
Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

746  Technical note

0959-4965 Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.� DOI: 10.1097/WNR.0000000000001475

Performance gains with Compute Unified Device Architecture-
enabled eddy current correction for diffusion MRI
Jerome J. Mallera,b,c, Stuart M. Grieveb,d, Simon J. Vogrine and Thomas Weltonb

Correcting for eddy currents, movement-induced
distortion and gradient inhomogeneities is imperative
when processing diffusion MRI (dMRI) data, but is highly
computing resource-intensive. Recently, Compute Unified
Device Architecture (CUDA) was implemented for the
widely-used eddy-correction software, ‘eddy’, which
reduces processing time and allows more comprehensive
correction. We investigated processing speed,
performance and compatibility of CUDA-enabled eddy-
current correction processing compared to commonly-
used non-CUDA implementations. Four representative
dMRI datasets from the Human Connectome Project,
Alzheimer’s Disease Neuroimaging Initiative and Chronic
Diseases Connectome Project were processed on high-
specification and regular workstations through three
different configurations of ‘eddy’. Processing times and
graphics processing unit (GPU) resources used were
monitored and compared. Using CUDA reduced the
‘eddy’ processing time by a factor of up to five. The CUDA
slice-to-volume correction method was also faster than
non-CUDA eddy except when datasets were large. We
make a series of recommendations for eddy configuration

and hardware. We suggest that users of eddy-correction
software for dMRI processing utilise CUDA and take
advantage of the slice-to-volume correction option. We
recommend that users run eddy on computers with at
least 32GB motherboard random access memory (RAM),
and a graphics card with at least 4.5GB RAM and 3750
cores to optimise processing time. NeuroReport 31:
746–753 Copyright © 2020 Wolters Kluwer Health, Inc. All
rights reserved.

NeuroReport 2020, 31:746–753

Keywords: Compute Unified Device Architecture, diffusion,
eddy currents, MRI

aGeneral Electric Healthcare, Victoria,  bImaging and Phenotyping Laboratory,
Charles Perkins Centre, Faculty of Medicine and Health, The University of
Sydney, NSW,  cDepartment of Psychiatry, Monash Alfred Psychiatry Research
Centre, Victoria,  dDepartment of Radiology, Royal Prince Alfred Hospital,
Camperdown, Sydney, NSW and  eDepartment of Neurology, Centre for Clinical
Neuroscience and Neurological Research, St Vincent’s Hospital, Fitzroy, Victoria,
Australia

Correspondence to Jerome J. Maller, PhD, Sydney Translational Imaging
Laboratory, Heart Research Institute, Charles Perkins Centre, University of
Sydney, Sydney, NSW 2050, Australia
Tel: +(02) 8627 1616; e-mail: jerome.maller@ge.com

Received 5 April 2020 Accepted 18 April 2020

	

Introduction
Performing correction for eddy currents, patient move-
ment and off-field resonance/gradient field inhomoge-
neity is vital for proper preprocessing of diffusion MRI
(dMRI) data. Eddy currents are strong when acquiring
dMRI data especially when b-values (diffusion strengths)
are high. Movement induced by subjects is ubiquitous in
MRI, but during dMRI, its effect becomes greater due to
the relatively long acquisition time, and pulsing of the dif-
fusion-sensitising gradients creating noise and vibration
[1]. Whilst the latest generation of scanners have reduced
vibration and increased magnet and gradient homogeneity,
subject movement and inhomogeneity is inevitable. Even
small movements (1–2 mm) can produce inter-voxel dis-
tortion, creating a partial volume effect. Off-field resonance
is also problematic in MRI scanning and leads to image
distortion, particularly in brain regions at the tissue-bone
interface, such as the inferior temporal and frontal lobes.

