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Performance gains with Compute Unified Device Architecture-
enabled eddy current correction for diffusion MRI
Jerome J. Mallera,b,c, Stuart M. Grieveb,d, Simon J. Vogrine and Thomas Weltonb    

Correcting for eddy currents, movement-induced 
distortion and gradient inhomogeneities is imperative 
when processing diffusion MRI (dMRI) data, but is highly 
computing resource-intensive. Recently, Compute Unified 
Device Architecture (CUDA) was implemented for the 
widely-used eddy-correction software, ‘eddy’, which 
reduces processing time and allows more comprehensive 
correction. We investigated processing speed, 
performance and compatibility of CUDA-enabled eddy-
current correction processing compared to commonly-
used non-CUDA implementations. Four representative 
dMRI datasets from the Human Connectome Project, 
Alzheimer’s Disease Neuroimaging Initiative and Chronic 
Diseases Connectome Project were processed on high-
specification and regular workstations through three 
different configurations of ‘eddy’. Processing times and 
graphics processing unit (GPU) resources used were 
monitored and compared. Using CUDA reduced the 
‘eddy’ processing time by a factor of up to five. The CUDA 
slice-to-volume correction method was also faster than 
non-CUDA eddy except when datasets were large. We 
make a series of recommendations for eddy configuration 

and hardware. We suggest that users of eddy-correction 
software for dMRI processing utilise CUDA and take 
advantage of the slice-to-volume correction option. We 
recommend that users run eddy on computers with at 
least 32GB motherboard random access memory (RAM), 
and a graphics card with at least 4.5GB RAM and 3750 
cores to optimise processing time. NeuroReport 31: 
746–753 Copyright © 2020 Wolters Kluwer Health, Inc. All 
rights reserved.
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Introduction
Performing correction for eddy currents, patient move-
ment and off-field resonance/gradient field inhomoge-
neity is vital for proper preprocessing of diffusion MRI 
(dMRI) data. Eddy currents are strong when acquiring 
dMRI data especially when b-values (diffusion strengths) 
are high. Movement induced by subjects is ubiquitous in 
MRI, but during dMRI, its effect becomes greater due to 
the relatively long acquisition time, and pulsing of the dif-
fusion-sensitising gradients creating noise and vibration 
[1]. Whilst the latest generation of scanners have reduced 
vibration and increased magnet and gradient homogeneity, 
subject movement and inhomogeneity is inevitable. Even 
small movements (1–2 mm) can produce inter-voxel dis-
tortion, creating a partial volume effect. Off-field resonance 
is also problematic in MRI scanning and leads to image 
distortion, particularly in brain regions at the tissue-bone 
interface, such as the inferior temporal and frontal lobes.

In recent years, preprocessing software has become availa-
ble which aims to estimate these distortions and apply cor-
rections to the dMRI data; for example, using the popular 
software, ‘topup’ [2]. By acquiring the dMRI data in one 
phase-encoding direction and repeating the acquisition in 

the opposite phase-encoding direction, field maps can be 
generated. The result is fed into eddy-, motion- and off-
field resonance-correction software, referred to in the FSL 
package as ‘eddy’ [3]. This performs various stages of cor-
rection for susceptibility- and eddy current-induced dis-
tortions as well as between-volume movement signal loss 
caused by subject motion. The time required to process 
the data depends on several factors, including the amount 
and speed of computer memory [random access mem-
ory (RAM)], speed and cache size of the CPU core, the 
read/write speed of the storage medium and size of the 
dataset. Eddy is also available as multi-threaded (‘eddy_
openmp’, multi-processor); however, even then, process-
ing is time consuming, and may take several hours for a 
standard multishell dMRI dataset on conventional hard-
ware. Although some computers have the option to acti-
vate hyperthreading (a process where a CPU splits each 
of its physical cores into virtual cores, which are known as 
threads), it has not been documented as to whether this 
makes a substantial difference to processing time.

