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Abstract—A critical challenge in using longitudinal neuroimag-
ing data to study the progressions of Alzheimer’s Disease (AD)
is the varied number of missing records of the patients during
the course when AD develops. To tackle this problem, in this
paper we propose a novel formulation to learn an enriched
representation with fixed length for imaging biomarkers, which
aims to simultaneously capture the information conveyed by
both baseline neuroimaging record and progressive variations
characterized by varied counts of available follow-up records
over time. Because the learned biomarker representations are a
set of fixed-length vectors, they can be readily used by traditional
machine learning models to study AD developments. Take into
account that the missing brain scans are not aligned in terms
of time in a studied cohort, we develop a new objective that
maximizes the ratio of the summations of a number of `1-norm
distances for improved robustness, which, though, is difficult
to efficiently solve in general. Thus, we derive a new efficient
and non-greedy iterative solution algorithm and rigorously prove
its convergence. We have performed extensive experiments on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.
A clear performance gain has been achieved in predicting ten
different cognitive scores when we compare the original baseline
biomarker representations against the learned representations
with longitudinal enrichments. We further observe that the top
selected biomarkers by our new method are in accordance with
known knowledge in AD studies. These promising results have
demonstrated improved performances of our new method that
validate its effectiveness.1

Index Terms—Alzheimer’s Disease, Longitudinal, Representa-
tion Enrichment, Imaging Biomarker.

I. INTRODUCTION

As one of the most prevalent and severe type of neu-
rodegenerative disorders [1], [2], Alzheimer’s Disease (AD)
has attracted growing attentions in research in recent years.
Over the past decade, phenotypic biomarkers extracted from
brain images have been widely studied to predict disease
status and/or cognitive performance [3], [4], [5]. However,
these approaches routinely perform standard regression and/or
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classification at each time points separately, which thereby
ignore the longitudinal variations of brain phenotypes. Since
AD is a progressive neurodegenerative disorder, it would
be beneficial to explore the temporal relations among the
longitudinal records of the brain imaging biomarkers.

In the study of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [6], participants return for follow-up scans at
varied time points, including the baseline (BL), the 6th Month
(M6), the 12th month (M12), the 18th month (M18), the 24th
month (M24), and the 36th month (M36), as illustrated in
Fig. 1, which provides the opportunity to use longitudinal data
from multiple time points to build more effective predictive
models. To explore the temporal structure of brain phenotypes,
longitudinal prediction models [5], [7], [8] have been recently
proposed. However, in these studies longitudinal information
has been modeled as tensors, which inevitably complicates the
problem in mathematics. As a result, it is not easy to extend
classical machine learning models, which can only work with
vector or matrix data, to study AD developments.

Another critical challenge in using longitudinal data is
the problem of missing data in the medical records. Higher
mortality risk and cognitive impairment hinder older adults
from staying in studies that require multiple visits and thus
result in incomplete data [9]. The missing imaging records at
different time points lead to samples with varied lengths for
different participants. To deal with this problem, many existing
longitudinal studies of AD only utilize data samples with
complete temporal records for analyses and ignore those with
fewer records over time [5], [7], [8]. Apparently, discarding the
samples with less temporal records could potentially ruin the
dataset. To address this, data imputation methods [9], [10] have
been proposed to handle the missing records in longitudinal
AD data. Using the imputed data with a consistent sample
size, regression and classification studies can be conducted.
However, whether these data completion methods can preserve
the longitudinal structure of neuroimaging measurements or
not is still an under-explored topic in AD studies. What’s
worse, these missing data imputation methods could possibly
introduce undesirable artifacts that may worsen the predictive
power of the learned longitudinal models.

To tackle the above problems in longitudinal studies with
incomplete temporal inputs, in this paper we propose a novel
formulation to learn an enriched biomarker representation
which combines the baseline biomarker measurements and
the dynamic temporal imaging records across the follow-up
time points. In our learning framework, we learn a projection
for each participant from her or his biomarker records at all
available follow-up time points (a subset of {M6, M12, M18,
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Figure 1. Overview of our proposed method to learn an enriched neuroimaging representation with a fixed length, which integrates the baseline biomarker
measurements and dynamic changes in available follow-up biomarker measurements. The blank plots in M18 and M36 denote the absence of the scans of
the currently studied participant in the 18th month and the 36th month.

M24, M36}), by which we project the baseline record into
a fixed-length vector, regardless of the inconsistent number
of brain scans of the participants in a dataset. Armed with
the fixed-length biomarker representations, we can directly use
conventional learning models to predict cognitive outcomes.

As schematically illustrated in Fig. 1, the proposed method
first learns a projection from the available follow-up imaging
records, which we use to project the baseline neuroimag-
ing record to learn a fixed-length biomarker representation.
Through this procedure, the learned representation for a
participant simultaneously captures the information conveyed
by both the baseline neuroimaging record and a progressive
summary of all available follow-up records, such that the
baseline representation of the participant is enriched by her
or his follow-up longitudinal information. We further develop
our learning objective by replacing the traditional squared `2-
norm distances by the `1-norm distances in our formulation, to
improve the robustness of the learned enriched representations
against possible outlying samples and features caused by the
varied number of brain scans taken at different time points
by different participants in a studied cohort. Despite its clear
motivation, the developed objective ends up being a non-
smooth optimization problem that simultaneously maximizes
and minimizes the summations of a number of `1-norm
distances. To solve this challenging optimization problem,
we derive an efficient and non-greedy iterative algorithm
with theoretically guaranteed convergence. We have performed
extensive experiments on the ADNI cohort that demonstrate
the improved performance resulting from our new approach.
Moreover, we select the top 10 biomarkers weighted by their
predictive power in cognitive tests, which are highly suggestive
and strongly agree with the existing research findings.

This paper is an extension of our recent work [11] originally

reported in the Proceedings of IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2020 (CVPR 2020).
In this extended journal manuscript, we provide the following
expansions over its conference version:
• We outline the mathematical details for deriving the algo-

rithm to solve our objective and show that it is non-greedy
in nature, where we expend a concrete effort to improve
the mathematical details to unambiguously communicate
the implementation of our algorithm. (Section IV)

• We rigorously prove the convergence of the solution
algorithm in mathematics. (Section IV-C)

• We significantly expand the experimental evaluations to
illustrate the benefits of using the enriched biomarker
representations learned by our new method. (Section V)
– We report new experimental results by using 1 ad-

ditional type of imaging biomarkers (the FreeSurfer
biomarkers) as input and 6 additional cognitive scores
as predictive targets. (Section V-B)

– We compare the proposed method against three recent
longitudinal learning models using both Voxel-Based
Morphometry (VBM) and FreeSurfer biomarkers re-
spectively. (Section V-C)

– We provide a thorough analysis of the identified disease
relevant biomarkers to justify the clinical correctness
of our new method. (Section V-E)

II. RELATED WORK

A. AD studies using longitudinal neuroimaging data

To explore the temporal correlations of the variations of
the neuroimaging markers over AD progressions, longitudinal
features [12], [13], [14] were studied for predicting cognitive
outcomes. For example, in [12] a longitudinal feature esti-
mation method was proposed to capture temporal information
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that can characterize the changes of specific brain regions over
time; in [13] landmark-based spatial and longitudinal features
were leveraged to identify AD subjects; in [14] a screening
group regularization was utilized to select top consistent and
varying imaging features.

