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DeepAD: A deep learning
application for predicting amyloid
standardized uptake value ratio
through PET for Alzheimer’s
prognosis

Sucheer Maddury*† and Krish Desai*†

Leland High School, San Jose, CA, United States

Introduction: Amyloid deposition is a vital biomarker in the process of Alzheimer’s

diagnosis. 18F-florbetapir PET scans can provide valuable imaging data to determine

cortical amyloid quantities. However, the process is labor and doctor intensive,

requiring extremely specialized education and resources thatmay not be accessible to

everyone, making the amyloid calculation process ine�cient. Deep learning is a rising

tool in Alzheimer’s research which could be used to determine amyloid deposition.

Materials and methods: Using data from the Alzheimer’s Disease Neuroimaging

Initiative, we identified 2,980 patients with PET imaging, clinical, and genetic data.

We tested various ResNet, E�cientNet, and RegNet convolutional neural networks

and later combined the best performing model with Gradient Boosting Decision

Tree algorithms to predict standardized uptake value ratio (SUVR) of amyloid in each

patient session. We tried several configurations to find the best model tuning for

regression-to-SUVR.

Results: We found that the RegNet X064 architecture combined with a grid search-

tuned Gradient Boosting Decision Tree with 3 axial input slices and clinical and

genetic data achieved the lowest loss. Using themean-absolute-error metric, the loss

converged to an MAE of 0.0441, equating to 96.4% accuracy across the 596-patient

test set.

Discussion: We showed that this method is more consistent and accessible in

comparison to human readers from previous studies, with lower margins of error and

substantially faster calculation times. We implemented our deep learning model on to

a web application named DeepAD which allows our diagnostic tool to be accessible.

DeepAD could be used in hospitals and clinics with resource limitations for amyloid

deposition and shows promise for more imaging tasks as well.

KEYWORDS

Alzheimer’s disease, PET, amyloid, convolutional neural network, gradient boosted decision

tree

1. Introduction

Alzheimer’s disease is a worldwide health concern which has many neurological effects. This

common neurological disorder results in brain atrophy, causing patients to experience cognitive

decline, behavioral change, and memory loss (Lane et al., 2018). Diagnosis (particularly early

diagnosis) for Alzheimer’s is imperative in order to implement proper treatment plans and

delay the progression of the disease (Rasmussen and Langerman, 2019). Efficient and accurate

diagnosis is also important in order to save time and reduce error. There is also an overlap

in what doctors consider abnormal change and normal age-related change (Mayo Clinic Staff,

2022); this creates assessment variability which is an inconsistent practice.
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Imaging, clinical data, and physiologic biomarkers are major

factors in AD prognosis. Positron Emission Tomography (PET)

is an imaging technique which provides 3D images that can be

used to quantify biochemical processes in the brain (Passamonti

et al., 2017). The radiopharmaceutical Florbetapir (18F-AV-45) traces

amyloid deposition, an important biomarker which correlates to the

progression of Alzheimer’s disease (King-Robson et al., 2021).

The Standard Uptake Value Ratio (SUVR) is commonly used

as a quantitative measurement of the radiotracer uptake in the

brain (Vemuri et al., 2016). Pre-existing SUVR values calculated

from 18F-florbetapir PET imaging scans were used in our model.

To streamline the process of calculating SUVR, we used novel deep

learning architecture, a powerful tool that improves efficiency and

accuracy in Alzheimer’s prognosis (Saleem et al., 2022).We combined

deep learning architecture, which was optimized for linear regression,

and gradient boosted decision trees to create a SUVR prediction

model for this analysis.

2. Background literature

Extracellular amyloid plaques are important in AD

characterization (Bloom, 2014). Amyloid-β (Aβ) peptides,

derived from the amyloid beta precursor protein, are made

from amyloid plaques. The accumulation of amyloid plaques

disrupts the synapses that facilitate cognition and memory,

which show that amyloid beta accumulation is a hallmark of

AD. Also, the accumulation of Aβ amyloid fibrils lead to tau

synaptic dysfunction which is more indicative of cognitive

and memory loss in AD subjects compared to Aβ (Bloom,

2014).