Recently, Compute Unified Device Architecture 
(CUDA) has been implemented for eddy, which is an 
extension of the C programming language (Nvidia, 2007, 
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CUDA Technology; http://www.nvidia.com/CUDA). 
Using CUDA, the user can utilise parallel computing 
power on an Nvidia graphics card. The number of CUDA 
cores, their speed, the amount and speed of memory on 
the graphics card and the memory bandwidth are con-
tributing factors to this. The most recent version of the 
CUDA-enabled eddy correction software also offers an 
option for intra-volume (slice-to-volume) correction. 
That is, it aims to realign slices within a single volume 
affected by motion artefacts. It has been shown that this 
approach can estimate motion with greater accuracy, and 
parameters derived from the data (e.g. fractional aniso-
tropy) are estimated more accurately when data have 
been corrected in this way [4]. Andersson et al. [4] also 
demonstrated that, when corrected with the slice-to-vol-
ume approach, datasets with various amounts of motion 
have a smaller disparity in fidelity, and this was recently 
validated using an automated quality control framework 
[5]. However, it is not currently known the extent to 
which CUDA reduces eddy correction processing time 
and under what conditions.

We therefore aimed to investigate the speed, perfor-
mance and compatibility of CUDA-enabled eddy cur-
rent correction. Specifically, we aimed to understand the 
impact of the type of input dataset, the type of hardware 
on which it is run and the configuration of the software. 
We test four different widely-used datasets which were 
selected to represent common acquisition schemes. We 
implemented our methods on both a computer at the 
high-end of performance for a single machine, and on a 
conventional computer. Finally, we tested multi-proces-
sor, CUDA and slice-to-volume configurations of eddy to 
gauge the performance gains and value of each relative to 
the processing time.

Materials and methods
Subjects
For two datasets, a 42-year-old male subject who had no 
history of a psychiatric, neurological or cardiac disorder 
and no contraindication to MRI scanning underwent MR 
imaging at Macquarie Medical Imaging, Sydney, NSW, 
Australia, as part of the Chronic Diseases Connectome 
Project (CDCP). The study has Institutional Ethics 
approval (from the Macquarie University Human 
Research Ethics Committee for Medical Sciences, ID 
number 5201500943) and the subject provided informed 
consent. All methods were performed in accordance with 
the relevant guidelines and regulations. Two other data-
sets were drawn from the ADNI project (ID003.S.4900, 
59-year-old female, control subject), and from the HCP 
project (ID100307, 27-year-old female, control subject).

Image acquisition
Data from the CDCP study were acquired using a 
General Electric MR750w scanner (GE Healthcare, 
Milwaukee, Wisconsin, USA) with a Nova 32-channel 

brain coil (Nova Medical). Anterior commissure-poste-
rior commissure aligned scans were acquired: spin-echo 
DTI EPI pulse sequence comprising three shells (b = 
700, 20 directions, b = 1000, 45 directions, b = 2800, 75 
directions; TR = 4323 ms, TE = 91.8 ms, FOV = 256 mm, 
matrix = 128 × 128, voxel dimensions = 2 mm isotropic) 
with eight interleaved b = 0 volumes, referred to as data-
set 1. We then extracted the outer shell (b = 2800) for 
a second dataset (with five b = 0 volumes at the begin-
ning and three interleaved, i.e. one after every 20 dif-
fusion volumes), referred to as dataset 2. Acceleration 
factor of two and multiband factor of three (resulting in 
66 slices per volume) was used for the dMRI session. A 
further diffusion-weighted sequence was also acquired 
(six directions) with a reverse phase-encoded (blipped) 
non-diffusion weighted (b = 0) volume and a phase offset 
applied to each multiband component.

Data from the ADNI2 project were acquired on a General 
Electric Signa HDxt 3T scanner (GE Healthcare) with an 
eight-channel head coil (TR = 13 000 ms, TE = 68.4 ms, 
matrix = 128 × 128 interpolated to 256 × 256, 60 slices, 
slice thickness = 2.7  mm, in-plane = 1.37 × 1.37  mm, 
41 unique diffusion directions, b-value = 1000, in-plane 
acceleration = 2) and five bzero volumes at the beginning. 
This will be referred to as dataset 3.