To exploit the collective correlations of cognitive score
changes during the course when AD develops, many lon-
gitudinal multi-task methods were proposed [8], [15], [5],
[7], [16], [17], [14], [18], [19], [20], [21]. Specifically, in
[5] a high-order multi-task feature learning framework was
presented for identifying longitudinal neuroimaging markers
to predict cognitive scores across all time points. In [15],
[17] longitudinal models were designed to associate genetic
biomarkers with temporal imaging phenotypes. In [19], [20]
a joint multi-modal longitudinal regression and classification
model was proposed to simultaneously predict the cognitive
scores and diagnoses of AD. In [7], [8] a auto-learning multi-
task model was used to explore the associations between
genetic variations and longitudinal imaging phenotypes, as
well as interrelatedness that exists in different prediction tasks.
In [16] multi-relational smoothness regularization was incor-
porated to capture the relationship among different clinical
scores. In [14] a multi-task dictionary learning framework
was devised to use both shared and individual dictionaries to
encode both consistent and varying imaging features when AD
develops. In [18] a multi-task exclusive relationship learning
model was recently proposed to automatically capture the
intrinsic relationship among tasks at different time points for
estimating clinical measures based on longitudinal imaging
data. In summary, a variety of sparsity-induced norms were
leveraged for identifying AD related imaging biomarkers,
including the trace-norm [5], Lasso [17], group Lasso [15],
the `2,1-norm [5], [17] and the Schatten p-norm [7], [8], to
name a few.

These longitudinal learning models were successfully de-
signed to make use of the longitudinal imaging and cognitive
data, which, however, can only deal with data samples with
complete temporal records over the disease progressions. As
a result, the samples that miss certain medical scans have to
be discarded, although they may contain crucial information
for diagnoses of AD.

B. Missing data imputation in AD studies
To address the critical challenge of missing records in

AD studies, many multi-task learning methods [22], [23],
[14] were proposed to impute missing data by exploiting the
correlations among different prediction tasks. In [22] a flexible
feature selection method was developed to deal with missing
data, which formulates the original classification problem as a
multi-task learning problem to make full use of all available
data. In [23] block-wise missing data collected from multiple
sources were decomposed into the multiple completed sub-
matrices, where a two-layer multi-task learning model was
used for both feature-level and source-level analyses.

To utilize multi-modal data, recent studies [24], [25], [26],
[9], [27] explored multi-view learning models for missing data
imputation. In [24], [27] a unified feature-level and source-
level model was developed to effectively integrate information

from multiple heterogeneous sources when block-wise missing
data are present. In [25], [26] a hypergraph learning method
was proposed to represent the high-order relationships among
the subjects by dividing them into groups according to modal-
ity availabilities, with a hypergraph regularization applied to
each groups for making the final prediction. In [9] a sparse
regression model was presented to explore the covariances
from the data in multiple modalities.

More recently, deep learning models were developed for
missing data imputation. In [28] a 3-dimensional (3D) con-
volutional neural network (CNN) was built to use a training
set of subjects with simultaneously available MRI and PET
records. The trained 3D CNN was then used to impute missing
PET scans using the MRI data for the subjects who only had
MRI scans. Besides, both adversarial neural networks [29] and
recurrent neural networks [30] were also used to tackle the
missing data problem for the ADNI dataset.

While these data imputation methods successfully solved
the problem caused by the inconsistent sample sizes in many
longitudinal datasets, the imputed data often have to be rep-
resented as tensors that may potentially complicate the sub-
sequent learning models in mathematics. In addition, artifacts
may be introduced into the imputed data due to the learning
biases cased by the statistical assumptions that underlie these
learning models.

III. OUR OBJECTIVE FOR REPRESENTATION LEARNING

In this section, we formalize the problem of learning an
enriched representation for neuroimaging biomarkers as a
fixed-length vector for every participant using longitudinal
data with missing medical records, with the goal to simultane-
ously capture the information conveyed by both the baseline
imaging record and the progressive changes characterized by
the follow-up records along the following time points.

A. Notations and the Problem Formalization

Throughout this paper, we write matrices as bold uppercase
letters and vectors as bold lowercase letters. Given a matrix
M = [mij ], its trace is defined as tr(M) =

∑
imi. Given

a vector v, its `1-norm is defined as ‖v‖1 =
∑

i |vi| and its
`2-norm is defined as ‖v‖2 =

√∑
i v

2
i .

Given a longitudinal neoroimaging dataset, the temporal
information of a participant can be denoted as: X = {x,X},
where x ∈ <d represents the baseline brain scan by d extracted
neuroimaging features (biomarkers), and X = [x1, . . . ,xn] ∈
<d×n collects a total of n follow-up brain scans at later time
points. Here we highlight that n varies across the dataset,
because different participants in a studied cohort usually miss
different numbers of brain scans at different time points. In the
task of learning representations for neuroimaging biomarkers,
our goal is to learn a fixed-length vector for every participant
from the longitudinal records of X . In this paper, we propose
a general framework that uses the longitudinal data with
misaligned medical records to learn a fixed-length vector
enrichment for every participant. Specifically, first we learn
a projection W = g(X) from X to summarize the temporal
variations of the neuroimaging biomarkers along the time
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points after the baseline. Then by applying the learned projec-
tion W onto the baseline neuroimaging record x, we obtain
a single fixed-length vector representation by computing y =
f(X ) = h(g(X),x) ∈ <r. Apparently, the projection could
be learned by different methods, such as Principal Component
Analysis (PCA) [31], Locality Preserving Projection (LPP)
[32], etc. In this paper, we propose a novel projection learning
method which can simultaneously captures the information
conveyed by both the baseline neuroimaging record and the
dynamic changes of the follow-up neuroimaging records.
Because the learned representations for all the participants in
the entire dataset are of the same length, they can be readily
used by traditional statistical and machine learning models in
a variety of tasks, such as predicting cognitive outcomes.

B. Representation Learning through Projections

In this subsection, we develop a new objective to learn a
fixed-length vector to represent the neuroimaging biomarkers
that are directly extracted from brain scans. By integrating
the baseline neuroimaging record and the dynamic temporal
changes in follow-up neuroimaging records, we aim to pre-
serve the global and local consistencies among the neuroimag-
ing records in the subspace mapped by the learned projection.

First, although the neuroimaging measurements and cogni-
tive status of a participant in a studied cohort could experience
drastic changes over a long time, e.g., a Healthy Control (HC)
subject can be diagnosed with Mild Cognitive Impairments
(MCI) or even converted into an AD patient in a couple
of years, the changes of these quantities between nearby
time points still remain considerably small [33]. Namely, the
measurements of the biomarkers of the participants maintain
the local consistency in terms of data magnitude during the
progression of AD. Thus, we need preserve this local consis-
tency by minimizing the local variance of the medical records
collected in nearby months in the projected subspace. Mathe-
matically, we denote the K-nearest neighbors of xi as Ni and
the local mean vector of xi as xi = 1

K+1

∑
xj∈{Ni∪{xi}} xj .

