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dBioinfosol, Sevilla, Spain
eUnidad de Demencia, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
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Abstract. The interaction between neurexins and neuroligins promotes the formation of functional synaptic structures. Recently,
it has been reported that neurexins and neuroligins are proteolytically processed by presenilins at synapses. Based on this
interaction and the role of presenilins in familial Alzheimer’s disease (AD), we hypothesized that dysfunction of the neuroligin-
neurexin pathway might be associated with AD. To explore this hypothesis, we carried out a meta-analysis of five genome-wide
association studies (GWAS) comprising 1, 256 SNPs in the NRXN1, NRXN2, NRXN3, and NLGN1 genes (3,009 cases and
3,006 control individuals). We identified a marker in the NRXN3 gene (rs17757879) that showed a consistent protective effect
in all GWAS, however, the statistical significance obtained did not resist multiple testing corrections (OR = 0.851, p = 0.002).
Nonetheless, gender analysis revealed that this effect was restricted to males. A combined meta-analysis of the former five
GWAS together with a replication Spanish sample consisting of 1,785 cases and 1,634 controls confirmed this observation
(rs17757879, OR = 0.742, 95% CI = 0.632–0.872, p = 0.00028, final meta-analysis). We conclude that NRXN3 might have a role
in susceptibility to AD in males.

Keywords: Alzheimer’s disease, genetics, genome-wide association study, meta-analysis, neurexins, neuroligins, NRXN3

Supplementary data available online: http://dx.doi.org/10.3233/JAD-122257

1Some data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.ucla.edu/). As such, the investigators
within the ADNI contributed to the design and implementa-
tion of ADNI and/or provided data but did not participate
in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

∗Correspondence to: Luis Miguel Real, Departamento de
Genómica Estructural, Neocodex SL C/Chaparro 8, esc. 3,
Bloq.1, 1ºA, 41020-Sevilla, Spain. Tel: +34 954078382; Fax: +34
955923101; E-mail: lmreal@neocodex.es.

INTRODUCTION

Alzheimer’s disease (AD) is the most common neu-
rodegenerative human pathology. It is considered a
complex disorder that renders synaptic and memory
defects and a progressive neuronal loss in the brain,
causing a devastating cognitive phenotype.
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As in other complex diseases, genetic factors play
a role in AD etiology. In fact, a common allele
near the APOE transcript is almost universally asso-
ciated with non-Mendelian AD [1]. Recently, other
genetic markers have been consistently associated
with AD in genome-wide association studies (GWAS),
which are located near or within the following genes:
CLU, PICALM, CR1, BIN1, MS4A, CD2AP, ABCA7,
EPHA1, and CD33 [2, 3]. (For more information, visit
http://www.alzgene.org/ [4]).

On the other hand, the majority of familial cases
of AD (FAD) are caused by mutations in APP
[5], PSEN1 [6], and PSEN2 genes [7]. PSEN1 and
PSEN2 genes encode presenilin 1 and 2 respectively.
Presenilins (PS) are the catalytic component of �-
secretase, a protease complex that cleaves a number
of transmembrane proteins, including the amyloid-�
precursor protein (A�PP). Accumulation of the
amyloid-� (A�) peptide is a hallmark of AD and most
FAD-linked PS mutations affect A� generation [8].
In animal models, the loss of PS function results in
synaptic plasticity defects and memory impairment
through an unknown synaptic mechanism independent
of A� accumulation [9]. In addition, it has also been
reported that PS regulates neurotransmitter release dur-
ing synaptic transmission [10]. Taken together, these
observations indicate that defects in synaptic func-
tion may be associated with the memory impairment
observed in AD.

