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Abstract

Background: Reduced cerebrospinal fluid (CSF) b-amyloid42 (Ab42) and

increased florbetapir positron emission tomography (PET) uptake reflects brain

Ab accumulation. These biomarkers are correlated with each other and altered

in Alzheimer’s disease (AD), but no study has directly compared their diagnos-

tic performance. Methods: We examined healthy controls (CN, N = 169) versus

AD dementia patients (N = 118), and stable (sMCI; no dementia, followed up

for at least 2 years, N = 165) versus progressive MCI (pMCI; conversion to AD

dementia, N = 59). All subjects had florbetapir PET (global and regional; tem-

poral, frontal, parietal, and cingulate) and CSF Ab42 measurements at baseline.

We compared area under the curve (AUC), sensitivity, and specificity (testing a

priori and optimized cutoffs). Clinical diagnosis was the reference standard.

Results: CSF Ab42 and (global or regional) PET florbetapir did not differ in

AUC (CN vs. AD, CSF 84.4%; global PET 86.9%; difference [95% confidence

interval] �6.7 to 1.5). CSF Ab42 and global PET florbetapir did not differ in

sensitivity, but PET had greater specificity than CSF in most comparisons. Six-

teen CN progressed to MCI and AD (six Ab negative, seven Ab positive, and

three PET positive but CSF negative). Interpretation: The overall diagnostic

accuracies of CSF Ab42 and PET florbetapir were similar, but PET had greater

specificity. This was because some CN and sMCI subjects appear pathological

using CSF but not using PET, suggesting that low CSF Ab42 not always trans-

lates to cognitive decline or brain Ab accumulation. Other factors, including

costs and side effects, may also be considered when determining the optimal

modality for different applications.
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Introduction

Brain b-amyloid (Ab) accumulation is a hallmark of Alz-

heimer’s disease (AD), and may be identified in living

humans using cerebrospinal fluid (CSF) measurements of

the 42 amino acid variant of b-amyloid (Ab42)1 and pos-

itron emission tomography (PET) imaging using Ab
ligands (e.g., florbetapir).2 The findings that CSF and PET

Ab positivity are associated with clinical AD dementia,4,5

future conversion to AD dementia in patients with mild

cognitive impairment (MCI),6,7 and future cognitive

impairment in healthy controls,8,9 have led to the defini-

tion of novel AD research criteria, incorporating biomar-

kers of Ab pathology into the diagnostic algorithms.10–12

In vivo identification of brain Ab has become increasingly

important due to the development of novel AD drugscite

ref 3 here, which are likely to be effective only in patients

with Ab pathology, and maybe only in early disease stage,

when a correct clinical diagnosis of AD is difficult to

make.

Ultimately, the choice of whether to use CSF or PET

for Ab quantification in research, drug trials, and clinical

investigations will depend on many factors, including the

methods’ costs, availabilities, side effects, and diagnostic

performance. Studies that have included both CSF and

PET Ab measurements have suggested strong correlations

between them,7,13–19 but no study has directly compared

their diagnostic performance for the clinical diagnosis of

AD. When examining Ab biomarkers in AD, it is possible

to either use the clinical diagnosis or the presence of bio-

marker positivity (suggesting possible brain Ab pathol-

ogy) as reference standard. In this study, we used clinical

diagnosis as the reference standard. Our goal was to com-

pare CSF Ab42 and PET Ab to identify clinical AD. We

hypothesized that CSF and PET would have equal diag-

nostic performance, both when testing healthy controls

versus AD dementia patients, and when testing stable

MCI patients versus MCI patients who later progressed to

AD dementia.

Methods

Study design

Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (http://adni.loni.ucla.edu). The Principal

Investigator of this initiative is Michael W. Weiner, MD,

VA Medical Center and University of California San Fran-

cisco. ADNI is the result of efforts of many coinvestigators
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from a broad range of academic institutions and private

corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The data used in this

study were acquired in ADNI-2, which is the continuation

of ADNI. For up-to-date information, see http://www.

adni-info.org.

Participants

Our study population consisted of subjects from ADNI-2.