We can achieve the overall local consistency by minimizing
the following objective [34]:

J Local (W) = tr
(
WTSLW

)
, s.t. WTW = I, (1)

where we define SLi =
∑

xj∈{Ni∪{xi}} (xj − xi) (xj − xi)
T

and SL =
∑n

i=1 SLi. Apparently, SLi is the local covari-
ance matrix of the data points around xi. Thus, minimizing
tr
(
WTSLiW

)
ensures the local consistency around xi and

minimizing JLocal in Eq. (1) ensures the overall local consis-
tency of a subject’s records across all the time points when
AD develops, which is in accordance with the broadly used
assumption in machine learning and data mining that data are
smooth on an inherent manifold, i.e., the observed data are
sampled from an underlying sub-manifold that are embedded
in a high-dimensional observation space [35], [32]. In Eq. (1),
we omit the constant factor 1

K+1 for notational brevity.
Second, apart from making use of the local consistency of

the available neuroimaging records in the follow-up months,
we further explore the global structure of all the neuroimaging
records of a participant. Via a global projection, we map X

that resides in the high d-dimensional space into a lower r-
dimensional subspace by computing yi = WTxi to preserve
as much information as possible, for which we maximize the
objective of the PCA [31]:

J Global (W) = tr
(
WTSGW

)
=

n∑
i=1

∥∥WT (xi − x)
∥∥2

2
,

s.t. WTW = I, (2)

where SG =
∑n

i=1 (xi − x) (xi − x)
T is the covariance

matrix of X and x = 1
n

∑n
i=1 xi is the mean vector. Again, the

constant factor 1
n is omitted in Eq. (2) for notational brevity.

Now we integrate the global and local consistencies of
the neuroimaging records of a subject by combining the two
objectives in Eq. (1) and Eq. (2) to maximize the following
objective:

J`22(W) =

∑n
i=1

∥∥WT (xi − x)
∥∥2

2∑n
i=1

∑
xj∈{Ni∪{xi}} ‖W

T (xj − xi)‖22
,

s.t. WTW = I.

(3)

Finally, we notice that a critical challenge in using longitu-
dinal AD data is their inconsistent sample sizes, i.e., different
patients may take brain scans at different time points. For
example, one patient may take brain scans at the 12th month
and the 24th month. In contrast, another patient might differ
by taking brain scans in other months. That is, the brain scans
of one patient are generally not aligned to others, which can
potentially become outliers for one another when they are used
to train a learning model. As studied in many recent papers
[36], [37], [38], the squared `2-norm distance used in the
objective in Eq. (3) is notoriously known to be very sensitive
to outlying data samples and features. To address this, we
choose to replace the squared `2-norm distance used in the
objective in Eq. (3) by its `1-norm counterpart for promoting
the robustness of our model against potential outlying effects,
which leads to the following objective to maximize:

J`1(W) =

∑n
i=1

∥∥WT (xi − x)
∥∥

1∑n
i=1

∑
xj∈{Ni∪{xi}} ‖W

T (xj − xi)‖1
,

s.t. WTW = I.

(4)

Upon solving the optimization problem in Eq. (4), we com-
pute y = WTx to obtain the new biomarker representation
for a subject, which enriches the baseline biomarker record
x by the longitudinal AD developments of X. This learned
representation thereby not only preserves the global variance
of the biomarker measurements over the entire course of the
AD development of the subject, but also maintains the local
geometric data structure of the medical records taken in nearby
months in the projected subspace. Moreover, y is a fixed-
length single-vector representation and can be readily used by
most classical classification or regression models, which is the
key contribution of this paper.

IV. THE ALGORITHM TO SOLVE OUR OBJECTIVE

The proposed objective in Eq. (4) maximizes the ratio of two
summations of a number of `1-norm distances, which is non-
smooth thereby difficult to efficiently solve in general. Thus,
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in this section we derive an efficient iterative solution algo-
rithm and rigorously prove its convergence. As an important
theoretical contribution, our solution algorithm is non-greedy
in nature.

A. Solving a General Ratio Maximization Problem

We first study the following general optimization problem
and derive an efficient iterative algorithm to solve it:

max
v∈Ω

h(v)

m(v)
, ∀v ∈ Ω s.t.

{
C2 ≥ m(v) ≥ C1 > 0,

C4 ≥ h(v) ≥ C3 > 0,
(5)

where Ω is the feasible domain of the optimization problem,
and C1, C2 C3 and C4 are four positive bounding constants.

Now we propose the following simple, yet efficient, iterative
algorithm, as summarized in Algorithm 1, to optimize Eq. (5).
The convergence of this algorithm is guaranteed by Theorem 1.

Algorithm 1: The algorithm to solve Eq. (5).
1. Randomly initialize v0 ∈ Ω and set k = 1;
repeat

2. Calculate λk = h(vk−1)

m(vk−1)
;

3. Find a vk ∈ Ω satisfying h(vk)− λkm(vk) > 0;
4. k = k + 1;

until Convergence
Output: vk.

Theorem 1: In Algorithm 1, for each iteration (1) we have
h(vk)
m(vk)

≥ h(vk−1)
m(vk−1)

; and (2) ∀δ > 0, there exists a k̂ such that

∀k > k̂, h(vk)
m(vk)

− h(vk−1)
m(vk−1)

< δ.
Proof 1: Step 3 of Algorithm 1 states that h(vk) −

λkm(vk) > 0. Because ∀v ∈ Ω m(v) > 0 as in the problem
definition, we can derive h(vk)

m(vk)
> λk = h(vk−1)

m(vk−1)
, which

completes the proof of the first statement of Theorem 1.
Suppose that for the k-th iteration, there exists a ck such

that h(vk)− λkm(vk) = ck > 0. Then using the definition of
λk in Step 2 of Algorithm 1, we have:

h(vk)

m(vk)
=

h(vk−1)

m(vk−1)
+

ck
m(vk)

=
h(v0)

m(v0)
+

k∑
i=1

ci
m(vi)

. (6)

Because of the upper and lower bounds of m(v) as defined
in Eq. (5), from Eq. (6) we can derive:

h(v0)

m(v0)
+

1

C2

k∑
i=1

ci ≤ h(vk)

m(vk)
≤ h(v0)

m(v0)
+

1

C1

k∑
i=1

ci. (7)

Now we suppose that there exists a positive constant C
such that limk→∞

∑k
i=1 c

i = C. If this is not true, we have
limk→∞

∑k
i=1 c

i = ∞, by which, together with Eq. (6),
we can derive limk→∞

∑k
i=1

h(vk)
m(vk)

= ∞. This, however,

contradicts the fact that h(vk)
m(vk)

is bounded as defined in Eq. (5),

which means that limk→∞
∑k

i=1 c
i = C must hold. Thus, we

have limk→∞ ck = 0 and limk→∞
ck

m(vk)
= 0, which indicates

that ∀δ > 0, there must exist a k̂ such that:

∀k > k̂,
ck

m(vk)
< δ. (8)

Putting Eq. (6) and Eq. (8) together, we can derive:

∀k > k̂,
h(vk)

m(vk)
− h(vk−1)

m(vk−1)
< δ, (9)

which proves the second statement of Theorem 1 and indicates
that Algorithm 1 converges to a local optimum. �

B. The Algorithm to Solve the Proposed Objective in Eq. (4)

Apparently, the proposed objective in Eq. (4) is a special
case of the general ratio maximization problem in Eq. (5).
Thus, to solve our objective, according to Step 3 of Algo-
rithm 1, we need find a solution that satisfies the following
inequality:

F (W) = H(W)− λkM(W) > 0, s.t. WTW = I, (10)

where

λk =
H(Wk−1)

M(Wk−1)
, (11)

and Wk−1 denotes the projection matrix computed in the (k−
1)-th iteration, which is already known in the k-th iteration.
Here, for notational brevity, we define:

H(W) =
n∑

i=1

∥∥WT (xi − x̄)
∥∥

1
, (12)

M(W) =
n∑

i=1

∑
xj∈{Ni∪{xi}}

∥∥WT (xj − x̄i))
∥∥

1
. (13)

To find a W that satisfies the inequality in Eq. (10), we
need the following two lemmas.

Lemma 1: [39, Theorem 1] For any vector
ξ = [ξ1, · · · , ξm]

T ∈ <m , we have ‖ξ‖1 =
maxη∈<m(sign(η))T ξ. The maximum value is attained
if and only if η = a× ξ, where a > 0 is a scalar.