Neurexins (NRXN) and neuroligins (NLGN)
are synaptic cell-adhesion molecules important for
synapse function [11–13]. At the synapse, NLGN are
localized postsynaptically and interact with presynap-
tic NRXN [14]. Recently, a functional link between
PS function and NRXN has been shown. NRXN are
proteolytically processed by PS in neurons and, inter-
estingly, FAD-linked PS mutations affect the normal
processing of NRXN [15]. Novel findings have shown
that NLGN are also processed by metaloproteases and
PS at the synapse [16, 17]. NLGN and NRXN are
encoded by five and three genes respectively: NLGN1
at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4X
at Xp22, and NLGN4Y at Yq11 for NLGN; and
NRXN1 at 2p16, NRXN2 at 11q13, and NRXN3
at 14q24-q31 for NRXN. Importantly, mutations in
NRXN and NLGN genes have been linked to autism
and other brain disorders [18–21].

Based on the molecular interaction between PS and
NRXN at synapses, it has been suggested that NRXN
can participate in the neuronal and memory defects
associated with a loss of PS function [15]. Interest-
ingly, the processing of neuroligin 1 can be stimulated

by the proteolytic shedding of neurexins and it reg-
ulates synaptic function [16, 17]. For that reason we
hypothesized that NRXN and NLGN coding genes
could also have a role in the etiology of sporadic AD. To
explore this possibility, we have carried out a candidate
gene meta-analysis using genotypic data at autosomal
NRXN and NLGN gene regions that were extracted
from five different published GWAS performed in Cau-
casian population-based samples. One marker within
the NRXN3 gene showed a modest but uniform effect
across the five GWAS studies. This result was validated
in a new association study.

MATERIALS AND METHODS

Datasets

In order to maximize the power of the study,
we included the following GWAS datasets in
the analysis: a) The Murcia study [22]; b) The
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study [23]; c) The GenADA study [24]; d) The
NIA study [25]; and e) The TGEN study [26]. For
GWAS dataset details, see Supplementary data (avail-
able online: http://www.j-alz.com/issues/35/vol35-
2.html#supplementarydata05).

Datasets from ADNI, GenADA, NIA, and TGEN
studies were obtained from dbGAP (http://www.
ncbi.nlm.nih.gov/gap), Coriell Biorepositories (http://
www.coriell.org/), or ADNI (http://adni.loni.ucla.
edu/). Prior to the genetic association analysis, each
dataset (Murcia, ADNI, GenADA, NIA, and TGEN)
was subjected to both an extensive quality control anal-
ysis and a principal component analysis. In addition,
since different platforms were used in the five GWAS
analyzed, we imputed genotypes using HapMap phase
2 CEU founders (n = 60) as the reference panel.
These approaches have been previously described
[22].

After quality control and preparatory steps, the
Murcia study included 1,034,239 single-nucleotide
polymorphisms (SNPs) in 319 cases and 769 controls;
the ADNI dataset 1,794,894 SNPs in 164 cases and
194 controls; the GenADA dataset 1,436,577 SNPs in
782 cases and 773 controls; the NIA dataset 1,738,663
SNPs in 987 cases and 802 controls; and the TGEN
dataset 1,237,568 SNPs in 757 cases and 468 controls.
A total of 696,707 SNPs were common to all GWAS
studies.

Overall, a total of 3,009 cases and 3,006 controls
were included in the meta-analysis.

http://www.alzgene.org/
http://www.j-alz.com/issues/35/vol35-2.html#supplementarydata05
http://www.ncbi.nlm.nih.gov/gap
http://www.coriell.org/
http://adni.loni.ucla.edu/
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SNP selection

To select SNPs within genomic regions of NRXN
and NLGN genes, we employed the UCSC Table
Browser data retrieval tool [27], release genome
assembly: Mar. 2006 (NCBI36/hg18), from the UCSC
Genome Browser database (http://genome.ucsc.edu/)
[28]. Selected SNPs were extracted from GWAS
datasets using Plink v1.06 software [29].

Linkage disequilibrium blocks

Linkage disequilibrium (LD) blocks were deter-
mined along the genomic regions studied using
Haploview software [30] and genotyping data from the
largest dataset used (NIA dataset). Haplotypes in the
selected LD blocks were determined by the Haploview
selected tag-SNPs.