Data from the HCP project were acquired on a Siemens 
3T Connectom scanner with a 32-channel head coil. 
Three separate acquisitions were merged into a single 
dataset to yield 273 unique diffusion directions compris-
ing three interleaved b-values (1000, 2000, 3000) with 
16 bzero interleaved volumes, 111 slices per volume, 
slice thickness = 1.25  mm, in-plane = 1.25 × 1.25  mm. 
FA = 78, TR = 5520 ms, TE = 89.5 ms, FOV = 210 mm, 
matrix = 144 × 168, multiband factor = 3, GRAPPA = 2. 
Additionally, a reverse phase-encoded (blipped) non-dif-
fusion weighted (bzero) volume was acquired. This HCP 
dataset will be referred to as dataset 4.

Image analysis
We processed the data using FSL version 6.0 (FMRIB 
Software Library, Oxford, UK). Data were first converted 
from DICOM to NIFTI format using dcm2nii (https://
people.cas.sc.edu/rorden/mricron/dcm2nii.html), a b = 0 
image was extracted from the main dMRI dataset and 
from the blipped dataset, and merged into a single file, a 
brain mask and the acquisition parameters file were cre-
ated and processed in ‘topup’. After this, the data were 
processed through MRtrix3 using dwidenoise [6], mrde-
gibbs [7], and dwibiascorrect [8], Dataset 1 was 640.2MB, 
dataset 2 was 367.7MB, dataset 3 was 723.5MB, and 
dataset 4 was 3.1GB. These were then processed using 
eddy_openmp, eddy_CUDA without and with slice-to-
volume correction. For each run of eddy_openmp and 
eddy_cuda, the command ‘time’ was included to record 
the processing time. For dataset 1:

http://www.nvidia.com/CUDA
https://people.cas.sc.edu/rorden/mricron/dcm2nii.html
https://people.cas.sc.edu/rorden/mricron/dcm2nii.html
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openmp
time eddy_openmp --imain=dwi.nii --mask=nodif_brain_
mask --index=index148.txt --acqp=acqparams_148.
txt --bvecs=bvec.bvec --bvals=bval.bval --fwhm=0 
--topup=topup_b0_blips --flm=quadratic --out=eddy_
unwarped_images_openmp -v

CUDA volume-to-volume
time eddy_cuda9.1 --imain=dwi.nii --mask=nodif_brain_
mask --index=index148.txt --acqp=acqparams_148.
txt --bvecs=bvec.bvec --bvals=bval.bval --fwhm=0 
--topup=topup_b0_blips --flm=quadratic --out=eddy_
unwarped_images_cuda -v

CUDA slice-to-volume
time eddy_cuda9.1 --imain=dwi.nii --mask=nodif_brain_
mask --index=index148.txt --acqp=acqparams_148.
txt --bvecs=bvec.bvec --bvals=bval.bval --fwhm=0 
--topup=topup_b0_blips --flm=quadratic -- out=eddy_
unwarped_images_cuda_mporder6 --mporder=6 -v

For dataset 2, the commands above were modified 
(imain=dwi_85.nii, acqp=acqparams_85.txt, bvecs=b-
vec85.bvec, bvals=bval85.bval), and for the ADNI and 
HCP data, these files were generated to end in 46 and 
288, respectively. On computer 2, the above commands 
were changed so that eddy_cuda9.1 was replaced with 
eddy_cuda8.0.

To gauge GPU usage to determine the amount of GPU 
RAM and number of cores used, we used the following 
command to produce a running log every second:

nvidia-smi dmon -i 0 -s mu -d 1 -o TD >> cuda_resources.
txt

To determine the extent to which hyperthreading could 
reduce processing time we ran every command twice: 
once with CPU hyperthreading and once without.

We used two computers for image processing: one had 
Ubuntu Linux 18.04 LTS (computer 1) and the other 
with 16.04 LTS (computer 2), to assess three implemen-
tations of eddy (eddy_openmp, eddy_CUDA without 
intra-volume correction, eddy_CUDA with intra-vol-
ume correction). Computer specifications are listed in 
Table 1.