The sample size and demographic characteristics of the

subjects are listed in Table 1. Inclusion/exclusion criteria

for ADNI-2 subjects are described in detail at http://www.

adni-info.org. Briefly, all subjects included in ADNI-2

were between the ages of 55 and 90 years, had completed

at least 6 years of education, were fluent in Spanish or

English, and were free of any significant neurologic dis-

ease other than AD. Cognitively normal (CN) subjects

had Mini Mental State Examination (MMSE) score ≥24
and clinical dementia rating scale (CDR) score 0. MCI

subjects (including both so-called “early” and “late” MCI)

had MMSE score ≥24, objective memory loss as shown

on scores on delayed recall of the Wechsler Memory Scale

Logical Memory II (>0.5 standard deviations below the

normal mean), CDR 0.5, preserved activities of daily liv-

ing, and absence of dementia. AD dementia subjects ful-

filled the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer’s

Disease and Related Disorders Association (NINCDS-AD-

RDA) criteria for probable AD, and had MMSE scores

between 20 and 26 and a CDR of 0.5 or 1.0.

The original data set consisted of 185 CN, 435 MCI,

and 118 AD subjects. We inspected the clinical follow-up

data (using up to 3-year follow-up) to assess conversion

between diagnostic groups. Among CN, 14 subjects con-

verted to MCI and 2 to AD. These 16 progressive CN

were excluded from all comparisons, to keep the control

group as AD free as possible (but we report CSF and PET

data on these subjects in the result section, see below).

Among MCI, 59 subjects converted to AD and were

labeled progressive MCI (pMCI), while 165 subjects did

not convert to AD (during at least 2-year follow-up) and

were labeled stable MCI (sMCI; these also included five

subjects who reverted from MCI to CN). The remaining

MCI patients, who did not convert to AD but who had

less than 2-year clinical follow-up, were excluded, since

their long-term clinical status was uncertain, and to have

groups balanced on follow-up time. No AD subjects

reverted to MCI or CN during follow-up. Thus, the com-

parisons in this study were done on the diagnostic groups

CN (N = 169) versus AD (N = 118), sMCI (N = 165)

versus pMCI (N = 59).

Florbetapir PET

ADNI PET image data were acquired at baseline. Data

were processed as described previously.20 In sum, florbe-

tapir image data were acquired 50–70 min post injection.

Images were reconstructed immediately following the

scan, and repeat scans were acquired if motion artifact

was detected. For quantification of florbetapir, 3T 3D

MP-RAGE MRI scans were used. MRI images were seg-

mented and parcellated into individual cortical regions

with FreeSurfer, and used to extract mean florbetapir

uptake (standardized uptake value ratio, SUVr) from gray

matter within lateral and medial frontal anterior, poster-

ior cingulate, lateral parietal, and lateral temporal regions

relative to uptake in the whole cerebellum (white and

gray matter). Both the overall cortical mean SUVr from

these regions combined and the regional SUVr were used

in this study. Full protocols and data are available online

(http://adni.loni.ucs.edu).

CSF biomarker concentrations

CSF was acquired at baseline by lumbar puncture, and

stored at �80°C at the ADNI Biomarker Core laboratory at

the University of Pennsylvania Medical Center. Ab42, T-
tau, and P-tau were measured using the multiplex xMAP

Luminex platform (Luminex Corp., Austin, TX) with Inno-

genetics (INNOBIA AlzBio3; Ghent, Belgium; for research-

use only reagents) immunoassay kit-based reagent as

Table 1. Demographics.

CN AD sMCI pMCI

N 169 118 165 59

Sex, M:F (%F) 85:84 (50%) 70:48 (41%) 90:75 (46%) 33:26 (44%)

Age, years 74.5 (6.6) 75.4 (7.7) 71.8 (7.6) 72.8 (7.0)

Education, years 16.5 (2.5) 15.8 (2.6) 16.2 (2.6) 16.2 (2.7)

APOE, e4 (%+) 123:45 (27%) 35:83 (70%) 107:57 (35%) 12:47 (80%)

Follow-up, years 1.7 (0.6) 1.2 (0.7) 2.2 (0.3) 1.7 (0.6)

Data on age, education, and follow-up presented as mean (standard deviation). CN, cognitively normal controls, sMCI, stable mild cognitive

impairment; pMCI, progressive mild cognitive impairment; AD, Alzheimer’s disease.
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described and validated previously.21,22 The biomarker

data sets used in this study (“UPENNBIOMK5.csv” and

“UPENNBIOMK6.csv”) and additional analysis details and

quality control procedures are available at http://adni.loni.

usc.edu/. All CSF Ab42 concentration data were anchored

to the same baseline assay data set to enable use of the cut-

off value for abnormal/normal Ab42 status that were estab-
lished and validated for that assay.21 Full methodological

details of this procedure are described at http://adni.loni.

usc.edu. For each subject we used data from the first CSF

analysis that could be merged with PET imaging data. We

merged CSF and PET data by collapsing the measurements

that were closest in time, restricted to lumbar punctures

and PET measurements performed within 100 days of each

other (mean difference 5 days, IQR: 1–10 days difference,

max difference 97 days).