Association analyses

Unadjusted single-locus allelic (1 df) association
analysis within each independent GWAS sample was
carried out using Plink software. We combined data
from these five GWAS datasets using the meta-analysis
tool in Plink selecting only those markers common
to all studies. Similarly, unadjusted haplotypic (1 df)
association analyses, in which each haplotype was
compared to all other haplotypes, were carried out
on each GWAS dataset using Plink tools. Then we
combined OR (95%CI) estimates obtained for each
haplotype across studies using the meta-analysis com-
mand metan in Stata 12 (College Station, TX). Stata
was also used to obtain Forest plots.

For all, single locus, haplotypic and stratified (age,
APOE, and gender) meta-analyses, fixed effects mod-
els were employed when no evidence of heterogeneity
was found. Otherwise random effects models were
employed.

Multiple-testing correction was applied taking into
account the number of different LD blocks detected.
Thus, the p-value threshold was established by the fol-
lowing formula: p = 0.05/number of LD regions in the
meta-analysis.

To test Hardy-Weinberg equilibrium and com-
pare genotypic frequencies between groups, we used
tests adapted from Sasieni [31]. These calculations
were performed using the online resource at the
Institute for Human Genetics, Munich, Germany
(http://ihg.gsf.de). In these studies, the p-value thresh-
old was established at 0.05.

Subjects in the validation study

For the replication study, blood samples were col-
lected from consecutive AD patients in medical centers
in Barcelona, Madrid and Murcia (Spain). The refer-
ral center’s ethics committees and Neocodex have
approved the research protocol, which was in compli-
ance with national legislation and the Code of Ethical
Principles for Medical Research Involving Human
Subjects of the World Medical Association. Written
informed consent was obtained from all individuals
included in this work.

This analysis comprised 1,785 unrelated sporadic
AD patients [526 males, mean (SD) age = 82.0 (7.81),
and 1,259 females, mean (SD) age = 82.0 (7.81)] and
1,634 unrelated population controls with unknown
cognitive status [542 males, mean (SD) age = 50 (10.9),
and 1,092 females, mean (SD) age = 53.2 (12.1)] that
were previously used to evaluate other SNPs asso-
ciated with AD [32, 33]. Additionally, 17 cases and
131 controls from the Murcia study were included as
a genotyping quality control group. Control subjects
were recruited from the general population. All AD
patients fulfilled DSM-IV criteria for dementia and
were diagnosed according to the NINCDS-ADRDA
criteria for possible and probable AD [34]. All
patients received a thorough clinical and neurological
examination and a comprehensive neuropsychological
evaluation including tests for general cognition, mem-
ory, language, perceptual and constructional abilities,
and executive functions. Complete blood analysis and
neuroimaging studies were performed in all subjects
to exclude other potential causes of dementia follow-
ing the guidelines for the diagnosis of AD from the
Study group on Behavioral Neurology and Demen-
tia of the Spanish Neurological Society. Spanish AD
patients were consecutively recruited at the three par-
ticipating centers: Fundació ACE-Institut Català de
Neurociències Aplicades, Barcelona; Hospital Univer-
sitario La Paz-Cantoblanco, Madrid; Hospital Virgen
de la Arrixaca, Murcia and Fundación Alzheimur, Mur-
cia. All individuals enrolled in this study were white
Mediterranean with registered Spanish ancestors (two
generations) as recorded by clinical researchers.

DNA extraction and rs17757879 genotyping in the
validation sample

We obtained 5 ml of peripheral blood from all
patients to isolate germline DNA from leukocytes.
DNA extraction was performed automatically accord-
ing to standard procedures using the Magnapure DNA

http://genome.ucsc.edu/
http://ihg.gsf.de
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isolation system (Roche Diagnostics, Mannheim, Ger-
many). Aliquots of DNA at a concentration of 10 ng/�l
were prepared for PCR amplification.