In recent years, preprocessing software has become availa-
ble which aims to estimate these distortions and apply cor-
rections to the dMRI data; for example, using the popular
software, ‘topup’ [2]. By acquiring the dMRI data in one
phase-encoding direction and repeating the acquisition in

the opposite phase-encoding direction, field maps can be
generated. The result is fed into eddy-, motion- and off-
field resonance-correction software, referred to in the FSL
package as ‘eddy’ [3]. This performs various stages of cor-
rection for susceptibility- and eddy current-induced dis-
tortions as well as between-volume movement signal loss
caused by subject motion. The time required to process
the data depends on several factors, including the amount
and speed of computer memory [random access mem-
ory (RAM)], speed and cache size of the CPU core, the
read/write speed of the storage medium and size of the
dataset. Eddy is also available as multi-threaded (‘eddy_
openmp’, multi-processor); however, even then, process-
ing is time consuming, and may take several hours for a
standard multishell dMRI dataset on conventional hard-
ware. Although some computers have the option to acti-
vate hyperthreading (a process where a CPU splits each
of its physical cores into virtual cores, which are known as
threads), it has not been documented as to whether this
makes a substantial difference to processing time.

Recently, Compute Unified Device Architecture
(CUDA) has been implemented for eddy, which is an
extension of the C programming language (Nvidia, 2007,

mailto:jerome.maller@ge.com?subject=

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

CUDA-enabled eddy current correction Maller et al.  747

CUDA Technology; http://www.nvidia.com/CUDA).
Using CUDA, the user can utilise parallel computing
power on an Nvidia graphics card. The number of CUDA
cores, their speed, the amount and speed of memory on
the graphics card and the memory bandwidth are con-
tributing factors to this. The most recent version of the
CUDA-enabled eddy correction software also offers an
option for intra-volume (slice-to-volume) correction.
That is, it aims to realign slices within a single volume
affected by motion artefacts. It has been shown that this
approach can estimate motion with greater accuracy, and
parameters derived from the data (e.g. fractional aniso-
tropy) are estimated more accurately when data have
been corrected in this way [4]. Andersson et al. [4] also
demonstrated that, when corrected with the slice-to-vol-
ume approach, datasets with various amounts of motion
have a smaller disparity in fidelity, and this was recently
validated using an automated quality control framework
[5]. However, it is not currently known the extent to
which CUDA reduces eddy correction processing time
and under what conditions.

We therefore aimed to investigate the speed, perfor-
mance and compatibility of CUDA-enabled eddy cur-
rent correction. Specifically, we aimed to understand the
impact of the type of input dataset, the type of hardware
on which it is run and the configuration of the software.
We test four different widely-used datasets which were
selected to represent common acquisition schemes. We
implemented our methods on both a computer at the
high-end of performance for a single machine, and on a
conventional computer. Finally, we tested multi-proces-
sor, CUDA and slice-to-volume configurations of eddy to
gauge the performance gains and value of each relative to
the processing time.

Materials and methods
Subjects
For two datasets, a 42-year-old male subject who had no
history of a psychiatric, neurological or cardiac disorder
and no contraindication to MRI scanning underwent MR
imaging at Macquarie Medical Imaging, Sydney, NSW,
Australia, as part of the Chronic Diseases Connectome
Project (CDCP). The study has Institutional Ethics
approval (from the Macquarie University Human
Research Ethics Committee for Medical Sciences, ID
number 5201500943) and the subject provided informed
consent. All methods were performed in accordance with
the relevant guidelines and regulations. Two other data-
sets were drawn from the ADNI project (ID003.S.4900,
59-year-old female, control subject), and from the HCP
project (ID100307, 27-year-old female, control subject).

Image acquisition
Data from the CDCP study were acquired using a
General Electric MR750w scanner (GE Healthcare,
Milwaukee, Wisconsin, USA) with a Nova 32-channel

brain coil (Nova Medical). Anterior commissure-poste-
rior commissure aligned scans were acquired: spin-echo
DTI EPI pulse sequence comprising three shells (b =
700, 20 directions, b = 1000, 45 directions, b = 2800, 75
directions; TR = 4323 ms, TE = 91.8 ms, FOV = 256 mm,
matrix = 128 × 128, voxel dimensions = 2 mm isotropic)
with eight interleaved b = 0 volumes, referred to as data-
set 1. We then extracted the outer shell (b = 2800) for
a second dataset (with five b = 0 volumes at the begin-
ning and three interleaved, i.e. one after every 20 dif-
fusion volumes), referred to as dataset 2. Acceleration
factor of two and multiband factor of three (resulting in
66 slices per volume) was used for the dMRI session. A
further diffusion-weighted sequence was also acquired
(six directions) with a reverse phase-encoded (blipped)
non-diffusion weighted (b = 0) volume and a phase offset
applied to each multiband component.