Lemma 2: [40, Lemma 3.1] For any vector ξ =

[ξ1, · · · , ξm]
T ∈ <m, we have ‖ξ‖1 = min

η∈<m
+

1

2

m∑
i=1

ξ2
i

ηi
+

1

2
‖η‖1, where the minimum value is attained if and only if

ηj = |ξj |, j ∈ {1, 2, · · · ,m}.
To use Lemmas 1–2, we construct the following function:

L
(
W,Wk−1

)
= K (W)− λkN (W) , (14)

where K (W) and N (W) are defined as:

K (W) =
r∑

g=1

wT
g B sign

(
BTwk−1

g

)
, (15)

N (W) =
1

2

r∑
g=1

wT
g Agwg +

(
wk−1

g

)T
Agw

k−1
g . (16)

Here sign(x) is the sign function, and wg and wk−1
g denote

the g-th columns of W and Wk−1 respectively. We also define
B and Ag as follows:

B = [x1 − x,x2 − x, · · · ,xn − x] , (17)

Ag =
n∑

i=1

∑
xj∈Ni∪{xi}

(xj − xi) (xj − xi)
T∣∣∣(wk−1

g

)T
(xj − xi)

∣∣∣ . (18)
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Theorem 2: For any W ∈ <d×r , we have

L
(
W,Wk−1

)
≤ F (W) , (19)

where the equality holds if and only if W = Wk−1.
Proof 2: According to Lemma 1, we can derive:

H (W) =
n∑

i=1

∥∥WT (xi − x)
∥∥

1
=

n∑
i=1

r∑
g=1

∥∥WT
g (xi − x)

∥∥
1

≥
r∑

g=1

n∑
i=1

sign
[(
wk−1

g

)T
(xi − x)

] [(
wk

g

)T
(xi − x)

]
=

r∑
g=1

wT
g B sign

(
BTwk−1

g

)
= K (W) . (20)

According to Lemma 2, we can derive:
n∑

i=1

∑
xj∈Ni∪{xi}

1

2

ξT (xj − xi) (xj − xi)
T
ξ

ξT (xj − xi)

+
1

2

∥∥∥ξT (xj − xi)
∥∥∥

1

≤
n∑

i=1

∑
xj∈Ni∪{xi}

1

2

ξT (xj − xi) (xj − xi)
T
ξ

ηT (xj − xi)

+
1

2

∥∥ηT (xj − xi)
∥∥

1
,

(21)

which indicates that:

M (W) =
n∑

i=1

∑
xj∈Ni∪{xi}

∥∥WT (xj − xi)
∥∥

1

=
r∑

g=1

n∑
i=1

∑
xj∈Ni∪{xi}

wT
g (xj − xi) (xj − xi)

T
wg

2
∥∥wT

g (xj − xi)
∥∥

1

+
1

2

∥∥wT
g (xj − xi)

∥∥
1

≤
r∑

g=1

n∑
i=1

∑
xj∈Ni∪{xi}

wT
g (xj − xi) (xj − xi)

T
wg

2
∥∥∥(wk−1

g

)T
(xj − xi)

∥∥∥
1

+
1

2

∥∥∥(wk−1
g

)T
(xj − xi)

∥∥∥
1

=
1

2

r∑
g=1

wT
g Agwg +

(
wk−1

g

)T
Agw

k−1
g = N (W) .

(22)

Using the inequalities in Eq. (20) and Eq. (22), together
with the definition of F (W) in Eq. (10) and the definition of
L
(
W,Wk−1

)
in Eq. (14), we can derive the following:

L
(
W,Wk−1

)
= K (W)− λkN (W)

≤ H (W)− λkM (W) = F (W) .
(23)

According to Lemma 1 and Lemma 2, it is easy to verify that
the equalities in Eq. (20) and Eq. (22) hold if and only if
W = Wk−1. Thus, the equality in Eq. (23) holds if and only
if W = Wk−1, which completes the proof of Theorem 2. �

According to Theorem 2 and the definition of λk in Eq. (11),
we can derive:
F (W) ≥ L

(
W,Wk−1

)
≥ L

(
Wk−1,Wk−1

)
= F

(
Wk−1

)
= H(Wk−1)− λkM(Wk−1)

= 0,

(24)

which indicates that finding the solution to satisfy Eq. (10)
can be transformed into finding a solution W to satisfy
L
(
W,Wk−1

)
≥ 0. This can be solved by the projected

subgradient method with Armigo line search [41], for which
we need compute the subgradient of L

(
W,Wk−1

)
at W:

∂L(W,Wk−1) = B sign
(
BTWk−1

)
− λk [A1w1,A2w2, · · · ,Arwr] ,

(25)

and use the following operator:

P (W) = W
(
WTW

)− 1
2 , (26)

which projects W onto an orthogonal cone, thereby guarantees
the orthonormal constraint of WTW = I.

Putting all above together, we summarize our algorithm to
solve the proposed objective in Eq. (4) in Algorithm 2, whose
convergence is guaranteed by Theorem 3 and Theorem 4.

Algorithm 2: The algorithm to solve our objective.

1. Randomly initialize W0 that satisfies
(
W0

)T
W0 = I;

2. Set k = 1 and set the parameter 0 < β < 1;
repeat

3. Calculate λk by Eq. (11);
4. Calculate Gk−1 = ∂L

(
Wk−1,Wk−1

)
by Eq. (25);

5. Set m = 1;
repeat

6. Calculate Wk = P
(
Wk−1 + βmGk−1

)
;

7. Calculate F
(
Wk

)
by Eq. (10);

8. m = m+ 1.
until F

(
Wk

)
> F

(
Wk−1

)
= 0

until Convergence
Output: Wk

C. Convergence analysis of our algorithm
Theorem 3: If Wk satisfies the inequality in Eq. (10), we

have J`1(Wk) ≥ J`1(Wk−1).
Proof 3: Because Wk satisfies the inequality in Eq. (10),

we have:

F (Wk) =
n∑

i=1

∥∥∥(Wk
)T

(xi − x̄)
∥∥∥

1

− λk
n∑

i=1

∑
xj∈Ni∪{xi}

∥∥∥(Wk
)T

(xj − x̄i))
∥∥∥

1

≥ 0.

(27)

By a simple mathematical derivation and using the definition
of λk in Eq. (11), we can rewrite Eq. (27) as following:

J`1(Wk) =

n∑
i=1

∥∥∥(Wk
)T

(xi − x̄)
∥∥∥

1

n∑
i=1

∑
xj∈Ni∪{xi}

∥∥∥(Wk)
T

(xj − x̄i))
∥∥∥

1

≥ λk (28)

=

n∑
i=1

∥∥(Wk−1)T (xi − x̄)
∥∥

1

n∑
i=1

∑
xj∈Ni∪{xi} ‖(W

k−1)T (xj − x̄i))‖1

= J`1(Wk−1),
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which completes the proof of Theorem 3. �
Theorem 4: The objective in Eq. (4) is upper bounded.
Proof 4: First, using the Cauchy-Schwarz inequality we get

the following for the numerator of our objective in Eq. (4):
n∑

i=1

∥∥WT (xi − x̄)
∥∥

1
=

n∑
i=1

r∑
j=1

∥∥WT
j (xi − x̄)

∥∥
1

≤
n∑

i=1

r∑
j=1

∥∥WT
j

∥∥
2
‖(xi − x̄)‖2 =

n∑
i=1

r ‖(xi − x̄)‖2 .
(29)

Given an input dataset,
∑n

i=1 r ‖(xi − x̄)‖2 is a constant,
which indicates that the numerator of our objective in Eq. (4)
is upper bounded for a given dataset.