Results
Processing time was highly dependent on the input data-
set size, the available computing resources (Table 1) and 
the chosen configuration of eddy (Table 2). For example, 
among all tests performed, processing time ranged from 
5 minutes (in dataset 3, using eddy CUDA on computer 
1) to >7 hours (in dataset 4, using eddy CUDA slice-to-
volume on computer 2).

We first compared processing times between the smallest 
and largest publicly available datasets (ADNI and HCP, 
datasets 3 and 4, being 723 and 3100 MB, respectively), 
to investigate the impact of file size (Figs. 1 and 2). As 
expected, this was large: using the same eddy CUDA vol-
ume-to-volume processing pipeline, the processing time 
for dataset 4 was 441% longer on computer 1 (9:38 in 
dataset 3 compared to 52:08 in dataset 4) and 900% longer 
on computer 2 (33:38 in dataset 3 compared to 201:05 in 
dataset 4). This corresponds to the difference in input file 
size, with dataset 4 being 328% larger than dataset 3, but 
implies greater gains in processing time are achieved on 
higher-specification hardware relative to size.

We then investigated the effect of slice-to-volume correc-
tion compared to the standard volume-to-volume correc-
tion. We found a consistent increase in processing time 
by a factor of 1.45–2.74. For example, using computer 
1, slice-to-volume correction increased processing times 
relative to using volume-to-volume correction by 203% 
(13:04–39:24), 274% (5:13–19:31), 145% (9:38–23:34), and 
160% (52:08–135:45), for datasets 1–4, respectively. The 
same tests on computer 2 yielded 200, 225, 205, and 234% 
longer processing times.

When comparing the effect of the computer hardware 
used, we found that, for volume-to-volume correction, 
computer 1 was 341, 401, 182, and 386% faster than com-
puter 2 for datasets 1–4, respectively. When performing 
slice-to-volume correction, a similar magnitude of differ-
ence was observed (Table 2). When measuring the num-
ber of GPU cores recruited during processing, we found 
that, on computer 1 with the HCP dataset (dataset 4), up 
to 3750 cores were used most of the time with slice-to-
volume eddy and only 1590 with volume-to-volume pro-
cessing (Figs. 3 and 4). Computer 2 consistently used a 
greater proportion of its available cores. When processing 

Table 1  Computer components

Computer CPU RAM GPU HDD

1 (Custom)
MB = GA-X299
FSB = 2066
Chipset = Intel X299

Intel 7820x (3.6 GHz, 8 cores = 28.8 GHz), 
max turbo frequency = 4.30 GHz  
(x8 = 34.4 GHz), 11 MB L3 cache,  
memory bandwidth = 85 GB/s

128GB, PC4-3200 GV100 (32 GB HBM2 RAM, 5120  
cores, 4096-bits memory interface  
width, 870 GB/s memory bandwidth, 
PCI-express 3.0)

1TB M.2 SSD (read/
write speed of 
3500/2500 MB/s)

2 (HP Z800)
MB = Z800
FSB = 1333 MHz
Chipset = Intel 5520

Intel x5650 x2 (2.66 GHz, 12 cores = 31.92  
GHz), max turbo frequency = 3.07 GHz  
(x12 = 36.84), 12MB L3 cache, memory 
bandwidth = 32 GB/s

48GB, PC3-10600U/
DDR1333)

Quadro K1200 (4GB GDDR5 RAM,  
512 cores, 128-bit memory interface,  
80 GB/s memory bandwidth, PCI- 
express 2.0)

4TB SAS (read/write 
speeds of approximately 
500 MB/s)

CPU, central processing unit; GPU, graphics processing unit; HDD, hard disk drive; RAM, random access memory.
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the ADNI dataset with volume-to-volume correction, up 
to 2700 GPU cores were used most of the time for com-
puter 1 (~27%).

