus is not homogeneous, we use a spatially varying

http://cordis.europa.eu/ist
http://cordis.europa.eu/ist
http://www.tekes.fi
http://www.tekes.fi
http://www.fnih.org
http://www.fnih.org
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mixture of Gaussians (MOG) model to describe it. The MOG model
is defined by the Gaussian distributions of the three tissue classes
(CSF, GM, WM) tk, k={1, 2, 3} based on the method described in
van Leemput et al. (1999) and non-rigidly aligned spatial priors for
the three tissue classes. The probability of a voxel being in the
background of the hippocampus is therefore estimated by:

P Ip j fp;back
� �

= 1− PA fp
� �� � X

k=1;:::;3

λkP Ip jtk
� �

ð6Þ

where λk is the tissue spatial prior.
This equation provides the intensity component of the edge

weight in the graph cuts model. The intensity and spatial
contributions are combined to give the data term in the graph
cuts model.

Smoothness term

Combining intensity and local boundary information into the
weights connecting neighbouring nodes has been applied success-
ful for brain segmentation with graph cuts by Song et al., 2006.
Following this approach, a smoothness term based on intensity I
as well as the intervening contour probabilistic map B is used.
With the gradient image G, B is defined for a voxel p as Bp=1-
exp(−Gp/σG) with a normalisation factor σG. The weight of an
edge connecting two neighbouring voxels p and q is then defined
as:

Vp;q fp; fq
� �

= c 1 + ln 1 +
1
2

j Ip− Iq j
σ

� �2
 ! !−1

+ 1− cð Þ 1− maxxaMp;q
Bxð Þ

� �
ð7Þ

whereMp,q is a line joining p and q, and σ is the robust scale of image I
(Song et al., 2006). The parameter c controls the influence of the
boundary- and intensity-based part and is empirically set to 0.5.

Appendix B. Expectation maximisation formulation

The labelling f of the image I minimising an energy functional was
searched:

f = argmin
f

λEintensity fð Þ + Eprior fð Þ; ð8Þ

where Eintensity measures the likelihood that observed intensities
are from specific classes and Eprior describes the prior knowledge of
class labels. Different values for the parameter λ were tested and the
value producing the highest accuracy (λ=0.3) was chosen. However,
the accuracywas not very sensitive to the λ value; the similarity index
changed only a thousandth when λ was halved.

The intensity of each structure k was assumed to have a Gaussian
density function, described by the mean μ and standard deviation σ:

Eintensity = −
X
paI

lnp Ip j fp = k
� �

; ð9Þ

where

p Ip j fp = k
� �

=
1ffiffiffiffiffiffi
2π

p
σk

exp −
Ip−μk

� �2
2σ2

k

0
B@

1
CA: ð10Þ

The parameters μk and σk were estimated from the target volume
by weighting each voxel with the probability that it belongs to the
class k. The probability was estimated from labelled non-rigidly
registered atlas volumes as described in Eq. (5).
The prior energy consisted of two components: spatial prior and
regularity prior. The spatial prior was based on Eq. (5):

Esprior = −
X
paI

lnp fp = k
� �

: ð11Þ

The regularity prior, based on Markov Random Fields, was defined
for keeping the structures smooth. The prior is described in detail in
van der Lijn et al. (2008).

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2009.10.026.
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