Several studies have examined the relationship between

amyloid and AD pathology. Biomarkers use parameters to

measure the presence of a disease in a patient. Camus et al.

(2012) determined that Florbetapir (18F-AV-45) is a core

radiotracer biomarker for AD which binds to amyloid plaques.

This study found that the mean quantity values of SUVR were

higher in AD subjects than HC (Healthy Controls) subjects

in cortical regions when using 18F-florbetapir. Because 18F-

florbetapir tracers selectively bind to amyloid in human brain

tissue (Choi et al., 2012), the higher cortical uptake of 18F-

florbetapir in MCI and AD subjects compared to HC subjects

show that there is a strong correlation between amyloid and

AD pathology.

SUVR is a common way to quantify the severity of a disease.

Vemuri et al. (2016) wrote that SUVR is a semi-quantitative

measurement which is calculated by the uptake of a radiotracer with

respect to the reference region. SUVR can be measured with the

uptake values of the 18F-florbetapir radiotracer. Kinahan and Fletcher

(2010) quantified SUVR as the radioactivity concentration from the

radiotracer in the region of interest (ROI) averaged over the cortical

and subcortical regions divided by the reference tissue activity over

the same period used to calculate the standard uptake value.

Although studies indicate that an accumulation of amyloid-β

corresponds to the characteristics of AD pathology, Ingeno (2019)

showed that the removal of amyloid from the brain resulted in the

same or worsened cognitive state when performing clinical trials.

However, data on amyloid-β can be utilized for AD prognosis in a

given subject.

3. Materials and methods

3.1. General subject data

All data collected in this study was provided by the Alzheimer’s

Disease Neuroimaging Initiative, a longitudinal multicenter research

study, in collaboration with the Laboratory of Neuroimaging

at the University of Southern California, designed to develop

genetic, imaging, clinical, and biochemical biomarker data for

AD (https://adni.loni.usc.edu/). Through a $60 million public-

private partnership, ADNI researchers at 63 sites in the US and

Canada carefully tracked the progression of AD in several subjects’

brains using standardized protocols, allowing comparisons to be

made between results based on ADNI’s data. For this study,

ADNI provided the Positron Emission Tomography (PET) scans;

Mini-Mental State Exam (MMSE) scores; Functional Activities

Questionnaire (FAQ) scores; Apolipoprotein (APOE) indication;

age, gender, and weight classification that were used in this

analysis. ADNI provides biomarker, imaging, clinical, and genetic

data across three different groups: CN, MCI, and AD. PET

scans, MMSE scores, APOE gene indication, FAQ scores, age,

gender, and weight were collected for 1,298 individuals and

2,980 total scans across the amyloid cohort. There were subjects

in this cohort that took at least one PET scan. Out of the

1,298 individuals from the amyloid cohort, 574 individuals were

females and 646 were males. Subject information is shown in

Table 1.

3.2. Imaging information and SUVR
acquisition

The subjects in the amyloid cohort had the Florbetapir (18F-AV-

45) injection for a PET protocol: 370 MBq (10.0 mCi)± 10%, 20min

(4× 5min frames) acquisition at 50–70 min post-injection.

For each subject, all scans were collected from ADNI’s image and

data archive using a specific advanced search (“AV45 Coreg, Avg,

Std Img and Vox Siz, Uniform Resolution”). The scans from this

search were coregistered PET-MR and intensity normalized images

that used Statistical Parametric Mapping (SPM8), a medical imaging

process which allows SUV comparisons within select regions to

be made in a given subject (Smith et al., 2022). Coregistering is

important because MR has fine anatomical detail and PET cannot

delineate anatomic structures (Robertson et al., 2016). PET transfers

radiotracer information to MR throughout the coregistering process.