Finally, we tested the effect of hyperthreading on pro-
cessing times. For eddy_openmp, using hyperthread-
ing reduced processing times by 3–26% on computer 1, 
and 7–36% on computer 2. Additionally, eddy_openmp 
(with hyperthreading) was 58–70% faster on computer 1 

when compared to computer 2. For eddy CUDA (both 
slice-to-volume and volume-to-volume iterations), 
hyperthreading made no difference to processing time. 
Using the eddy CUDA volume-to-volume command, 
processing times were greatly reduced compared to using 
eddy_openmp, depending on the number and speed of 
GPU cores available. As shown in Table 2, eddy CUDA 
(volume-to-volume) was 3.99–4.83 times faster than 
eddy_openmp (with hyperthreading) on computer 1, and 

Table 2  Processing time

PC Data

eddy_openmp eddy_cuda

Time (m:s)

Max MD RAM Minus 2.7GB  
for PC 1, Minus 2.2GB for  
just eddy_openmp on PC 2 Time (m:s)

Max GPU 
RAMa

Max MD 
RAM

Mean (SD) % 
GPU cores 

used
Times faster  

compared to openmp

1 (with  
hyperthreading)

1 52:11 5.5GB (2.8GB openmp) 13:04 1608MB 1.8GB 31.6 (25.3) 3131s/784s = 3.99

sv    39:24 1623MB 1.8GB 39.7 (19.1) 3131/2364 = 1.32
 2 24:22 4.2GB (1.5GB openmp) 5:13 1988MB 1.1GB 26.9 (22.2) 1462/313 = 4.67
sv    19:31 1982MB 1.1GB 35.0 (20.2) 1462/1171 = 1.25
 3 45:39 15.6GB (13.9GB openmp) 9:38 1884MB 1.9GB 27.2 (25.7) 2739/578 = 4.74
sv    23:34 2441MB 1.9GB 40.7 (25.4) 2739/1414 = 1.94
 4 251:36 23.0GB (20.3GB openmp) 52:08 4409MB 11.3GB 30.5 (26.1) 15 096/3128 = 4.83
sv    135:45 4443MB 11.3GB 47.4 (25.8) 15 096/8145 = 1.85
   Minus 2.2GB for PC 1,  

Minus 1.3 GB for just  
eddy_openmp on PC 2

     

(without  
hyperthreading)

1 63:19 (3799/3131 = 1.21; 
HT was 21% faster)

6.2GB (4.0 openmp) 13:04 1608MB 1.8GB 31.6 (25.3) 3799/784s = 4.85

sv    39:24 1623MB 1.8GB 39.7 (19.1) 3799/2364 = 1.61
 2 27:33 (1653/1462 = 1.13) 5.2GB (3.0GB openmp) 5:13 1988MB 1.1GB 26.9 (22.2) 1653/313 = 5.28
sv    19:31 1982MB 1.1GB 35.0 (20.2) 1653/1171 = 1.41
 3 47:03 (2823/2739 = 1.03) 10.0 (7.8GB openmp) 9:38 1884MB 1.9GB 27.2 (25.7) 2823/578 = 4.88
sv    23:34 2441MB 1.9GB 40.7 (25.4) 2823/1414 = 1.99
 4 323:15 (19 395/15 096 

= 1.28)
17.3GB (15.1GB openmp) 52:08 4409MB 11.3GB 30.5 (26.1) 19 395/3128 = 6.20

sv    135:45 4443MB 11.3GB 47.4 (25.8) 19 395/8145 = 2.38
2 (with  

hyperthreading)
1 83:38

5018/3131 = 1.60 (PC1 is 
60% faster)

8.0GB (6.7GB openmp) 44:31
(PC1 was faster 

by a factor of 
3.41)

1296MB 1.8GB 66.9 (28.3) 5018/2671 = 1.88
(2671/784 = 3.41; PC1 

was faster than PC2 
by a factor of 3.41)

sv    133:43
(3.39)

1296MB 1.8GB 73.1 (23.8) 5018/8023 = 0.63
(8023/2364 = 3.39)

 2 38:34
(2314/1462 = 1.58; PC1 

is 58% faster)

6.2GB (4.9GB openmp) 20:55
(4.01)

1038MB 1.1GB 77.2 (20.6) 2314/1255 = 1.84
(1255/313 = 4.0)

sv    68:04 (3.49) 1107MB 1.1GB 77.8 (19.2) 2314/4084 = 0.57
(4084/1171 = 3.49)