Data from the ADNI2 project were acquired on a General
Electric Signa HDxt 3T scanner (GE Healthcare) with an
eight-channel head coil (TR = 13 000 ms, TE = 68.4 ms,
matrix = 128 × 128 interpolated to 256 × 256, 60 slices,
slice thickness = 2.7 mm, in-plane = 1.37 × 1.37 mm,
41 unique diffusion directions, b-value = 1000, in-plane
acceleration = 2) and five bzero volumes at the beginning.
This will be referred to as dataset 3.

Data from the HCP project were acquired on a Siemens
3T Connectom scanner with a 32-channel head coil.
Three separate acquisitions were merged into a single
dataset to yield 273 unique diffusion directions compris-
ing three interleaved b-values (1000, 2000, 3000) with
16 bzero interleaved volumes, 111 slices per volume,
slice thickness = 1.25 mm, in-plane = 1.25 × 1.25 mm.
FA = 78, TR = 5520 ms, TE = 89.5 ms, FOV = 210 mm,
matrix = 144 × 168, multiband factor = 3, GRAPPA = 2.
Additionally, a reverse phase-encoded (blipped) non-dif-
fusion weighted (bzero) volume was acquired. This HCP
dataset will be referred to as dataset 4.

Image analysis
We processed the data using FSL version 6.0 (FMRIB
Software Library, Oxford, UK). Data were first converted
from DICOM to NIFTI format using dcm2nii (https://
people.cas.sc.edu/rorden/mricron/dcm2nii.html), a b = 0
image was extracted from the main dMRI dataset and
from the blipped dataset, and merged into a single file, a
brain mask and the acquisition parameters file were cre-
ated and processed in ‘topup’. After this, the data were
processed through MRtrix3 using dwidenoise [6], mrde-
gibbs [7], and dwibiascorrect [8], Dataset 1 was 640.2MB,
dataset 2 was 367.7MB, dataset 3 was 723.5MB, and
dataset 4 was 3.1GB. These were then processed using
eddy_openmp, eddy_CUDA without and with slice-to-
volume correction. For each run of eddy_openmp and
eddy_cuda, the command ‘time’ was included to record
the processing time. For dataset 1:

http://www.nvidia.com/CUDA
https://people.cas.sc.edu/rorden/mricron/dcm2nii.html
https://people.cas.sc.edu/rorden/mricron/dcm2nii.html

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

748  NeuroReport  2020, Vol 31 No 10

openmp
time eddy_openmp --imain=dwi.nii --mask=nodif_brain_
mask --index=index148.txt --acqp=acqparams_148.
txt --bvecs=bvec.bvec --bvals=bval.bval --fwhm=0
--topup=topup_b0_blips --flm=quadratic --out=eddy_
unwarped_images_openmp -v

CUDA volume-to-volume
time eddy_cuda9.1 --imain=dwi.nii --mask=nodif_brain_
mask --index=index148.txt --acqp=acqparams_148.
txt --bvecs=bvec.bvec --bvals=bval.bval --fwhm=0
--topup=topup_b0_blips --flm=quadratic --out=eddy_
unwarped_images_cuda -v

CUDA slice-to-volume
time eddy_cuda9.1 --imain=dwi.nii --mask=nodif_brain_
mask --index=index148.txt --acqp=acqparams_148.
txt --bvecs=bvec.bvec --bvals=bval.bval --fwhm=0
--topup=topup_b0_blips --flm=quadratic -- out=eddy_
unwarped_images_cuda_mporder6 --mporder=6 -v

For dataset 2, the commands above were modified
(imain=dwi_85.nii, acqp=acqparams_85.txt, bvecs=b-
vec85.bvec, bvals=bval85.bval), and for the ADNI and
HCP data, these files were generated to end in 46 and
288, respectively. On computer 2, the above commands
were changed so that eddy_cuda9.1 was replaced with
eddy_cuda8.0.