Over the 20-min acquisition time, each image was resized to a

uniform voxel size and each uniform size was 160 × 160 in-plane,

along with 96 axial slices (Reith et al., 2020; Landau et al., 2021). All

images were normalized and rescaled to 224 × 224 to accommodate

the ImageNet pretraining.

We obtained the 18F-florbetapir cortical summary SUVR

(“SUMMARYSUVR_WHOLECEREBNORM”) for each scan

from the UC Berkeley AV45 Analysis. This calculation required

FreeSurfer processing which included skull-stripping, segmentation,

and delineation of cortical and subcortical regions in MRI scans

which were co-registered to PET scans using SPM8. The cortical

summary region (“COMPOSITE_SUVR”) was calculated by

taking the mean uptake of all SUVR values from the subregions.
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TABLE 1 ADNI subject information. All statistics were created from the set

of unique patients (n = 1,298). Some attributes were missing from certain

patients; 118 APOE A1 gene indications, 118 APOE A2 gene indications,

1,103 MMSE scores, and 224 FAQ scores were missing.

Attributes Value

Gender Male Female

646 574

Mean age (years) 73.650

Mean weight (kg) 75.276

Amyloid positivity (%) Positive Negative

51.644% 48.366%

Diagnosis AD MCI SMC CN

172 633 101 392

APOE gene APOE A1 APOE A2

ε2 ε3 ε4 ε2 ε3 ε4

120 955 105 2 673 505

Mean FAQ score 3.985

Mean MMSE score 26.605

These SUVR (“COMPOSITE_SUVR”) values were calculated with

respect to the reference region (“WHOLECEREBELLUM_SUVR”)

to derive the summary SUVR value for the whole cerebellum

(“SUMMARYSUVR_WHOLECEREBNORM”) for each scan

(Landau et al., 2021).

SUV (t)=
cimg(t)

ID/BW

SUV(t) represents the radioactivity concentration in the

subcortical and cortical regions (ROI) averaged during a period of

time over the quantity of the injected dose (kBq/mL) divided by the

weight (kg). This value is then calculated with respect to the reference

region which determines SUVR.

3.3. Clinical data

An individual’s age, gender, and weight were included

in the clinical data for this analysis. Each individual in the

ADNI dataset received a Mini-Mental State Exam (MMSE)

after their testing session. CN or MCI subjects normally score

between 24 and 30 inclusive while AD subjects normally

score between 20 and 26 inclusive, showing that subjects

who score lower than normal on this exam have cognitive

impairment which is an indicator of Alzheimer’s (Petersen et al.,

2010).

Individuals also took a Functional Activities Questionnaire (FAQ)

after their testing session. FAQ tests subjects with daily activities; the

questionnaire has a range of 0–30 and subjects with a score of 6 or

greater is suggestive of functional, cognitive impairment (Marshall

et al., 2015).

Apolipoprotein E is a multifunctional protein with three

isoforms: APOE ε2, APOE ε3, and APOE ε4. APOE ε4 has the

possibility of forming stable complexes with Aβ peptides and it

enhances Aβ aggregation (Huang and Mahley, 2014). This suggests

that there is a correlation between APOE ε4 and pathogenesis

of AD (Huang et al., 2017). While APOE ε4 is more of a

genetic risk factor of AD, subjects with APOE ε3 are generally

neutral and subjects with APOE ε2 are protective (Huang et al.,

2017).

3.4. Deep learning implementation

The deep learning was implemented using TensorFlow (https://

www.tensorflow.org/). The data was split into training (80%, n =

2,384), and testing (20%, n = 596) subsets to isolate training and

testing results. The training set is a portion of the dataset that

the model uses to fine tune weights while the testing set uses a

separate portion of the dataset to evaluate real world performance

of the model. Adam was used to optimize loss via backpropagation

(Kingma et al., 2014), which works by dynamically adjusting the

movement of the gradient to better optimize training. An initial

learning rate of 0.001 was used with a batch size of 32 and a total of 20

epochs. All models were pre trained on ImageNet weights which were

trained on the ImageNet dataset of 14 million natural images and

1,000 various classes. All images were modified to 224 × 224 pixels

for ImageNet.