Statistical analyses

We performed several comparisons of the diagnostic per-

formance of CSF and PET for CN versus AD, and for

sMCI versus pMCI. The primary analysis was a compari-

son of diagnostic accuracy (area under the curve, AUC),

which was done for CSF versus global or regional (tem-

poral, frontal, parietal, and cingulate) PET.

Secondarily, we compared sensitivities and specificities

for CSF and global PET. These were first compared at a

priori cutoffs, using previously established cutoffs for AD

(CSF Ab42 192 ng/L and global PET florbetapir SUVr

1.11, normalized to whole cerebellum). Since these cutoffs

were generated from different samples (only partly based

on pathological diagnosis),20,22–24 they may not be com-

parable. We therefore also compared sensitivities and

specificities at cutoffs that were optimized for this study.

Optimized cutoffs were defined using logistic regression

models, where diagnosis was the response variable and a

binary classifier (biomarker < cutoff) was the predicting

variable (models adjusted for age and sex). The cutoff

that resulted in the logistic regression model with highest

AUC (mean of 10 cross-validation samples) was defined

as the optimized cutoff.

For all measurements of diagnostic performance (AUC,

sensitivity, and specificity) we used bootstrap (N = 1000

iterations) to estimate 95% confidence intervals (CI) for

the difference of CSF and PET (mean differ-

ence � 1.96 9 SD). All analyses were adjusted for age

and sex. All statistics were done in R (v.3.0.2, The R

Foundation for Statistical Computing, Vienna, Austria).

Results

Study demographics are shown in Table 1. CSF and PET

measurements are shown in Figure 1. As it is evident,

CSF Ab42 was lower, and florbetapir retention higher in

both the AD and pMCI groups as compared with the CN

and sMCI groups.

Overall diagnostic accuracies for CSF and PET were

evaluated by AUC. The AUCs of CSF and PET (using

either global or regional PET) were not significantly dif-

ferent, either for CN vs. AD or sMCI vs. pMCI (Table 2

and Fig. 2).

When tested at a priori cutoffs (CSF < 192 ng/L,

PET > 1.11), the sensitivities of CSF and PET were not

significantly different, either for CN versus AD (CSF

92.4%; PET 89.0%; difference CSF-PET [95% CI]

�0.46% to 7.6%) or for sMCI versus pMCI (CSF 91.5%,

PET 91.5%; difference CSF-PET [95% CI] �4.6% to

4.6%). The specificity was higher for PET in CN versus

AD (CSF 56.8%, PET 70.4%; difference CSF-PET [95%

CI] �21% to �6.6%), but did not differ significantly in

sMCI versus pMCI (CSF 50.3%, PET 55.8%; difference

CSF-PET [95% CI] �12% to 0.7%).

Optimized cutoffs were defined by logistic regression

models, by maximizing AUC, as explained above. The

highest accuracies were seen for cutoffs that were slightly

different from the a priori cutoffs (Fig. 3). The opti-

mized cutoffs were as follows: CSF Ab42 < 157 ng/L in

CN versus AD (AUC 85.3%), CSF Ab42 < 174 ng/L in

sMCI versus pMCI (AUC 76.5%), and PET florbeta-

pir > 1.24 in both CN versus AD (AUC 86.8%) and in

sMCI versus pMCI (AUC 80.9%). At these cutoffs, the

sensitivities were not significantly different in CN versus

AD (CSF 84.7%, PET 83.1%, difference CSF-PET [95%

CI] �4.5% to 8.0%) or in sMCI vs. pMCI (CSF 88.1%,

PET 81.4%: difference CSF-PET [95% CI] �3.4% to

16%). However, PET had greater specificity in both CN

versus AD (CSF 75.7%, PET 81.7%; difference CSF-PET

[95% CI] �11.2% to �0.91%) and in sMCI versus

pMCI (CSF 60.6%, PET 74.5%; difference CSF-PET

[95% CI] �20% to �7.8%). For prospective evaluation,

we tested the optimized CSF Ab42 cutoff from CN ver-

sus AD (<157 ng/L) in the sMCI vs. pMCI subjects.