To gauge GPU usage to determine the amount of GPU
RAM and number of cores used, we used the following
command to produce a running log every second:

nvidia-smi dmon -i 0 -s mu -d 1 -o TD >> cuda_resources.
txt

To determine the extent to which hyperthreading could
reduce processing time we ran every command twice:
once with CPU hyperthreading and once without.

We used two computers for image processing: one had
Ubuntu Linux 18.04 LTS (computer 1) and the other
with 16.04 LTS (computer 2), to assess three implemen-
tations of eddy (eddy_openmp, eddy_CUDA without
intra-volume correction, eddy_CUDA with intra-vol-
ume correction). Computer specifications are listed in
Table 1.

Results
Processing time was highly dependent on the input data-
set size, the available computing resources (Table 1) and
the chosen configuration of eddy (Table 2). For example,
among all tests performed, processing time ranged from
5 minutes (in dataset 3, using eddy CUDA on computer
1) to >7 hours (in dataset 4, using eddy CUDA slice-to-
volume on computer 2).

We first compared processing times between the smallest
and largest publicly available datasets (ADNI and HCP,
datasets 3 and 4, being 723 and 3100 MB, respectively),
to investigate the impact of file size (Figs. 1 and 2). As
expected, this was large: using the same eddy CUDA vol-
ume-to-volume processing pipeline, the processing time
for dataset 4 was 441% longer on computer 1 (9:38 in
dataset 3 compared to 52:08 in dataset 4) and 900% longer
on computer 2 (33:38 in dataset 3 compared to 201:05 in
dataset 4). This corresponds to the difference in input file
size, with dataset 4 being 328% larger than dataset 3, but
implies greater gains in processing time are achieved on
higher-specification hardware relative to size.

We then investigated the effect of slice-to-volume correc-
tion compared to the standard volume-to-volume correc-
tion. We found a consistent increase in processing time
by a factor of 1.45–2.74. For example, using computer
1, slice-to-volume correction increased processing times
relative to using volume-to-volume correction by 203%
(13:04–39:24), 274% (5:13–19:31), 145% (9:38–23:34), and
160% (52:08–135:45), for datasets 1–4, respectively. The
same tests on computer 2 yielded 200, 225, 205, and 234%
longer processing times.

When comparing the effect of the computer hardware
used, we found that, for volume-to-volume correction,
computer 1 was 341, 401, 182, and 386% faster than com-
puter 2 for datasets 1–4, respectively. When performing
slice-to-volume correction, a similar magnitude of differ-
ence was observed (Table 2). When measuring the num-
ber of GPU cores recruited during processing, we found
that, on computer 1 with the HCP dataset (dataset 4), up
to 3750 cores were used most of the time with slice-to-
volume eddy and only 1590 with volume-to-volume pro-
cessing (Figs. 3 and 4). Computer 2 consistently used a
greater proportion of its available cores. When processing

Table 1  Computer components

Computer CPU RAM GPU HDD

1 (Custom)
MB = GA-X299
FSB = 2066
Chipset = Intel X299

Intel 7820x (3.6 GHz, 8 cores = 28.8 GHz),
max turbo frequency = 4.30 GHz
(x8 = 34.4 GHz), 11 MB L3 cache,
memory bandwidth = 85 GB/s

128GB, PC4-3200 GV100 (32 GB HBM2 RAM, 5120
cores, 4096-bits memory interface
width, 870 GB/s memory bandwidth,
PCI-express 3.0)

1TB M.2 SSD (read/
write speed of
3500/2500 MB/s)

2 (HP Z800)
MB = Z800
FSB = 1333 MHz
Chipset = Intel 5520

Intel x5650 x2 (2.66 GHz, 12 cores = 31.92
GHz), max turbo frequency = 3.07 GHz
(x12 = 36.84), 12MB L3 cache, memory
bandwidth = 32 GB/s

48GB, PC3-10600U/
DDR1333)

Quadro K1200 (4GB GDDR5 RAM,
512 cores, 128-bit memory interface,
80 GB/s memory bandwidth, PCI-
express 2.0)

4TB SAS (read/write
speeds of approximately
500 MB/s)

CPU, central processing unit; GPU, graphics processing unit; HDD, hard disk drive; RAM, random access memory.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

CUDA-enabled eddy current correction Maller et al.  749

the ADNI dataset with volume-to-volume correction, up
to 2700 GPU cores were used most of the time for com-
puter 1 (~27%).