Second, because it can be easily verified that
√∑n

i=1 v
2
i ≤∑n

i=1 |vi|, i.e., ∀v ∈ <n, ‖v‖2 ≤ ‖v‖1, we can derive the
following for the denominator of our objective in Eq. (4):

n∑
i=1

∑
xj∈Ni∪{xi}

‖W (xj − x̄i))‖1

≥
n∑

i=1

∑
xj∈Ni∪{xi}

√
‖W (xj − x̄i))‖22

≥

√√√√ n∑
i=1

∑
xj∈Ni∪{xi}

‖W (xj − x̄i))‖22

=
√

tr(WTSLW) ≥

√√√√ r∑
i=1

λi,

(30)

where λi (i = 1, . . . , r), ordered by λ1 ≤ · · · ≤ λr, are
the eigenvalues of SL. The last inequality in Eq. (30) is
obtained by the Ky Fan’s inequality [42], which states that
tr(WTSLW) ≥

∑r
i=1 λi. Again, given an input dataset, SL

is an constant matrix, which means that
∑r

i=1 λi is a constant.
Thus, the denominator of our objective in Eq. (4) is lower
bounded. The two bounds in Eq. (29) and Eq. (30) together
indicate that our objective in Eq. (4) is upper bounded. �

Theorem 3 indicates that our proposed Algorithm 2 mono-
tonically increases the value of the objective function in
Eq. (4) in each iteration. Theorem 4 indicates that the objective
function is upper bounded, which, together with Theorem 3,
indicates that Algorithm 2 converges to a local optimum.

Though motivated by previous work [36], our new algorithm
to solve the proposed objective in Eq. (4) for minimizing
the ratio of the summations of the `1-norm distances is
more computationally efficient than that in [36]. The most
computationally intensive step of the algorithm presented in
[36] is to solve a system linear equations, whose complexity is
O
(
n3
)

if the Gaussian elimination method is used. In contrast,
the most computationally intensive step of our algorithm is to
perform a line search. Based upon the selection of optimization
package, the complexity of our algorithm can be O

(
n
√
k
)

where k is the iteration number. We perform our experiments
on a Dell OptiPlex 7040 desktop, with Core i7-6700 CPU
processors at 3.4 GHz and 32G bytes memory. Our algorithm
takes about 75 seconds to run the experiments while the
algorithm in [36] takes about 231 seconds. In addition, our

algorithm usually converges in no more than 30 iterations,
while the algorithm in [36] usually converges in about 60
iterations.

V. EXPERIMENTS

In this section, we empirically evaluate a variety of aspects
of the proposed method by applying it to the ADNI cohort.

A. Description of the Experimental Dataset

Data used in the preparation of all our experiments were
obtained from the ADNI (adni.loni.usc.edu). We downloaded
1.5 T MRI scans and demographic information for 821 ADNI-
1 participants. Two high resolution T1-weighted MRI scans
were collected for each participant using a sagittal 3D MP-
RAGE sequence with an approximate TR=2400ms, minimum
full TE, approximate TI=1000ms, and approximate flip angle
of 8 degrees (scan parameters vary between sites, scanner
platforms, and software versions). Scans were collected with a
24cm field of view and an acquisition matrix of 192×192×166
(x, y, z dimensions), to yield a standard voxel size of
1.25×1.25×1.2 mm. Images were then reconstructed to give
a 256 × 256 × 166 matrix and voxel size of approximately
1× 1× 1.2mm. Additional scans included prescan and scout
sequences as indicated by scanner manufacturer, axial proton
density T2 dual contrast FSE/TSE, and sagittal B1-calibration
scans as needed [43], [44], [45].

The analysis of of VBM was performed using previously
described methods [46], [47], [48], as implemented in SPM5
(https://www.fil.ion.ucl.ac.uk/spm/, London, UK). The scans
were converted from DICOM to NIfTI format, co-registered to
a standard T1 template image, bias corrected, and segmented
into GM, WM, and CSF compartments using standard SPM5
templates [43]. GM maps were then normalized to MNI atlas
space as 1× 1× 1 mm voxels and smoothed using a 10 mm
FWHM Gaussian kernel. In cases where the first MP-RAGE
scan could not be successfully segmented we attempted to use
the second MP-RAGE. This was successful for only 1 of 8
cases.

A hippocampal regions of interest (ROI) template was
created by manual tracing of the left and right hippocampi
in an independent sample of 40 HC participants enrolled
in study of brain aging and MCI at Dartmouth Medical
School [49], [50]. These ROIs were used to extract GM
density values from smoothed, unmodulated normalized and
modulated normalized GM maps for the ADNI cohort. The
volume of interest (VOI) including bilateral hippocampi and
amygdalar nuclei, were extracted using FreeSurfer (version 4,
http://surfer.nmr.mgh.harvard.edu/, Boston, MA). FreeSurfer
was also used to extract cortical thickness values from the
left and right entorhinal cortex, inferior, middle, and superior
temporal gyri, inferior parietal gyrus, and precuneus.

We also downloaded the longitudinal scores of the par-
ticipants in five independent cognitive assessments, includ-
ing Alzheimer’s Disease Assessment Scale (ADAS), Mini-
Mental State Examination (MMSE), Fluency test (FLU), Rey’s
Auditory Verbal Learning Test (RAVLT), and Trail making
test (TRAILS). The time points examined in this study for
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both imaging records and cognitive assessments includes BL,
M6, M12, M18, M24 and M36. In our experiments, all the
participants’ data used in to learn enriched neuroimaging
representations are required to have a baseline measurement,
a baseline cognitive score, and at least two available records
from M6/M12/M18/M24/M36. A total of 544 subjects are
involved in our experiments, among which we have 92 subjects
with AD, 205 subjects with MCI samples, and 247 HC
subjects. Ten cognitive scores are included: (1) ADAS TOTAL
scores from ADAS cognitive assessment; (2) FLU ANIM and
(3) FLU VEG scores from Fluency cognitive assessment; (4)
MMSE score from MMSE cognitive assessment; (5) RAVLT
TOTAL, (6) RAVLT 30, and (7) RAVLT 30 RECOG scores
from RAVLT cognitive assessment; (8) TRAIL A, (9) TRAIL
B, and (10) TRAIL B-A scores from Trail making test.

B. Evaluating the Learned Biomarker Representations with
Longitudinal Enrichments in Clinical Scores

Because the main goal of this study is to learn a set of fixed-
length vector representations for the imaging biomarkers using
longitudinal enrichments for all the subject samples in an AD
dataset, we first experimentally evaluate the proposed method
by applying it to the ADNI cohort, where we compare the
predictive power of the learned biomarker representations with
longitudinal enrichments against the BL MRI measurements
using both VBM and FreeSurfer biomarkers respectively.

Experiment Settings. To validate the effectiveness of our
proposed method, we compare the performance to predict
cognitive outcomes using two types of the neuroimaging
inputs – the learned enriched representations and the original
biomarker measurements at the BL time point. We implement
two versions of our new method to evaluate our hypothesis
that learning a robust model by using the `1-norm distance
can better address the missing record problem when using
longitudinal data, i.e., we learn the temporally enriched repre-
sentations by using the objective in Eq. (3) and that in Eq. (4)
respectively, and compare their predictive capabilities.