Compared to the 174 ng/L CSF cutoff, this had lower

sensitivity (71.2%, not significantly different from PET,

difference CSF-PET [95% CI] �23% to 1.8%) and

higher specificity (70.9%, difference CSF-PET �9.8% to

4.6%).

As explained above, we excluded 16 CN subjects (five

females, two APOE e4+, mean age 76.3 [SD 7.5] years,

mean education 15.6 [SD 3.2] years) who progressed to

MCI (N = 14) or AD (N = 2) from all comparisons of

diagnostic performance. Notably, these progressive CN

subjects included both Ab positive and Ab negative sub-

jects (six CSF and PET Ab negative, seven CSF and PET

Ab positive, and three CSF negative but PET Ab positive,

Fig. 4).
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Discussion

Although several studies have shown strong correlations

between CSF Ab42 and PET Ab imaging,7,13–19 this study

is the first to directly compare their diagnostic perfor-

mance for clinical AD. We compared the biomarkers both

at optimized cutoff levels and (to avoid overfitting prob-

lems), at a priori defined cutoffs, established in indepen-

dent study populations. We found that (1) the overall

diagnostic accuracy, measured by AUC, was similar

between CSF Ab42 and (global or regional) PET florbeta-

pir both for CN versus AD and sMCI versus pMCI, (2)

the diagnostic sensitivity of the methods was similar, both

when using a priori defined cutoffs and when optimizing

cutoffs for this study sample, (3) the diagnostic specificity

of the methods was often slightly higher for PET specific-

ity (when using a priori cutoffs and optimized cutoffs),

Figure 1. CSF Ab42 and PET florbetapir. CSF Ab42 (A) and global

PET florbetapir SUVr (B) in different diagnostic groups, and matched

CSF and PET data (C) in all diagnostic groups. All data were adjusted

(residualized) for age and sex. In statistical comparisons (linear

regressions with Ab42 or SUVr as response and group [CN vs. AD,

and sMCI vs. pMCI] as predictor, adjusted for age and sex), AD did

always differ significantly from CN, and sMCI did always differ

significantly from pMCI (all P < 0.0001). CSF, cerebrospinal fluid; PET,

positron emission tomography; SUVr, standardized uptake value ratio;

sMCI, stable mild cognitive impairment; pMCI, progressive mild

cognitive impairment.

Table 2. Diagnostic accuracy of CSF Ab42 and PET florbetapir (18F).

Measurement AUC (%) AUCCSF � AUCPET (95% CI)

CN (n = 169) versus AD (n = 118)

CSF Ab42 84.4 NA

Global PET 86.9 �6.7 to 1.5

Temporal PET 86.9 �6.4 to 1.9

Frontal PET 87.3 �7.1 to 1.4

Parietal PET 86.4 �6.0 to 2.1

Cingulate PET 86.0 �5.0 to 2.5

sMCI (n = 165) versus pMCI (n = 59)

CSF Ab42 78.3 NA

Global PET 81.8 �8.3 to 1.6

Temporal PET 81.8 �7.7 to 2.7

Frontal PET 82.3 �8.8 to 1.0

Parietal PET 80.8 �7.5 to 2.4

Cingulate PET 81.8 �8.3 to 1.8

AUC were calculated using logistic regression models. Differences

between AUC for CSF and PET were calculated using bootstrap. PET

measurements were SUVr. For global PET, measurements were aver-

aged from temporal, frontal, parietal, and cingulate regions, and

divided by the measurement in whole cerebellum. For regional PET,

measurement in respective region was divided with the measurement

in whole cerebellum. All analyses were adjusted for age and sex.

AUC, area under the curve; CSF, cerebrospinal fluid; PET, positron

emission tomography; SUVr, standardized uptake value ratio.
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(4) the progressive CN group consists of both Ab positive

and Ab negative subjects, where CSF and PET modalities

were most often in agreement.

The finding that the overall accuracy was similar

between CSF and PET is in line with previous studies

showing strong correlations between the two biomarker

modalities.7,13–19 This indicates that CSF and PET Ab bio-

markers are overall equally associated with clinical AD,

both at the dementia stage and at the MCI stage. The

similar accuracy of CSF and regional PET is in agreement

with previous data showing similar associations between

CSF Ab42 and PET Ab in different brain regions.7,19 Like-

wise, the finding that the methods’ sensitivities were simi-

lar confirms the widely held but not previously tested

belief that CSF Ab42 and PET Ab have similar capability

to identify AD patients, both at dementia stage and at the

early clinical stage, in MCI patients who later convert to

AD.