Finally, we tested the effect of hyperthreading on pro-
cessing times. For eddy_openmp, using hyperthread-
ing reduced processing times by 3–26% on computer 1,
and 7–36% on computer 2. Additionally, eddy_openmp
(with hyperthreading) was 58–70% faster on computer 1

when compared to computer 2. For eddy CUDA (both
slice-to-volume and volume-to-volume iterations),
hyperthreading made no difference to processing time.
Using the eddy CUDA volume-to-volume command,
processing times were greatly reduced compared to using
eddy_openmp, depending on the number and speed of
GPU cores available. As shown in Table 2, eddy CUDA
(volume-to-volume) was 3.99–4.83 times faster than
eddy_openmp (with hyperthreading) on computer 1, and

Table 2  Processing time

PC Data

eddy_openmp eddy_cuda

Time (m:s)

Max MD RAM Minus 2.7GB
for PC 1, Minus 2.2GB for
just eddy_openmp on PC 2 Time (m:s)

Max GPU
RAMa

Max MD
RAM

Mean (SD) %
GPU cores

used
Times faster

compared to openmp

1 (with
hyperthreading)

1 52:11 5.5GB (2.8GB openmp) 13:04 1608MB 1.8GB 31.6 (25.3) 3131s/784s = 3.99

sv 39:24 1623MB 1.8GB 39.7 (19.1) 3131/2364 = 1.32
 2 24:22 4.2GB (1.5GB openmp) 5:13 1988MB 1.1GB 26.9 (22.2) 1462/313 = 4.67
sv 19:31 1982MB 1.1GB 35.0 (20.2) 1462/1171 = 1.25
 3 45:39 15.6GB (13.9GB openmp) 9:38 1884MB 1.9GB 27.2 (25.7) 2739/578 = 4.74
sv 23:34 2441MB 1.9GB 40.7 (25.4) 2739/1414 = 1.94
 4 251:36 23.0GB (20.3GB openmp) 52:08 4409MB 11.3GB 30.5 (26.1) 15 096/3128 = 4.83
sv 135:45 4443MB 11.3GB 47.4 (25.8) 15 096/8145 = 1.85
 Minus 2.2GB for PC 1,

Minus 1.3 GB for just
eddy_openmp on PC 2

(without
hyperthreading)

1 63:19 (3799/3131 = 1.21;
HT was 21% faster)

6.2GB (4.0 openmp) 13:04 1608MB 1.8GB 31.6 (25.3) 3799/784s = 4.85

sv 39:24 1623MB 1.8GB 39.7 (19.1) 3799/2364 = 1.61
 2 27:33 (1653/1462 = 1.13) 5.2GB (3.0GB openmp) 5:13 1988MB 1.1GB 26.9 (22.2) 1653/313 = 5.28
sv 19:31 1982MB 1.1GB 35.0 (20.2) 1653/1171 = 1.41
 3 47:03 (2823/2739 = 1.03) 10.0 (7.8GB openmp) 9:38 1884MB 1.9GB 27.2 (25.7) 2823/578 = 4.88
sv 23:34 2441MB 1.9GB 40.7 (25.4) 2823/1414 = 1.99
 4 323:15 (19 395/15 096

= 1.28)
17.3GB (15.1GB openmp) 52:08 4409MB 11.3GB 30.5 (26.1) 19 395/3128 = 6.20

sv 135:45 4443MB 11.3GB 47.4 (25.8) 19 395/8145 = 2.38
2 (with

hyperthreading)
1 83:38

5018/3131 = 1.60 (PC1 is
60% faster)