 3 77:40 (4660/2739 = 1.70; 
PC1 is 70% faster)

17.0 (15.7GB openmp) 33:38 (1.82) 1364MB 4.3GB 74.3 (27.4) 4660/2018 = 2.31 
(2018/578 = 3.49)

sv    102:26 (1.96) 1895MB 4.3GB 80.5 (22.2) 4660/6146 = 0.76 
(6146/1414 = 4.34)

 4 481:23 (25 103/15 096 = 
1.66; PC1 is 66% faster)

24.4GB (23.1GB openmp) 201:05 (3.86) 2576MB 10.8GB 74.9 (28.7) 25 103/12 065 = 2.08 
(12 065/3128 = 3.86)

sv    671:02 (4.94) 2733MB 10.9GB 83.3 (22.6) 25 103/40 262 = 0.62 
(40 262/8145 = 4.94)

(without hyper-
threading)

1 96:18 (5778/5018 = 1.15; 
HT was 15% faster)

5.4GB (3.2GB openmp) As above As above As above As above 5778/2671 = 2.16

sv    As above As above As above As above 5778/8023 = 0.72
 2 42:32 (2552/2314 = 1.10) 4.2GB (2.0GB openmp) As above As above As above As above 2552/1255 = 2.03
sv    As above As above As above As above 2552/4084 = 0.62
 3 83:04 (4984/4660 = 1.07) 11.6GB (9.4GB openmp) As above As above As above As above 4984/2018 = 2.47
sv    As above As above As above As above 4984/6146 = 0.81
 4 568:00 (34 080/25  

103 = 1.36)
20.8GB (18.6GB openmp) As above As above As above As above 34 080/12 065 = 2.82

sv    As above As above As above As above 34 080/40 262 = 0.85

GB, gigabytes; GPU, graphics processing unit; HDD, hard disk drive; HT, hyperthreading; MB, megabytes; MD, motherboard; RAM, random access memory; sv, 
slice-to-volume.
aIncluding Xorg (~400MB) and compiz (~200MB). Numbers in parentheses represent time factor difference when computer 2 compared to computer 1, unless other-
wise specified.
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1.88–2.13 times faster on computer 2. For eddy_cuda 
(slice-to-volume), processing time was 1.25–1.94 times 
faster than eddy_openmp on computer 1. On computer 
2, eddy_cuda (volume-to-volume) processing time was 
1.84–2.31 times faster than eddy_openmp, and eddy_
cuda (slice-to-volume) was between 0.57 and 0.76 of the 
speed – in other words, it was approximately 25–50% the 
speed of eddy_openmp.

Discussion
The capability of neuroimaging researchers to gather 
and store large quantities of high-resolution image data 
has recently undergone rapid growth. The advent of ‘big 

data’, high-performance computing and large-scale rep-
lication analyses means that it is increasingly important 
that the tools we use are efficient and make the best pos-
sible use of available resources. We present data compar-
ing three different configurations of CUDA-enabled eddy 
correction software across four datasets and on two hard-
ware configurations with different levels of performance. 
We make four key observations: (1) CUDA-enabled 
eddy correction is much faster than the multiprocessor 
configuration, even accounting for the improvement pro-
vided by hyperthreading, (2) processing time is directly 
proportional to the input file size regardless of hardware 
or software configuration, (3) slice-to-volume processing 

Fig. 1

Relative speed of the two computers when processing a small (ADNI) and large (HCP) dataset. s2v, slice-to-volume.

Fig. 2

Time (minutes) for the two computers to process a small (ADNI) and large (HCP) dataset.
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approximately doubles processing time, and (4) greater 
hardware investment provides greater relative value for 
larger datasets.