The diagnostic specificities of the methods differed for

most comparisons, with greater specificity for PET. This

was caused by some CN and sMCI subjects who appear

pathological using CSF Ab42 but not using PET, which is

consistent with previous observations.13,15 This indicates

that low CSF Ab42 does not always translate to accumu-

lation of fibrillar amyloid in the brain (or to subsequent

cognitive decline). Another possibility, which has been

suggested previously, is that low CSF Ab42 in the absence

of a positive PET scan may reflect the presence of diffuse

Ab deposits that bind amyloid ligands poorly.15,25 Since

diffuse Ab deposits may not have a central role in the

neuropathological changes of AD,26 it is logical that a

biomarker which partly reflects diffuse deposits (possibly

CSF Ab42) has lower specificity but equal sensitivity com-

pared to a biomarker that mainly reflects fibrillar deposits

(PET Ab). Other causes of isolated low CSF Ab42 are also

possible, including increased peptide degradation, altered

transport over the blood–brain barrier, and differences in

the species of Ab measured by PET versus ELISA or other

immunoassays, although it is not known if this is impor-

tant for the development of AD. Diseases that are associ-

ated with low CSF Ab42 in the absence of Ab plaque

pathology include cerebrovascular disease, and neuro-

inflammatory and neuroinfectious conditions such as

bacterial meningitis, HIV-associated dementia, and multi-

ple sclerosis.27,28 In these conditions, C-terminally trun-

cated CSF Ab peptides (e.g., Ab38 and Ab40) are also

reduced, which is not the case in AD, and a ratio between

CSF Ab42 to Ab40 may help to resolve this issue. Finally,

it is also possible that preanalytical or analytical factors

affecting the Ab42 measurement may result in false low

measurements. Ongoing development of novel measure-

ment procedures may be useful to overcome this.29,30 In

sum, the existence of subjects who are CSF Ab42 positive

but PET Ab negative warrants further study, especially

long-term longitudinal studies with repeated biomarker

assessments, to learn whether the lowering of CSF Ab42
precedes PET positivity, or whether other factors underlie

this discrepancy in amyloid biomarker outcome. Further

comparative studies are also needed to determine the

possible clinical implications of the greater specificity of

PET Ab seen here.

The ultimate diagnostic sensitivity and specificity

depend on the choice of cutoff. The optimized CSF cut-

offs (157 ng/L for CN vs. AD and 174 ng/L for sMCI vs.

Figure 2. ROC plots. ROC plots for CSF Ab42 and (global and

regional) PET florbetapir SUVr, for CN versus AD (A) and sMCI versus

pMCI (B). AUC data are available in Table 2. CSF, cerebrospinal fluid;

SUVr, standardized uptake value ratio; sMCI, stable mild cognitive

impairment; pMCI, progressive mild cognitive impairment; AD,

Alzheimer’s disease.
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pMCI) were lower than the a priori cutoff (192 ng/L),

and the optimized PET cutoff (1.24 SUVr for both CN

vs. AD and sMCI vs. pMCI) were higher than the a priori

cutoff (1.11), indicating that that the optimized cutoffs

represented more severe Ab pathology. Important con-

founders for study differences in cutoffs include age dif-

ferences and delays between lumbar puncture and

autopsy. The CSF Ab42 192 ng/L cutoff was originally

defined to maximize the accuracy in a cohort including

56 autopsy-confirmed AD cases and 52 age-matched liv-

ing healthy controls.22 The AD subjects in that study were

on average 71 (SD 10) and the healthy controls were on

average 70 (SD 10) years old at lumbar puncture, and the

AD patients died at an average age of 77 (SD 10) years

(L. M. Shaw, pers. commun. 2014). The time gap between

lumbar puncture and death may have confounded the

relationship between CSF Ab42 and autopsy findings in

AD (some subjects with brain Ab plaques on autopsy

may have lacked brain Ab and corresponding low CSF

Ab42 at time of lumbar puncture). The PET florbetapir

1.11 cutoff was defined differently, using the confidence

limit for the upper 5% of the distribution in 21 controls

younger than 55 years.23 This cutoff (originally 1.10, but

later modified to 1.1120) also divided patients with “low

likelihood AD” and “high likelihood AD” based on histo-

pathology in an independent study of 35 subjects.24 Since

the subjects in this study were older than the subjects in

the derivation studies, and since the prevalence of Ab
pathology increases rapidly with age,31 the non-AD sub-