We first used the ResNet convolutional neural network (CNN)

architecture, which solves the vanishing/exploding gradient problem

via skip connections (He et al., 2015). Skip connections calculate the

identity function of an earlier layer output and add it to the output

value of the succeeding layer, preserving the gradient (Adaloglou,

2020). This occurs because the skip connection prevents the gradient

from exploding or vanishing while retaining the progression through

the layers. We tested this architecture using both ResNet-50, a 50-

layer model of ResNet, and ResNetRS-50, a modern revision of

the original ResNet architecture that achieves better computational

efficiency by increasing image resolution more slowly and scaling

model depth in overfitted areas (Tsang, 2022).

We also tested the EfficientNet CNN architecture which uses

compound model scaling, a method which consistently relates

resolution, depth, and width to each other (Tan and Le, 2021).

EfficientNet uses a specific set of scaling coefficients to uniformly

scale the resolution, width, and depth in order to achieve this

constant ratio (Sarkar, 2021). The compound model scaling equation

is α•β2•γ 2≈ 2 where α represents depth, β represents width, and γ

represents resolution. We tested the EfficientNet architecture using

EfficientV2, a model which optimizes progressive learning of images

to decrease overfitting and minimize the loss function, making it

more efficient and accurate than EfficientNet while using lessmemory

(Ibrahim, 2021).

Lastly, we tested the RegNet CNN architecture using the X002

variant. This architecture has significantly less parameters than the

other CNN models, making the RegNet model more practicable for

imaging tasks since it’s less computationally intensive. RegNet uses

self-regulation, a regulatory module which extracts spatio-temporal

information from the intermediate layers of the network (Xu et al.,

2021). In addition, RegNet is scalable, flexible, and efficient due to its

weight residual connections, batch normalization, and regularization

mechanism techniques (Xu et al., 2021).
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FIGURE 1

Color composites of various subjects with ground truth SUVR values.

FIGURE 2

Flowchart of ADNI data applications.

3.5. Gradient boosted decision trees

Gradient Boosted Decision Trees sequentially build simple

prediction models while constantly correcting the preceding model.

This process improves the mistakes of the previous learner while

simultaneously filtering out the correct observations (Gaurav, 2022).

LightGBM is an open-source library that provides automatic

feature selection and larger gradients which improves predictive

performance of gradient boosted decision trees (Brownlee, 2021).

The GBM (Gradient Boosting Machine) was trained for 50,000

iterations with an early stopping sensitivity of 500 iterations. A

random grid search was used to find the optimal hyperparameters for

the GBM, by substituting random parameters and evaluating which

parameters performed the best. Random state variables were never

tested, with the intent to preserve scientific integrity.

3.6. Prediction approaches

Several prediction approaches were used with the data and the

four architectures, ResNet-50, ResNetRS-50, EfficientNetV2-S, and

RegNet. Binary classification and linear regression were performed

on all four models’ with either one or three slices of the brain from

each subject. For single slice prediction, slice 48 was chosen out of

the 96 axial slices, as it covers the central region of the brain which

Alzheimer’s often affects. Triple slice prediction used slices 36, 48, and

60, three areas of the brain with high amyloid burden. The proposed

cutoff value of 1.11 for SUMMARYSUVR_WHOLECEREBNORM

was used (Landau and Jagust, 2015).