8.0GB (6.7GB openmp) 44:31
(PC1 was faster

by a factor of
3.41)

1296MB 1.8GB 66.9 (28.3) 5018/2671 = 1.88
(2671/784 = 3.41; PC1

was faster than PC2
by a factor of 3.41)

sv 133:43
(3.39)

1296MB 1.8GB 73.1 (23.8) 5018/8023 = 0.63
(8023/2364 = 3.39)

 2 38:34
(2314/1462 = 1.58; PC1

is 58% faster)

6.2GB (4.9GB openmp) 20:55
(4.01)

1038MB 1.1GB 77.2 (20.6) 2314/1255 = 1.84
(1255/313 = 4.0)

sv 68:04 (3.49) 1107MB 1.1GB 77.8 (19.2) 2314/4084 = 0.57
(4084/1171 = 3.49)

 3 77:40 (4660/2739 = 1.70;
PC1 is 70% faster)

17.0 (15.7GB openmp) 33:38 (1.82) 1364MB 4.3GB 74.3 (27.4) 4660/2018 = 2.31
(2018/578 = 3.49)

sv 102:26 (1.96) 1895MB 4.3GB 80.5 (22.2) 4660/6146 = 0.76
(6146/1414 = 4.34)

 4 481:23 (25 103/15 096 =
1.66; PC1 is 66% faster)

24.4GB (23.1GB openmp) 201:05 (3.86) 2576MB 10.8GB 74.9 (28.7) 25 103/12 065 = 2.08
(12 065/3128 = 3.86)

sv 671:02 (4.94) 2733MB 10.9GB 83.3 (22.6) 25 103/40 262 = 0.62
(40 262/8145 = 4.94)

(without hyper-
threading)

1 96:18 (5778/5018 = 1.15;
HT was 15% faster)

5.4GB (3.2GB openmp) As above As above As above As above 5778/2671 = 2.16

sv As above As above As above As above 5778/8023 = 0.72
 2 42:32 (2552/2314 = 1.10) 4.2GB (2.0GB openmp) As above As above As above As above 2552/1255 = 2.03
sv As above As above As above As above 2552/4084 = 0.62
 3 83:04 (4984/4660 = 1.07) 11.6GB (9.4GB openmp) As above As above As above As above 4984/2018 = 2.47
sv As above As above As above As above 4984/6146 = 0.81
 4 568:00 (34 080/25

103 = 1.36)
20.8GB (18.6GB openmp) As above As above As above As above 34 080/12 065 = 2.82

sv As above As above As above As above 34 080/40 262 = 0.85

GB, gigabytes; GPU, graphics processing unit; HDD, hard disk drive; HT, hyperthreading; MB, megabytes; MD, motherboard; RAM, random access memory; sv,
slice-to-volume.
aIncluding Xorg (~400MB) and compiz (~200MB). Numbers in parentheses represent time factor difference when computer 2 compared to computer 1, unless other-
wise specified.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

750  NeuroReport  2020, Vol 31 No 10

1.88–2.13 times faster on computer 2. For eddy_cuda
(slice-to-volume), processing time was 1.25–1.94 times
faster than eddy_openmp on computer 1. On computer
2, eddy_cuda (volume-to-volume) processing time was
1.84–2.31 times faster than eddy_openmp, and eddy_
cuda (slice-to-volume) was between 0.57 and 0.76 of the
speed – in other words, it was approximately 25–50% the
speed of eddy_openmp.

Discussion
The capability of neuroimaging researchers to gather
and store large quantities of high-resolution image data
has recently undergone rapid growth. The advent of ‘big

data’, high-performance computing and large-scale rep-
lication analyses means that it is increasingly important
that the tools we use are efficient and make the best pos-
sible use of available resources. We present data compar-
ing three different configurations of CUDA-enabled eddy
correction software across four datasets and on two hard-
ware configurations with different levels of performance.
We make four key observations: (1) CUDA-enabled
eddy correction is much faster than the multiprocessor
configuration, even accounting for the improvement pro-
vided by hyperthreading, (2) processing time is directly
proportional to the input file size regardless of hardware
or software configuration, (3) slice-to-volume processing

Fig. 1

Relative speed of the two computers when processing a small (ADNI) and large (HCP) dataset. s2v, slice-to-volume.