In our experiments, five regression methods proven to
generalize well, including Linear Regression (LR), Ridge
Regression (RR), Lasso, Support Vector Regression (SVR),
and Convolutional Neural Network (CNN), are compared.
LR is the simplest and most broadly used regression model
in statistical learning and brain image analyses. RR is a
regularized version of LR to account for over-fitting. Lasso
regression performs both variable selection and regularization
for better generalization. SVR is the regression version of the
Support Vector Machine (SVM), which has been widely used
to solve many real-world problems. CNN can be used for
regression and has demonstrated the superior performance.

For LR, RR, Lasso and SVR, we conduct a standard 5-fold
cross-validation and evaluate their performance by computing
the Root Mean Square Error (RMSE) between the predicted
values and ground truth values of the cognitive scores on the
testing data only. Specifically, in the standard 5-fold cross-
validation, the data are equally and randomly divided into 5
groups. In every trial, one group is treated as testing data and
the other four groups are used as training data. This process

repeats five times in turn, such that every data sample is used
as testing data by exactly one time. We iterate each five-fold
experiment 10 times and randomly shuffle training and testing
groups in between each iteration. The average performance for
a given model with fixed hyperparameters are used for com-
parison. The standard deviations for each performance metric
during the five-fold experiments iterated over 10 trials are
reported with our prediction results. In RR and Lasso regres-
sions, the regularization parameters are fine tuned by searching
{10−10, . . . , 10−1, 1, 10, · · · , 1010}. In the SVR model, the
Gaussian kernel is used and the box constraint parameter is
fine tuned by a search on {10−5, . . . , 10−1, 1, 10, · · · , 105}.
There is a slight difference in the settings for the experiments
using CNNs. For CNN regression, we randomly select 70%
of the data samples as the training set, 20% of the data
samples as the validation set, and we use the remaining 10%
of the data samples as the testing set. The validation set
used in the experiments is designed to provide an unbiased
evaluation on how the CNN model fits the training dataset.
We report the performance of the predictive results of the
testing data. We construct a two-layer convolution architecture
for predicting cognitive outcomes: (1) 16 1 × 5 convolutions
(unpadded convolutions), followed by a rectified linear unit
(ReLU) and a 1 × 2 max pooling operation; (2) 32 1 × 10
convolutions (unpadded convolutions) with ReLU and a 1× 2
max pooling operation. The dropout technique is leveraged to
reduce overfitting in the CNN models and prevent complex
co-adaptations on training data. The dropout probability is
set to be 0.3 and the batch size is set to be 16 in all our
experiments. The hyperparameter r is fine tuned by searching
{20, 25, . . . , 50}.

Experiment Results. To evaluate the predictive power of
the enriched biomarker representations learned by our new
method, we use them as input to predict the 10 cognitive scores
by the 5 regression models as mentioned above. As a result,
for each type of input neuroimaging biomarkers, VBM and
FreeSurfer, we end up with 50 prediction tasks. The prediction
performance comparisons between the enriched biomarker
representations and the BL ones in these prediction tasks are
reported in Fig. 2 for the VBM imaging markers and in Fig. 3
for the FreeSurfer imaging makers, respectively. From the two
figures we can see that the enriched biomarker representations
learned by our new method are consistently better than the
BL ones in all 100 prediction tasks, which we attribute to
the following two reasons. Firstly, the baseline representations
only characterize the brain status of the participants at one
single time point, therefore they cannot benefit from the lon-
gitudinal correlations during the course when AD develops. In
contrast, the enriched biomarker representations learned by our
new method can integrate the baseline neuroimaging record
and the temporal variations in the dynamic follow-up records.
Because AD is characterized by progressive degenerations
of the patients’ cognitive capabilities, incorporating temporal
information over time could assist in predictions. Secondly,
the original baseline neuroimaging measurements reside in a
high-dimensional space, which could be redundant and noisy.
Thus directly using traditional regression methods could suffer
from “the curse of dimensionality”. Via the projection learned
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Figure 2. Comparisons of the predictive performances of the original representations at the baseline time point (blue), the enriched representations learned
by the objective in Eq. (3) that uses the squared `2-norm distances (cyan), and the enriched representations learned by the objective in Eq. (4) that uses
the `1-norm distances (yellow), when VBM biomarkers are used to predict the 10 different baseline cognitive outcomes using the 5 different regression
models (LR, RR, Lasso, SVR, and CNN). The RMSEs (smaller is better) for predicting each cognitive outcome by each type of representations are shown
for comparison, where the vertical bars show the standard deviations in the 5-fold cross-validations.

by our objectives in Eq. (3) and Eq. (4), we map the baseline
cognitive measurements into a low-dimensional subspace that
can mitigate the problem of high dimensionality. Thus, from
Fig. 2 and Fig. 3 we can see that, compared to the original
high-dimensional baseline representations, the enriched rep-
resentations learned by our new method have achieved clear
improvements for predicting cognitive outcomes.

Overall, by incorporating the global and local consistencies
of the neuroimaging records of each participant, we learn
a low-dimensional enriched biomarker representation with a
consistent length, which can clearly improve the predictive
performances when we use the five regression models to
predict cognitive outcomes by both VBM and FreeSurfer
biomarkers. This certifies the usefulness of the enriched
biomarker representations learned by our new method.

Finally, as we expected, we also observe that the predic-
tive performances of the enriched biomarker representations
learned by our objective using the `1-norm distance are always
better than the objective that uses the traditional squared-
`2-norm distance, sometimes very significantly. For example,
when we use the VBM biomarkers to predict the RAVLT
TOTAL score, the enriched representations learned by the
objective using the `1-norm distance improve the performance
by 105% compared to their counterparts that use the squared
`2-norm distance. These observations firmly confirm the cor-

rectness of our hypothesis that using a robust learning model
is appropriate for representation learning due to the misaligned
missing records of the participants across a studied cohort.

C. Comparing the Capability of Our New Method to Predict
Cognitive Outcomes against Other Longitudinal Models

In the previous experiments, we have compared the enriched
biomarker representations learned by our new method against
their BL counterparts. The latter, however, are static measure-
ments that only characterize the brain status at the baseline
time point, but do not utilize the information at any follow-up
time points. To further demonstrate the advantage of the our
new method, we compare its predictive performance against
longitudinal enrichments learned from Locality Persevering
Projection (LPP) [32] where SVR and CNN are used for
regression, respectively. We also compare our methods against
two very recent longitudinal learning models, including (1)
the Temporal Group Feature (TGF) method [12], (2) the
Longitudinal Spatial Features (LSF) method [13]; and three
different multi-task based longitudinal methods, including (1)
the Multi-Task Exclusive Relationship (MTER) method [18],
(2) Robust Multi-Task Feature Learning (RMTFL) [51], (3)
Joint Multi-Modal Longitudinal Regression and Classification
for Alzheimer’s Disease Prediction (JMMLRC) [20]. Differ-
ent from the five regression models used before, these five
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Figure 3. Comparisons of the predictive performances of the original representations at the baseline time point (blue), the enriched representations learned
by the objective in Eq. (3) that uses the squared `2-norm distances (cyan), and the enriched representations learned by the objective in Eq. (4) that uses
the `1-norm distances (yellow), when FreeSurfer biomarkers are used to predict the 10 different baseline cognitive outcomes using the 5 different regression
models (LR, RR, Lasso, SVR, and CNN). The RMSEs (smaller is better) for predicting each cognitive outcome by each type of representations are shown
for comparison, where the vertical bars show the standard deviations in the 5-fold cross-validations.

methods are designed to take advantage of longitudinal data
over all the examined time points. In our experiments, after
we learn the enriched biomarker representations by our new
method, we use RR for the regression analyses. For the three
compared methods, we fine tune their parameters following
the procedures described in the respective papers. We report
the comparison results in Table I and it shows that our new
method achieves the best performance when we predict all
clinical scores using both VBM and FreeSurfer biomarkers,
which again demonstrates the effectiveness of our new method.