The genotypes of the rs17757879 marker were
obtained using real-time PCR in a LightCycler 480
System (Roche Diagnostics). Primers and probes
employed for this genotyping protocol are summarized
in Supplementary Table 1. Briefly, 10 ng of genomic
DNA, 0.1 �M of forward amplification primer, 0.5 �M
of reverse amplification, 0.2 �M each detection probe,
and 4 �l of LC480 Genotyping Master (5X, Roche
Diagnostics, Germany) were used in a 20 �l-final reac-
tion volume. PCR conditions were as follows: an initial
denaturation step of 95◦C for 7 min, followed by 45
cycles of 95◦C for 30 s, 59◦C for 30 s, and 72◦C for
30 s, and a final extension step of 72◦C for 2 min.
After amplification, specific conditions to obtain melt-
ing curves were 95◦C for 30 s, 45◦C for 20 s, and
75◦C for 0 s (with a temperature transfer speed of
4.4◦C/s except for the last step in which the tempera-
ture transfer was 0.4◦C/s). A continuous fluorometric
register was performed during last step. In order to
confirm the genotypes selected PCR amplicons were
bi-directionally sequenced using standard capillary
electrophoresis techniques.

RESULTS

SNP meta-analysis

Using UCSC Table Browser data retrieval tool, we
identified 6,004 SNPs within the intragenetic regions
of NGLN1, NLGN2, NLGN3, NLGN4X, NRXN1,
NRXN2, and NRXN3. Genotypes were available in
all datasets for a subset of 1,256 SNPs located in
NLGN1, NRXN1, NRXN2, and NRXN3 genes (Table 1).
The genotype data corresponding to these SNPs
were extracted from each GWAS dataset using Plink
tools. Then, we carried out an association analysis

of these SNPs in all five case-control datasets, and
a meta-analysis combining these five studies. Sixty-
nine SNPs, located within NLGN1 and NRXN3 genes,
showed a meta-analysis association p < 0.05. The best
p-value (0.002) was observed for rs17757879 marker
within the NRXN3 gene. This SNP showed a modest
(15% decreased risk) but remarkably consistent effect
across the five studies (Table 2 and Supplementary
Table 2).

Considering that the genomic regions studied
included 66 LD blocks, the p value cut off for statisti-
cal significance was set in 7.5 × 10E-4. Consequently,
our results did not remain significant after the multiple
testing corrections.

Haplotypic analysis

To test whether those SNPs with a low p-value were
tagging a genomic region associated to AD we carried
out a haplotypic association analysis. First, we selected
the most significant SNPs (p < 0.01) (n = 30) (Supple-
mentary Table 2). These SNPs clustered into discrete
regions of NLGN1 and NRXN3 genes, specifically in
LD blocks 2 and 9 of NLGN1 gene and in LD blocks
8 and 16 of NRXN3 gene (Supplementary Figure. 1).
Using Haploview software and the genotype data from
the NIA study, we selected the tag SNPs of those LD
blocks and performed a haplotypic analysis on each
independent GWAS study, as well as a meta-analysis
of all of them. None of them reached the association p
value cut off established at 7.5 × 10E-4 (Supplemen-
tary Table 3) or had a consistent effect across the five
studies.

Genetic analysis of rs17757879

In order to study whether the consistent effect
observed for SNP rs17757879 among studies could be
due to an association of this SNP with a subgroup of

Table 1
Number of SNPs described within candidate genes, number of SNPs in all GWAS included in the meta-analysis study and LD blocks defined

by them

Gene Chromosome Number of SNPs Number of SNPs in the five GWAS dataset LD blocks
(Base pair position range)* (Base pair position range)

NLGN1 3 1303 (174602072–175485357) 313 (174615674–175485357) 19
NLGN2 17 9 (7251196–7263185) 0
NLGN3 23 17 (70284052–70309279) 0
NLG4X 23 372 (5816120–6158318) 0
NRXN1 2 1856 (50000674–51114564) 511 (50000674–51100386) 21
NRXN2 11 94 (64130079–64248645) 13 (64130080–64220661) 1
NRXN3 14 2353 (77938599–79403317) 419 (77952969–79403317) 25

*According to UCSC genome browser (NCBI36/hg18) and dbSNP build 130.
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Table 2
rs17757879 meta-analysis results in all samples and in samples stratified by gender