First, all four networks were used to perform binary classification

for single and triple slice on both the train and test set. Binary

classification can be useful in determining positivity of Alzheimer’s,

although it lacks to precision of an exact SUVR value. In each model

the average pooling layer precedes the fully connected layer with

many activations. The fully connected layer was changed to down

sample the activations in each model to 2 classes through linear down

sampling. GlobalMaxPooling, preceding the final layer, was used to

reduce spatial dimensions in the input data. The final layer was the

sigmoid activation functionwhichmaps the input values from a range

of 0 to 1. Binary Cross Entropy was used as the loss function:

LBCE=−
1

n

n
∑

i=1

(Yi· log Ŷi+(1−Yi)· log (1−Ŷi))

The ROC (Receiver Operator Characteristic) curve was used to

show the performance of binarized classification. The ROC curve

plots the true positive rate, the number of true positive results divided

by the total number of positive cases, against the false positive rate,
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TABLE 2 Accuracy and precision of ROC curve results for ResNet-50, ResNetRS-50, E�cientNetV2-S, and RegNet-X002. Accuracy and precision were

calculated from the ROC AUC curves of all four regression models. Accuracy refers to the percentage of correctly classified instances while precision refers

to the percentage of positive predictions that were truly correct.

Model architecture Training Testing

Single slice Triple slice Single slice Triple slice

Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision

ResNet-50 84.98 89.93 81.59 85.25 88.09 94.49 88.42 89.58

ResNetRS-50 89.22 90.74 92.24 95.11 90.60 94.46 92.79 97.39

EfficientNetV2-S 95.55 95.96 96.85 96.83 91.11 91.50 92.11 89.31

RegNet-X002 93.92 94.66 95.93 96.38 91.28 95.54 94.13 94.86

the number of false positive results divided by the total number of

negative cases. A higher true positive rate to false positive rate ratio

signifies a higher performing model. The area under the ROC curve

(AUC) was used to measure the performance of each model.

Second, regression to SUVR was performed with three slices,

slice 36, 48, and 60. Color composites were created by overlapping

slices 36, 48, and 60 into the R, G, and B color channels respectively.

Since the images are all black and white (thus governed by one color

channel), no imaging information was lost by doing this, and during

the prediction, the model will split the image into their respective

color channels regardless, effectively providing three images worth

of information in one. The linear activation function was used to

downsample the activations of the global pooling layer into one

output. Examples are shown in Figure 1.

For regression, the last fully connected was changed to one

output which is linear only. Mean Absolute Error (MAE) was used

to measure regression loss. MAE is the average difference between

predicted and ground truth values, used in order to quantify the

average difference between a patient’s true SUVR value in the field

vs. the model prediction.

MAE=

∑n
i=1

∣

∣yi−xi
∣

∣

n

Finally, the best performing architecture was once again trained

on the RGB color composites. The last fully connected layer

was then removed, and the activations were extracted from the

GlobalAveragePooling layer. The activations, as well as the clinical

and genetic data, were fed into the Gradient Boosted Decision Tree,

which then performed regression to reach a SUVR value. In effect, the

linear layer was being replaced by GBDT functions, which has been

shown to be more accurate (Ke et al., 2017). The basic model path is

shown below.

4. Results

4.1. Binary classification

First, we trained on binarized amyloid classification for SUVR

(positive/negative), found using the cutoff value discussed above.

Through preliminary tests, we settled on pre-trained ImageNet

weights, 20 epochs, a batch size of 32, and an initial learning rate

of 0.001 across all four regression models. The CrossEntropy losses

for training and testing set after 20 epochs were 0.0 and 0.444,

respectively. We used the ROC curve and AUC to evaluate the

significance of binarized classification for each regression model. The

results for all models for training and test sets for a variety of metrics

are shown in Table 2. The ROC curve and AUC results are shown

in Figure 3.

4.2. Amyloid regression model

After binary classification, regression was used to predict an exact

SUVR quantity. For regression we used 20 epochs, and an initial

learning rate of 0.001. The same network architectures used for binary

classification were used for linear regression. The MAE loss for the

training set and testing set of the four regression models are shown

in Figure 4. Ground truth versus predicted SUVR for each regression

model is shown in Figure 5.