CUDA has been implemented for an array of MRI appli-
cations, including image reconstruction [9], image filter-
ing [10], creation of fibre orientation distributions [11], 
and dMRI tractography [12]. Those studies demonstrated 
that, depending on GPU specifications and whether they 
are individual or as part of a cluster, gains in speed can 
be in the range of a 100-fold. Our study used a single 
GPU in each computer and showed substantial gains in 
processing time. We find that eddy correction process-
ing using CUDA and the standard volume-to-volume 

approach was approximately 4–5 times faster than the 
multiprocessor version of eddy on a high-specification 
computer. On a more conventional computer, this dif-
ference was approximately two times. Since this mostly 
utilised the GPU (as only one CPU core was used), we 
expect that the largest explanatory factor is related to 
the graphic card specification. While almost 100% of the 
GPU cores on both computer graphic cards were used for 
brief moments, the mean was approximately 70% of the 
GPU cores used on computer 1 (which equates to 3584 
cores) and around 90% of the GPU cores on computer 2 
(which equates to 461 cores).

Fig. 3

Percentage of GPU cores utilised during processing on both computers.

Fig. 4

Number of GPU cores used during processing on computer 1.
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A second factor relates to the speed of the CPU, RAM, 
and hard drive. Computer 1 was up to 70% faster than 
computer 2 when using multiprocessor eddy; therefore, 
while the total CPU speed (GHz) appeared to be sim-
ilar, the architectures (and therefore specifications) of 
the CPUs were very different (Table  1), the mother-
board RAM ran at different speeds, and the read-write 
speeds of the hard drives were different. Collectively, this 
led to 70% greater processing speed for multiprocessor 
eddy correction. Based on our finding that hyperthread-
ing improved processing time on both computers, we 
suggest that hyperthreading be activated when using 
eddy_openmp.

Based on these results and considering that high-res-
olution multi-shell dMRI data (e.g. from the HCP) are 
becoming more widely used, we suggest that a graphics 
card with more than 4.5GB RAM and 3750 CUDA cores 
and a motherboard with at least 32GB RAM should be 
used in order to optimise processing speed.

This study has several limitations. First, from each data 
source, we only tested an individual subject, which may 
limit the generalisability of our findings; however, in terms 
of processing times, our results were consistent between 
across datasets in the context of the various computer 
configurations. We felt that testing the procedures with 
larger samples was not required as we did not intend to 
generate exact differences between the different analysis 
techniques, but rather, to provide an indication of where 
the differences lie and how these will effect processing 
time. These differences were quite clear cut using even 
three datasets, hence using more datasets was unlikely to 
further highlight these differences. Specifically, using the 
CUDA version of eddy is much faster than using the non-
CUDA versions, and even when using the optional flag 
to correct for slice-to-slice variation was still very fast. We 
also tested only three different hardware and software 
configurations which cannot necessarily be extended 
to others (e.g. comparing a more extensive collection of 
Nvidia graphics cards in terms of CUDA core number, 
speed, GPU RAM, and bandwidth). While we did not 
test more than one graphics card in a single computer, it 
is possible to install two identical Nvidia cards and link 
them via a ‘Scalable Link Interface’. This would provide 
twice the number of GPUs available for CUDA-enabled 
eddy processing, and therefore potentially reduce pro-
cessing time further. We also did not investigate the 
impact of optional flags in eddy; for example, for quality 
checking and outlier replacement (--cnr_maps to gener-
ate CNR maps, and --repol to replace outliers). These, 
and other optional flags, would require further processing 
time.

Using CUDA allows neuroscience questions to be 
answered more rapidly. In large samples, for example, 
a few hundred, using the CUDA version of eddy can 

complete the pre-processing in far less time, for example, 
days, or even weeks, than using the non-CUDA versions. 
Hence, data would be ready to be analysed earlier which 
would allow the neuroscience questions to be addressed 
more quickly. Furthermore, using the extra CUDA flag 
to correct for slice-to-slice motion results in more accu-
rate motion correction which ultimately would translate 
to more accurate analyses to address the neuroscience 
questions.

We conclude that the CUDA implementation of eddy 
substantially reduces processing time for correction of 
dMRI data, even when performing slice-to-volume cor-
rection. The impact of GPU resources is large, and we 
have outlined recommended specifications for graphics 
cards and motherboard RAM necessary to efficiently 
reduce processing time. Given the large improvements 
in processing time and performance, it may be pertinent 
to create CUDA implementations of other common com-
puting-intensive tasks in image processing.
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