Fig. 2

Time (minutes) for the two computers to process a small (ADNI) and large (HCP) dataset.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

CUDA-enabled eddy current correction Maller et al.  751

approximately doubles processing time, and (4) greater
hardware investment provides greater relative value for
larger datasets.

CUDA has been implemented for an array of MRI appli-
cations, including image reconstruction [9], image filter-
ing [10], creation of fibre orientation distributions [11],
and dMRI tractography [12]. Those studies demonstrated
that, depending on GPU specifications and whether they
are individual or as part of a cluster, gains in speed can
be in the range of a 100-fold. Our study used a single
GPU in each computer and showed substantial gains in
processing time. We find that eddy correction process-
ing using CUDA and the standard volume-to-volume

approach was approximately 4–5 times faster than the
multiprocessor version of eddy on a high-specification
computer. On a more conventional computer, this dif-
ference was approximately two times. Since this mostly
utilised the GPU (as only one CPU core was used), we
expect that the largest explanatory factor is related to
the graphic card specification. While almost 100% of the
GPU cores on both computer graphic cards were used for
brief moments, the mean was approximately 70% of the
GPU cores used on computer 1 (which equates to 3584
cores) and around 90% of the GPU cores on computer 2
(which equates to 461 cores).

Fig. 3

Percentage of GPU cores utilised during processing on both computers.

Fig. 4

Number of GPU cores used during processing on computer 1.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

752  NeuroReport  2020, Vol 31 No 10

A second factor relates to the speed of the CPU, RAM,
and hard drive. Computer 1 was up to 70% faster than
computer 2 when using multiprocessor eddy; therefore,
while the total CPU speed (GHz) appeared to be sim-
ilar, the architectures (and therefore specifications) of
the CPUs were very different (Table 1), the mother-
board RAM ran at different speeds, and the read-write
speeds of the hard drives were different. Collectively, this
led to 70% greater processing speed for multiprocessor
eddy correction. Based on our finding that hyperthread-
ing improved processing time on both computers, we
suggest that hyperthreading be activated when using
eddy_openmp.

Based on these results and considering that high-res-
olution multi-shell dMRI data (e.g. from the HCP) are
becoming more widely used, we suggest that a graphics
card with more than 4.5GB RAM and 3750 CUDA cores
and a motherboard with at least 32GB RAM should be
used in order to optimise processing speed.

This study has several limitations. First, from each data
source, we only tested an individual subject, which may
limit the generalisability of our findings; however, in terms
of processing times, our results were consistent between
across datasets in the context of the various computer
configurations. We felt that testing the procedures with
larger samples was not required as we did not intend to
generate exact differences between the different analysis
techniques, but rather, to provide an indication of where
the differences lie and how these will effect processing
time. These differences were quite clear cut using even
three datasets, hence using more datasets was unlikely to
further highlight these differences. Specifically, using the
CUDA version of eddy is much faster than using the non-
CUDA versions, and even when using the optional flag
to correct for slice-to-slice variation was still very fast. We
also tested only three different hardware and software
configurations which cannot necessarily be extended
to others (e.g. comparing a more extensive collection of
Nvidia graphics cards in terms of CUDA core number,
speed, GPU RAM, and bandwidth). While we did not
test more than one graphics card in a single computer, it
is possible to install two identical Nvidia cards and link
them via a ‘Scalable Link Interface’. This would provide
twice the number of GPUs available for CUDA-enabled
eddy processing, and therefore potentially reduce pro-
cessing time further. We also did not investigate the
impact of optional flags in eddy; for example, for quality
checking and outlier replacement (--cnr_maps to gener-
ate CNR maps, and --repol to replace outliers). These,
and other optional flags, would require further processing
time.