The best results were achieved on the RegNet architecture.

RegNet-X002 was the smallest of all the models with only 2,337,009

parameters, yet outperformed substantially compared to more costly

models, such as ResNetRS-50. Additionally, the difference between

the train set and test set accuracy was lowest in the RegNet model,

signifying less overfitting. TheMAE loss results for all four regression

models are shown in Table 3.

Minimal consistency improvements were made after 20 epochs,

thus we decided to train for 20 epochs in succeeding tests. The

RegNet architecture performed the best out of all the models. Table 3

shows that RegNet-X002 achieved an MAE loss of 0.0542 which was

much lower than the other three regression models. Because of this,

RegNet was the architecture that was used with the Gradient Boosted

Decision Tree.

4.3. Amyloid regression and gradient
boosted decision tree model

Since RegNet was the highest performing model, we used this

architecture for regression and gradient boosted decision trees. We

used the RegNet-X064 variant instead of X002 since the increase

in capacity, layers, and overall size of the network could impact

predictive performance. With 24,660,089 parameters, the RegNet-

X064 regression model used 20 epochs and an initial learning

rate of 0.001. GlobalAveragePooling was the layer preceding the

fully connected layer, outputting 1,624 activations per subject in

the RegNet-X064 architecture. This regression model achieved

an MAE loss value of 0.0278 for the training set and 0.0461

for the testing set, already a significant improvement from all

previous models.
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FIGURE 3

ROC and AUC for binary classification of ResNet-50, ResNetRS-50, E�cientNetV2-S, and RegNet-X002. (A) Single slice test set ROC. (B) Triple slice test

set ROC.

FIGURE 4

Epoch vs. loss for training and testing sets of ResNet-50, ResNetRS-50, E�cientNetV2-S, and RegNet-X002. (A) Training set epoch vs. MAE. (B) Testing set

epoch vs. MAE.

We then used the LightGBM library for our GBDT because it

has improved predictive performance compared to other GBDTs.

Using LightGBM, we inputted clinical data such as FAQ MMSE

scores, and APOE gene indication. We also used random grid

search for 100 iterations to find the best hyperparameters for the

GBDT model which resulted in the lowest MAE loss. The optimal

hyperparameters were a max depth of 9, a feature fraction of 0.5,

and a learning rate of 0.045. With RegNet-X064 and LightGBM, this

model achieved an MAE loss of 0.000000444 for the training set and

0.0441 for the testing set, outperforming all previous configurations

by a high margin.

To observe the consistency improvements, a predicted vs. ground

truth plot was drawn using the test set in Figure 6. The plot indicates

the skew of MAE loss at different SUVR values, showing when the

model predicts SUVR the best. The model shows little to no skew,

with tighter error at the cutoff value of 1.11 and highest at 1.4.

The StatsModels library (https://www.statsmodels.org/) was used

to calculate statistical significance between the predicted SUVR

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1091506
https://www.statsmodels.org/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Maddury and Desai 10.3389/frai.2023.1091506

FIGURE 5

Ground truth vs. predicted SUVR values for ResNet-50, ResNetRS-50, E�cientV2-S, and RegNet-X002. (A) ResNet-50. (B) ResNetRS-50. (C)

E�cientNetV2-S. (D) RegNet-X002.

TABLE 3 MAE loss results for ResNet-50, ResNetRS-50, E�cientNetV2-S,

and RegNet-X002. Each trial was run a single time and results were taken

(n = 2,980).

CNNs MAE for train
set

MAE for test
set

Parameters

ResNet-50 0.0380 0.0665 23,589,761

ResNetRS-50 0.0543 0.0550 33,698,337

EfficientNetV2-S 0.0475 0.0696 12,932,159

RegNet-X002 0.0513 0.0542 2,337,009

values in the test set and the ground truth SUVR values. The

adjusted R2 coefficient of determination was calculated to be 0.997.