D. Evaluating the Learned Biomarker Representations with
Longitudinal Enrichments in Behavior Assessment

Besides the prediction of cognitive declines of AD patients,
we also evaluation of new method by predicting Clinical
Dementia Rating (CDR) [52] and Functional Assessment
Questionnaire (FAQ) [53]. The CDR and FAQ scales are
highly recommended for clinical and severity assessment of
dementia. The CDR is derived from the scores in each of the
six categories (“box score”) – Memory, Orientation, Judgment
and Problem Solving, Community Affairs, Home and Hobbies
and Personal Care. Memory (M) is considered the primary
category and all others are secondary. With a semi-structured
interview with the patient and an appropriate rates, each of the
six cognitive categories is scored on a five-point scale in which

none = 0, questionable = 0 5, mild = 1, moderate 2 and severe
= 3. Sum of Boxes of CDR (CDR-SB) sums up the scores of
all the six categories. The FAQ measures activities of daily
living and is administered at baseline and at every subsequent
in clinic visit. FAQ is a bounded outcome (ranging from 0 to
30), with 0 scored as “no impairment” and 30 as “severely
impaired” [54].

Because both CDR and FAQ assessments are quantified
by numerical numbers, we can consider the tasks of pre-
dicting them as regression tasks. To evaluate the predictive
capability of our proposed methods, we use the original data
representation, the enriched representations learned by the
proposed objectives that use the squared `2-norm distances and
the `1-norm distances as inputs to predict the two behavior
assessments by five regression models, same what we did
for predicting cognitive declines as in Section V-C. From the
Table II, we can see that our proposed `1-norm enriched rep-
resentation achieves the best performance when predicting the
behavior assessment, which provides one concrete evidence to
support the effectiveness of our proposed method.

E. Identifying Disease Relevant Imaging Biomarkers

Besides predicting cognitive outcomes, another important
goal of our regression analyses is to identify a subset of
imaging biomarkers that are highly correlated to AD devel-
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Table I
PERFORMANCE COMPARISONS MEASURED BY RMSE (SMALLER IS BETTER ↓) BETWEEN OUR METHOD AND OTHER LONGITUDINAL METHODS.

Clinical Scores Methods RMSE (↓) Methods RMSE (↓)

VBM FreeSurfer VBM FreeSurfer

ADAS

LPP [32] (SVR) 7.137 ± 0.274 8.223 ± 0.391 LPP [32] (CNN) 2.178 ± 0.682 2.891 ± 0.763
TGF [12] 4.004 ± 0.186 3.801 ± 0.144 LSF [13] 2.255 ± 0.119 1.988 ± 0.207

MTER [18] 1.921 ± 0.241 1.741 ± 0.107 RMTFL [51] 1.949 ± 0.177 1.915 ± 0.172
JMMLRC [20] 7.842 ± 0.407 7.436 ± 0.483 Our Method (RR) 0.931 ± 0.049 1.169 ± 0.224

Our Methods (SVR) 0.294 ± 0.051 0.449 ± 0.079 Our Methods (CNN) 0.445 ± 0.037 0.453 ± 0.061

MMSE

LPP [32] (SVR) 11.851 ± 1.746 10.917 ± 1.147 LPP [32] (CNN) 3.127 ± 0.107 2.815 ± 0.213
TGF [12] 2.036 ± 0.076 1.903 ± 0.058 LSF [13] 1.581 ± 0.144 0.603 ± 0.085

MTER [18] 1.324 ± 0.116 0.547 ± 0.153 RMTFL [51] 1.232 ± 0.199 1.315 ± 0.258
JMMLRC [20] 9.081 ± 0.817 9.528 ± 0.790 Our Method (RR) 0.245 ± 0.041 0.246 ± 0.022

Our Methods (SVR) 0.106 ± 0.017 0.101 ± 0.013 Our Methods (CNN) 0.103 ± 0.015 0.345 ± 0.037

FLU ANIM

LPP [32] (SVR) 6.372 ± 0.692 5.572 ± 0.204 LPP [32] (CNN) 1.239 ± 0.083 0.852 ± 0.621
TGF [12] 2.341 ± 0.126 2.623 ± 0.095 LSF [13] 1.483 ± 0.108 1.317 ± 0.127

MTER [18] 0.923 ± 0.081 0.837 ± 0.065 RMTFL [51] 0.902 ± 0.061 1.046 ± 0.084
JMMLRC [20] 7.590 ± 0.428 8.072 ± 0.493 Our Method (RR) 0.556 ± 0.037 0.687 ± 0.104

Our Methods (SVR) 0.204 ± 0.016 0.242 ± 0.029 Our Methods (CNN) 0.2810 ± 0.029 0.255 ± 0.031

FLU VEG

LPP [32] (SVR) 10.711 ± 0.523 12.687 ± 0.675 LPP [32] (CNN) 3.192 ± 0.894 2.826 ± 0.637
TGF [12] 2.752 ± 0.103 2.853 ± 0.087 LSF [13] 1.437 ± 0.143 1.490 ± 0.159

MTER [18] 0.895 ± 0.076 0.764 ± 0.083 RMTFL [51] 1.073 ± 0.162 1.258 ± 0.204
JMMLRC [20] 6.934 ± 0.309 7.264 ± 0.375 Our Method (RR) 3.481 ± 0.379 3.732 ± 0.388

Our Methods (SVR) 0.233 ± 0.026 0.211 ± 0.022 Our Methods (CNN) 0.196 ± 0.037 0.396 ± 0.042

RAVLT TOTAL

LPP [32] (SVR) 16.873 ± 2.614 18.721 ± 1.844 LPP [32] (CNN) 2.897 ± 0.435 2.397 ± 0.341
TGF [12] 3.846 ± 0.203 3.650 ± 0.178 LSF [13] 1.448 ± 0.132 1.431 ± 0.108

MTER [18] 1.897 ± 0.394 1.786 ± 0.274 RMTFL [51] 1.176 ± 0.167 1.380 ± 0.078
JMMLRC [20] 8.651 ± 0.672 8.894 ± 0.647 Our Method (RR) 1.798 ± 0.367 1.776 ± 0.214

Our Methods (SVR) 0.347 ± 0.101 0.837 ± 0.129 Our Methods (CNN) 0.425 ± 0.104 1.007 ± 0.193

RAVLT 30

LPP [32] (SVR) 13.721 ± 1.581 11.938 ± 1.260 LPP [32] (CNN) 0.924 ± 0.045 0.703 ± 0.038
TGF [12] 2.304 ± 0.053 2.426 ± 0.047 LSF [13] 1.562 ± 0.137 1.487 ± 0.168

MTER [18] 0.725 ± 0.131 0.693 ± 0.174 RMTFL [51] 0.691 ± 0.051 0.608 ± 0.054
JMMLRC [20] 16.319 ± 0.873 14.844 ± 0.469 Our Method (RR) 25.597 ± 1.786 25.544 ± 1.681

Our Methods (SVR) 0.173 ± 0.050 0.209 ± 0.053 Our Methods (CNN) 0.158 ± 0.031 0.405 ± 0.064

RAVLT RECOG

LPP [32] (SVR) 17.956 ± 1.713 19.062 ± 2.018 LPP [32] (CNN) 2.786 ± 0.753 1.913 ± 0.613
TGF [12] 3.032 ± 0.092 2.896 ± 1.231 LSF [13] 1.972 ± 0.130 2.149 ± 0.107