Using CUDA allows neuroscience questions to be
answered more rapidly. In large samples, for example,
a few hundred, using the CUDA version of eddy can

complete the pre-processing in far less time, for example,
days, or even weeks, than using the non-CUDA versions.
Hence, data would be ready to be analysed earlier which
would allow the neuroscience questions to be addressed
more quickly. Furthermore, using the extra CUDA flag
to correct for slice-to-slice motion results in more accu-
rate motion correction which ultimately would translate
to more accurate analyses to address the neuroscience
questions.

We conclude that the CUDA implementation of eddy
substantially reduces processing time for correction of
dMRI data, even when performing slice-to-volume cor-
rection. The impact of GPU resources is large, and we
have outlined recommended specifications for graphics
cards and motherboard RAM necessary to efficiently
reduce processing time. Given the large improvements
in processing time and performance, it may be pertinent
to create CUDA implementations of other common com-
puting-intensive tasks in image processing.

Acknowledgements
We thank Jeff Macintosh and Trong Dang and the other
staff at the MRI facility at Macquarie Medical Imaging
(New South Wales, Australia). S.M.G. acknowledges the
support of the Parker-Hughes Bequest and the Frecker
Family Bequest.

J.J.M., S.M.G., S.J.V. and T.W. designed the experiment
and collected the data. All authors processed the data and
conducted the data analysis. All authors were involved
in the design of the imaging protocol and data acquisi-
tion. All authors contributed to each stage of manuscript
drafting.

The data that support the findings of this study are
available from the Human Connectome Project and the
Alzheimer’s Disease Neuroimaging Initiative but restric-
tions apply to the availability of these data, which were
used under license for the current study, and so are not
publicly available. Results are however available from
the authors upon reasonable request.

Conflicts of interest
There are no conflicts of interest.

References
1	 Gallichan D, Scholz J, Bartsch A, Behrens TE, Robson MD, Miller KL.

Addressing a systematic vibration artifact in diffusion-weighted MRI. Hum
Brain Mapp 2010; 31:193–202.

2	 Andersson JL, Skare S, Ashburner J. How to correct susceptibility
distortions in spin-echo echo-planar images: application to diffusion tensor
imaging. Neuroimage 2003; 20:870–888.

3	 Andersson JLR, Sotiropoulos SN. An integrated approach to correction
for off-resonance effects and subject movement in diffusion MR imaging.
Neuroimage 2016; 125:1063–1078.

4	 Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani
M. Towards a comprehensive framework for movement and distortion
correction of diffusion MR images: within volume movement. Neuroimage
2017; 152:450–466.

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

CUDA-enabled eddy current correction Maller et al.  753

5	 Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F,
Sotiropoulos SN, et al. Automated quality control for within and between
studies diffusion MRI data using a non-parametric framework for movement
and distortion correction. Neuroimage 2019; 184:801–812.

6	 Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E.
Denoising of diffusion MRI using random matrix theory. Neuroimage 2016;
142:394–406.

7	 Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal
based on local subvoxel-shifts. Magn Reson Med 2016; 76:1574–1581.

8	 Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,
Johansen-Berg H, et al. Advances in functional and structural MR image
analysis and implementation as FSL. Neuroimage 2004; 23 (Suppl
1):S208–S219.

9	 Wang H, Peng H, Chang Y, Liang D. A survey of GPU-based acceleration
techniques in MRI reconstructions. Quant Imaging Med Surg 2018;
8:196–208.

10	 Chang HH, Li CY. An automatic restoration framework based on GPU-
accelerated collateral filtering in brain MR images. BMC Med Imaging
2019; 19:8.

11	 Hernández M, Guerrero GD, Cecilia JM, García JM, Inuggi A, Jbabdi S,
et al. Accelerating fibre orientation estimation from diffusion weighted
magnetic resonance imaging using GPUs. PLoS One 2013; 8:e61892.

12	 Hernandez-Fernandez M, Reguly I, Jbabdi S, Giles M, Smith S, Sotiropoulos
SN. Using GPUs to accelerate computational diffusion MRI: From
microstructure estimation to tractography and connectomes. Neuroimage
2019; 188:598–615.