R2 is the amount of variance explained by the linear model; 99.7%

of data variance in the test set was explained. It is calculated

through residuals: R2=1−RSS
TSS , where RSS is the sum of squares of

residuals and TSS is total sum of squares. The p-value was calculated

to be statistically zero, which represents the probability that the

relationship observed was due to chance variance. The probability

f-statistic was also calculated to be statistically zero, which similarly

represents the probability that a model with no independent variables

would perform better than the observed model. The approaches used

with the data are summarized in Figure 2.

4.4. Web application implementation

We implemented our prediction model on to a web application

so that our diagnostic tool could be accessible by physicians and

diagnosticians. The web application was developed on the Flask

software platform. We used Heroku, a cloud-based web application

service, to deploy our web application for public use. We named

our web application DeepAD, since it provides an accurate SUVR

calculation for Alzheimer’s using our deep learning model. The web

application is available at (https://deepad.herokuapp.com/).

For the web application we used the RegNet-X002 architecture.

Although RegNet-X064, which had a lower MAE loss than RegNet-

X002, would have been the preferred model for the web application,

our web application service, Heroku, had a hard bandwidth issue

due to limited ram which prevented us from using RegNet-X064.

We were also unable to use LightGBM for our web application

model, preventing us from using clinical data. However, this was

only a minor issue since clinical data holds a small factor in SUVR

prediction. Also, since diagnosticians and doctors would already be

assessing a patient’s cognitive state with clinical data, it would be

illogical to also add clinical data to the web application model.

5. Discussions

Several explanations can be provided for the best achieved MAE

loss. Before testing regression, binary classification amyloid positivity

and negativity. Across all four architectures, the AUC of the ROC

curves show that each network had a higher accuracy with triple

slice compared to single slice. From single to triple slice, ResNet-50’s

accuracy improved by 1.91%, ResNetRS-50’s accuracy improved by

0.12%, EfficientNetV2S’s accuracy improved by 0.91%, and RegNet-

X002’s accuracy improved by 2.52%. Therefore, three slices were used

for linear regression.

For linear regression, RegNet-X002 achieved the lowest MAE loss

of 0.0542 compared to the other architectures. RegNet-X002 had a

small difference of 0.0029 between the train and test set, signifying

less overfitting in the model. In addition, the regression plots show

that RegNet-X002 performed the best at the SUVR value 1.1, the

cutoff between an amyloid negative and amyloid positive subject. This

signifies that the model performs the best when it’s most important,

which is when a patient could be borderline for AD diagnosis. This

seems to suggest that RegNet’s self-regulation and normalization

techniques allowed the model to achieve higher accuracy than the

other CNN architectures, along with being the most computationally

efficient model.

After determining that RegNet was the best network architecture,

we used the X064 variant for the RegNet architecture. To achieve

better model performance, we implemented LightGBM, a gradient

boosted decision tree. The addition of clinical data, such as MMSE

scores, FAQ scores, and APOE indication, slightly helped the model

accuracy. Overall, the RegNet-X064 and LightGBM model achieved

an MAE loss of 0.0441 for the testing set which outperformed any

other CNN tested in this study.

The test results were statistically significant on the best

performing configuration. Based on the p-values, the null hypothesis
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FIGURE 6

Predicted SUVR vs. various variables. All data shown was taken from the test set only (n = 596). (A) RegNet + GBDT ground truth vs. predicted SUVR.

(B) RegNet + GBDT SUVR vs. absolute error.

that there is no inherent relationship between the model’s predictive

capability and the ground truth values can be safely rejected, as the

p-value of 0.0 is less than the 0.05 threshold. The R2 coefficient of

determination indicated that only 0.3% of the predictions on the test

set had variance that couldn’t be explained, signifying that themodel’s

prediction is reliable.