MTER [18] 0.951 ± 0.082 0.719 ± 0.042 RMTFL [51] 0.780 ± 0.026 0.761 ± 0.032
JMMLRC [20] 15.117 ± 1.426 15.190 ± 1.071 Our Method (RR) 19.239 ± 1.070 19.313 ± 2.011

Our Methods (SVR) 0.149 ± 0.012 0.202 ± 0.041 Our Methods (CNN) 0.087 ± 0.017 0.487 ± 0.134

TRAILA

LPP [32] (SVR) 26.198 ± 3.272 30.578 ± 2.803 LPP [32] (CNN) 13.376 ± 1.291 14.092 ± 0.913
TGF [12] 14.892 ± 0.831 12.816 ± 1.253 LSF [13] 18.417 ± 1.514 18.940 ± 1.109

MTER [18] 7.590 ± 0.496 6.032 ± 6.032 RMTFL [51] 6.629 ± 0.570 6.446 ± 0.574
JMMLRC [20] 36.402 ± 1.895 32.117 ± 2.097 Our Method (RR) 7.153 ± 0.337 6.247 ± 0.876

Our Methods (SVR) 3.185 ± 0.405 2.276 ± 0.499 Our Methods (CNN) 1.478 ± 0.502 1.199 ± 0.234

TRAILB

LPP [32] (SVR) 46.192 ± 4.707 50.672 ± 4.691 LPP [32] (CNN) 8.972 ± 0.913 9.187 ± 0.895
TGF [12] 34.912 ± 3.045 37.721 ± 4.460 LSF [13] 39.027 ± 3.782 47.346 ± 4.469

MTER [18] 28.823 ± 2.369 33.375 ± 1.431 RMTFL [51] 25.213 ± 1.296 24.016 ± 1.761
JMMLRC [20] 41.659 ± 3.860 42.838 ± 3.871 Our Method (RR) 85.050 ± 5.724 83.420 ± 7.775

Our Methods (SVR) 9.091 ± 1.940 6.383 ± 1.576 Our Methods (CNN) 4.051 ± 0.480 4.023 ± 0.767

opments. Therefore, we examine the biomarkers identified by
the proposed methods. As can be seen in Eq. (4), we learn
a projection matrix W for every participant in the ADNI
dataset. To explore the association between the prediction
targets and imaging markers, we use the regression model of
minU ||F−UTY||2F , where Y ∈ <r×n contains the enriched
representations for the n subjects of the studied cohort and
F ∈ <c×n is the matrix to encode the c cognitive scores for the
n subjects. Then, WU indicates the outcome relevant weights
for each subject. The top 10 imaging biomarkers of the studied
subjects are selected to determine a frequency map.

We visualize the top 10 VBM biomarkers in the frequency
map in the association studies between the MMSE score
and the VBM biomarkers in the top panel of Fig. 4 and

the top 10 FreeSurfer biomarkers in the bottom panel of
Fig. 4. We observe that the bilateral hippocampus is among
the top selected biomarkers, which is in accordance with
the existing clinical evidence showing that the hippocampus
is mainly associated with memory, in particular long-term
memory [55]. In addition, the bilateral amygdala is also among
the top selected biomarkers, which agrees with the fact that
the amygdala performs a primary role in the processing of
memory, decision-making and emotional response and it is an
important subcortical region that is severely and consistently
affected by pathology in AD [56]. Furthermore, the bilateral
pallidum is also listed as a top relevant biomarker, which
is known to be responsible for slowly progressive dementia,
cortical atrophy and local amyloidosis in the atrophic form of

Authorized licensed use limited to: University of Southern California. Downloaded on February 02,2021 at 19:51:40 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3041227, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 0, NO. 0, JANUARY 2020 12

Table II
PERFORMANCE COMPARISONS MEASURED BY RMSE (SMALLER IS

BETTER ↓) BETWEEN ORIGINAL REPRESENTATION, SQUARED `2-NORM
ENRICHED REPRESENTATION AND `1-NORM ENRICHED REPRESENTATION.
WE COMPARE FIVE WE COMPARE FIVE DIFFERENT GENERAL REGRESSION
METHODS FOR BEHAVIOR ASSESSMENT– LR, RR, LASSO SVR AND CNN.

Methods Inputs RMSE (↓)

CDR-SB FAQ

LR
Original Representation 0.435 ± 0.059 1.209 ± 0.111

`22-norm enrichments 0.470 ± 0.041 1.676 ± 0.101

`1-norm enrichments 0.419 ± 0.038 1.814 ± 0.085

RR
Original Representation 0.603 ± 0.085 1.016 ± 0.129

`22-norm enrichments 0.697 ± 0.061 0.988 ± 0.148

`1-norm enrichments 0.577 ± 0.041 0.819 ± 0.082

Lasso
Original Representation 1.221 ± 0.167 2.100 ± 0.287

`22-norm enrichments 0.971 ± 0.086 1.245 ± 0.247

`1-norm enrichments 0.889 ± 0.097 1.286 ± 0.263

SVR
Original Representation 0.524 ± 0.068 0.629 ± 0.071

`22-norm enrichments 0.538 ± 0.068 0.588 ± 0.073

`1-norm enrichments 0.521 ± 0.067 0.576 ± 0.060

CNN
Original Representation 0.169 ± 0.021 0.508 ± 0.058

`22-norm enrichments 0.138 ± 0.028 0.491 ± 0.051

`1-norm enrichments 0.136 ± 0.015 0.485 ± 0.052

L R
L R

VBM

L R
L R

FreeSurfer

Figure 4. Top panel: Top 10 selected VBM biomarker mapped onto the brain:
LAmygdala, RAmygdala [56], LFusiform, RFusiform [58], LHippocampus,
RHippocampus [55], LPallidum, RPallidum [57], LPutamen, RPutamen [58].
Bottom panel: Top 10 selected FreeSurfer biomarker mapped onto the
brain: LCerebWM, RCerebWM [59], LCerebCtx, RCerebCtx [60], LLatVent,
RLatVent [61], LInfLatVent, RInfLatVent [61], LCerebellCtx, RCerebellCtx
[60].

chronic bacterial infections [57].

In summary, the identified imaging biomarkers are highly
suggestive and strongly agree with existing medical research
findings with regards to AD. These findings concretely sup-
port the correctness of the discovered associations between
cognitive developments and progressive variations of imaging
biomarkers from the clinical perspective.

VI. CONCLUSION

In this paper, we proposed a novel formulation to learn
an enriched representation for neuroimaging biomarkers using
the longitudinal data. Our enriched biomarker representation is
learned by solving a new objective that aims to maintain both
global and local consistencies of the neuroimaging measure-
ments of each participant in the projected subspace, where the
global consistency is designed to preserve similar distributions
of neuroimaging measurements of each participant during the
projection, and the local consistency is designed to preserve
the pairwise relationship of neuroimaging measurements at
different time points. The objective simultaneously maximizes
and minimizes the summations of a number of `1-norm dis-
tances, which is non-smooth thereby difficult to solve in gen-
eral. Thus, we developed an efficient and non-greedy iterative
solution algorithm with theoretically proved convergence. We
conducted experiments on two types of biomarkers, VBM and
FreeSurfer. Via the enriched neuroimaging representations, we
can achieve a clear performance gain in predicting ten different
cognitive outcomes using five standard regression models and
three recent longitudinal prediction models. Moreover, the key
imaging biomarkers identified for both VBM and FreeSurfer
measurements nicely agree with the existing findings in clini-
cal researches, which warrants the correctness of the enriched
neuroimaging representations learned by our new method.
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