A1 A2 n p p (R) OR OR (R) Q I ADNI Murcia GenADA TGEN NIA

All T C 5 0.002009 0.002009 0.8514 0.8514 0.9367 0.00 0.8628 0.8446 0.7960 0.8584 0.8980
Males T C 4 0.001028 0.001028 0.7339 0.7339 0.6941 0.00 0.5455 0.6782 0.7823 N.I. 0.7702
Females T C 4 0.3841 0.6095 0.9362 0.9501 0.2027 34.93 1.627 0.9099 0.8063 N.I. 1.004

A1, reference allele; A2, alternative allele; p, fixed-effects p-value; p (R), random-effects p-value; OR, fixed-effects odds ratio; OR (R), random-
effects odds ratio; Q, p-value for heterogeneity of OR; I, effect size for heterogeneity of OR; N.I., not included. The last five columns show the
OR for each study. Bold values represent the most interesting results.

Table 3
rs17757879 genotype distribution in the Spanish validation study

Parameters Males Females
Controls Patients Statistical Controls Patients Statistical
n = 542 n = 526 n = 1092 n = 1259

rs17757879 (CC/CT/TT) 389/144/9 406/113/7 OR = 0.752 802/267/23 928/302/29 OR = 0.986
CI = 0.570–0.991 CI = 0.525–1.587
p = 0.042∗ p = 0.884∗

OR, odds ratio; CI, confidence interval. ∗Allele positivity test from Sasieni [31].

patients, we first performed a meta-analysis in males
and females separately. Information on the gender of
participants was available for all but the TGEN study.
Interestingly, we observed that the effect was only
detected in males but not in females (Table 2).

In order to test if the observed associations were
dependent on APOE, we calculated the APOE �4 stra-
tum specific estimates for these markers. We observed
no evidence of effect modification by APOE (data not
shown).

To check whether the consistent effect of
rs17757879 observed in males across the four studies
could be replicated in a new and independent genetic
association study, we genotyped 526 Spanish male AD
cases and 542 Spanish male controls. Additionally, we
also included 131 controls and 17 patients (total 148
samples) that were previously included in the Mur-
cia study as a genotyping quality control group (these
samples were not included in the validation study).
All genotypes obtained in these 148 samples matched
with those obtained in the Murcia study. The genotypic
distribution of the rs17757879 marker was in accor-
dance with the Hardy-Weinberg equilibrium law (all
p > 0.39) in both the patient and control groups (data
not shown). Analysis of the genotype data showed a
lower frequency of CT and TT genotypes in the patient
group (OR = 0.752, p = 0.042) (Table 3). These results
are in agreement with our previous observation in the
meta-analysis.

Again, in order to confirm that the observed asso-
ciations were dependent on APOE, we calculated the
APOE �4 stratum specific estimates for these mark-
ers. We observed no evidence of effect modification
by APOE in our validation sample (data not shown).

The same study was performed in different age-strata
(65 years old or younger) and, similarly, no evidence
of effect modification by age was observed (data not
shown).

To confirm that the association was not detected
in women, we also performed the same study in an
available sample of 1,259 Spanish female AD cases
and 1,092 Spanish female controls. The genotypic
distribution of the rs17757879 marker was in the
Hardy-Weinberg equilibrium (all p > 0.90) in both the
case and control groups (data not shown). No genetic
association was detected between the rs17757879
marker and AD in females (Table 3).

To maximize the statistical power and to obtain a
valid summary estimate, we decided to perform a meta-
analysis using all available data taking into account
the genetic model observed in the validation study
(CC versus CT and TT). Finally, we reached a final
association p value of 2.8 × 10E-4 for rs17757879
in males (OR = 0.742, CI = 0.632–0.872) but not in
females (Fig. 1).

DISCUSSION

Recent GWAS studies point to synaptic cell mem-
brane processes, among others, as a new etiological
pathway involved in the development of AD [35].
NRXN and NLGN are trans-synaptic cell adhesion
membrane proteins involved in normal synaptic func-
tion and disease [13]. However, neither NRXN nor
NLGN genes have been previously studied as can-
didate genes for sporadic AD. Regarding previous
GWAS performed in AD, two markers within NRXN3
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Fig. 1. Forest plot of meta-analysis including four GWAS datasets and the independent replication sample in males (a) and females (b).

were indeed listed as potentially associated in the first
GWAS from the GERAD group at Stage I [36]. In
their larger follow-up work [37], these SNPs no longer
appear among the associated markers.