Results from our study show that the use of axial slices 36, 48,

and 60 per subject, MMSE scores, FAQ scores, APOE indication, and

LightGBM paired with RegNet-X064 improved the linear regression

model’s prediction performance of SUVR significantly. Our best

regression model (0.0441 MAE loss) achieved an accuracy of 96.4%

over the range of SUVR values. Compared to the study conducted

by Kim et al. (2019), our MAE loss was lower by 0.0159, signifying a

large increase in the predictive performance of our model compared

to their model. We achieved a better MAE loss since our model was

more powerful, had better hypter-parameter tuning, and included

clinical data with LightGBM.

Although the calculation of SUVR for a given subject provides

the uptake quantification of the radiotracer (18F-AV-45) based on the

accumulation of amyloid, this calculation approach is inefficient and

less accurate compared to a deep learning approach for calculating

SUVR based on coregisterd PET-MR images. When comparing

SUVR prediction performance from a linear regression model to

SUVR calculations by readers, Reith et al. (2020) found that the

three SUVR readers took 24:28min for 100 test samples. Our

implemented model for the web app, RegNet-X002, took ∼3 s to

process 596 samples while the SUVR readers would have taken

∼145min to calculate the SUVR values from our test samples

with the same SUVR readers. Individual SUVR calculations are

not ideal when diagnosing a patient with a 18F-florbetapir PET

scan. Our proposed model solves the efficiency problem that SUVR

readers experience when calculating SUVR values. To make our

research easily accessible, we created a web application (DeepAD)

to implement our proposed model. Although the RegNet-X064

model achieved the best performance, we developed the webapp

using the RegNet-X002 architecture since its limited parameter

count satisfied the constraints of Heroku, the platform for

the webapp.

Noise in the ground truth SUVR calculations for each subject’s

scan needs to be considered with the result of the regression model.

Reith et al. (2020) showed that each reader calculated the SUVR

value at a different pace and accuracy which contributes to the

SUVR variability factor. There was also noticeable noise in the
18F-florbetapir PET scans. The pixel count of 160 × 160 doesn’t

provide as much information compared to a pixel count with greater

dimensions. There was noise in the chosen slices because there might

have not been enough coverage for parts of the brain which havemore

present amyloid or are highly correlated to AD.

There are several limitations to consider in this study. Firstly,

we were only able to examine the information in the input and

the output layers of the CNN but not the middle layers which are

responsible for tasks such as data transformation and automatic

feature creation. For future use of this model, images fed as input

data would require a specific process. Each 18F-florbetapir scan needs

to be co-registered using Statistical Parametric Mapping (SPM8) to

the same subject’s MRI image. This process requires the subject to

get a PET andMRI scan. Also, SPM8 software is necessary for the co-

registering process. This process alone questions the fiscal practicality

the imaging (Landau et al., 2021).

6. Conclusions

Ultimately, we used deep learning architecture and Gradient

Boosting Decision Trees along with imaging, clinical, and SUVR

data to construct a regression model that quantifies amyloid

SUVR from 18F-florbetapir radiotracer uptake in PET scans. At

least temporarily, our proposed model’s efficiency could provide a

supplement to the process of manually calculating SUVR. In addition,

our model is computationally efficient, processing hundreds of

samples within seconds. While there’s still much research to be done,

this model shows some promise for automated SUVR calculations,
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achieving similar accuracy compared to individual SUVR readers.

Our proposed deep learning model is available on DeepAD, our

web application which allows anyone to upload a PET-MR scan

and receive a SUVR calculation. Future research should investigate

more clinical indicators of AD, such as FAQ and MMSE scores, and

analyze other protein deposition linked to Alzheimer’s. Along with

investigating new proteins indicative of Alzheimer’s, new radiotracer

biomarkers could be discovered to trace these new proteins. Future

work can be done to improve the PET scan. Although PET scans

are stochastic, improving PET spatial resolution and reconstructing

algorithms which obtain imaging of a subject based on radiotracer

distribution can limit variability in SUVR and noise in PET scans.

Better PET imaging would also result in better accuracy for regression

models when training the network.
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