jects in this study likely had higher prevalence of Ab
pathology than the controls in the derivation studies. This

may have lowered the cutoff for CSF Ab42 and increased

the cutoff for PET Ab to identify clinical AD. The main

effect of changing from the a priori to the (more patho-

logical) optimized cutoffs was improvement of diagnostic

specificity, which was likely caused by greater prevalence

of Ab pathology among the controls in the present sam-

ple than in the derivation samples.

When comparing the diagnostic performance of CSF

and PET we excluded 16 CN subjects who progressed

Figure 3. Optimized cutoffs. Plots of accuracy over a range of possible cutoffs for CSF Ab42 and PET florbetapir, used to define optimized

cutoffs. The AUCs (y-axes) are from logistic regression models with diagnostic group as response and a binary classifier (biomarker <> cutoff,

x-axes) as predictor, adjusted for age and sex. AUC, area under the curve; CSF, cerebrospinal fluid; PET, positron emission tomography.
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clinically to MCI or AD during follow-up, in order to

keep the CN group as AD free as possible. However, in

an exploratory analysis, we found no clear preference for

Ab positivity in these subjects (Fig. 4; note that three sub-

jects were CSF-PET discordant, and were PET positive,

which argues against the notion that CSF positivity pre-

cedes PET positivity). Thus, controls that develop cogni-

tive impairment within a few years may be Ab negative at

baseline, independent of biomarker modality. This finding

does not necessarily contradict previous findings that Ab
positivity is associated with future cognitive impairment

in healthy controls, since the proportion of Ab positive

people who decline cognitively may still be larger than

the proportion of Ab negative people who decline cogni-

tively.8,9,32,33 However, it does support the notion that Ab
positivity is not a necessary requirement for development

of amnestic cognitive impairment.34 At this point, it is

not certain to what degree this impairment is related to

AD, since the CN who progressed to MCI may have other

underlying neurodegenerative diseases. Two CN subjects

progressed to AD dementia, one of them was Ab positive

at baseline and the other was Ab negative.

The main limitation of this study was the lack of

autopsy confirmation of Ab pathology. We only tested the

associations between the biomarkers and clinical AD diag-

nosis, and it is possible that some of the AD subjects were

clinically misdiagnosed with AD, and that some of the

controls had nonsymptomatic AD pathology. Another lim-

itation of this study was the short clinical follow-up time.

Although we established that the overall diagnostic accura-

cies of CSF and PET Ab were similar, especially regarding

sensitivity for clinical AD, it remains difficult to interpret

Ab positivity among the CN and sMCI subjects. Although

these subjects are “falsely positive” with regard to the cur-

rently available clinical information, several studies have

shown that Ab-positive healthy controls have increased

risk of future cognitive impairment and development of

AD, compared to Ab negative subjects.8,9,32,33 Thus, we

believe it is likely that Ab positivity among CN and sMCI

in this study is an early biomarker sign of AD, and some –
but not necessarily all – of these subjects may go on to

develop clinical signs of AD if followed up for several

more years.35,36 It would be interesting to perform lon-

gitudinal studies comparing the performance of CSF and

PET to predict development of MCI or AD in people

who are cognitively healthy at baseline. This would test

the novel proposed research criteria for preclinical

AD,10–12,37 which are not taken into account with this

study design. This study only included CSF Ab42, and it

is likely that the diagnostic performance of CSF biomar-

kers increases by including also CSF tau measures (the

diagnostic performance of imaging measures is likely

also increased by combining PET imaging with other

imaging modalities, such as structural MRI). Future

studies could also test the importance of APOE e4
genotype on these comparisons.

To conclude, the overall diagnostic performance of CSF

Ab42 and PET Ab to identify clinical AD is similar, but

PET has greater specificity in several settings. Other fac-

tors than diagnostic performance, including costs, side

effects, training and willingness among clinicians to per-

form lumbar punctures, availability of cyclotrons and

PET scanners, and willingness of payers to reimburse dif-

ferent procedures, should also be considered when deter-

mining the optimal modality for research, drug trials, and

clinical diagnostics.
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