The GWAS strategy allows identifying novel genetic
factors related to common diseases. However, this
approach requires large samples to detect modest
effects [38]. Meta-analysis of multiple GWAS fol-
lowed by replication of the results in independent
samples appears as an alternative strategy for over-
coming this problem [39]. In spite of this, it is certainly
possible that genetic variants with low effect or those
showing a modest effect but just in a subgroup of
patients fail to be unveiled by GWAS.

Taking into account the recent studies about the
molecular interaction between PS with NRXN and
NLGN [15–17, 40] and the physical interaction of
NRXN with NLGN [41, 42], we decided to carry out
a meta-analysis study using the five GWAS datasets as
we included in a previous work by our group [22]. In
order to maximize the power of the study, we selected
those genetic markers in the target regions that were
available at all five datasets. Thus the NLGN2, NLGN3,
NLGN4X, and NLGN4Y were excluded from the anal-
ysis since they were not covered in the five GWAS.

In our first non-stratified meta-analysis we did not
observed association of NRXN and NLGN with spo-
radic AD, in accordance with the results obtained by all
GWAS performed previously. Since we have strictly
limited our study to the loci regions of the selected
genes, excluding 5′ and 3′regions, we cannot rule
out the existence of genetic markers associated with
sporadic AD located within the uncovered genomic
regions or the NLGN genes that were not studied.
In spite of this, we found an interesting and con-
sistent effect—yet not statistically significant—of the
rs17757879 marker within NRXN3 gene across the five

GWAS analyzed, suggesting that this finding was not
random. Interestingly, this effect was only observed in
males but not in females. The results of an independent
replication sample were in line with these findings,
showing that the T allele carriers of the rs1775779
marker showed a decreased risk of AD. Taking into
account this genetic model, we performed a final meta-
analysis, including the replication sample (OR = 0.742,
CI = 0.632–0.872, p = 0.00028) (Fig. 1). Despite the
consistency of our findings, these results did not reach
a GWAS significant p value (5 × 10E-7). This suggests
that the role of NRXN3 in AD could be minor and, thus,
the gene or its genetic markers have not been associated
to AD in previous GWAS. Studies with larger sam-
ples that take into account the dimorphism observed
will be necessary to clarify the role of NRXN3 in AD
susceptibility.

Morphological and functional sexual dimorphisms
have been well-established in the human brain [43].
These differences are determined by steroid hormone
exposure during a perinatal sensitive period that alters
subsequent hormonal and non-hormonal responses
throughout lifespan [44]. This sexual dimorphism
might be associated with differences between men and
women in the etiology, incidence, and course of brain
disorders, including AD. Several pieces of evidence
support this hypothesis. First, some studies have found
sexual dimorphism for ESR1 and APOE in AD [45, 46].
Second, the incidence of AD has been widely reported
to be higher in women than in men [47]. Finally, a
recent meta-analysis performed in AD patients con-
cluded that men modestly but significantly outperform
women in several cognitive domains [48], suggesting
sex differences in the neuropathology of this disease.
These data suggest that the stratification by gender in
the GWAS analysis might be a strategy to identify new
genetic variants associated to AD susceptibility.
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It is not known if the NRXN3 is functionally affected
by the sexual dimorphism in humans so far. Interest-
ingly, it has been reported that Nrxn1� heterozygous
KO mice showed increased locomotor activity levels
in a new environment and enhanced habituation upon
subsequent exposures to this environment. However,
this effect was mainly observed in male mice [49].
This study shows that Nrxn1�, a member of the NRXN
family, is affected by gender in mice.

In summary, our results suggest that NRXN3 gene
might have a role in AD susceptibility in males. The
dimorphism observed in this study might explain why
NRXN3 has not been identified as an AD gene in
previous GWAS. Further replication studies in larger
population samples as well as meta-analysis of the pre-
existing data will be necessary to confirm our results.
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researchers are indebted to Trinitat Port-Carbó and
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