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The underlying genetic etiology of late onset Alzheimer's disease (LOAD) remains largely unknown, likely
due to its polygenic architecture and a lack of sophisticated analytic methods to evaluate complex geno-
type–phenotype models. The aim of the current study was to overcome these limitations in a bi-
multivariate fashion by linking intermediate magnetic resonance imaging (MRI) phenotypes with a
genome-wide sample of common single nucleotide polymorphism (SNP) variants. We compared associations
between 94 different brain regions of interest derived from structural MRI scans and 533,872 genome-wide
SNPs using a novel multivariate statistical procedure, parallel-independent component analysis, in a large,
national multi-center subject cohort. The study included 209 elderly healthy controls, 367 subjects with
amnestic mild cognitive impairment and 181 with mild, early-stage LOAD, all of them Caucasian adults,
from the Alzheimer's Disease Neuroimaging Initiative cohort. Imaging was performed on comparable 1.5 T
scanners at over 50 sites in the USA/Canada. Four primary “genetic components” were associated significant-
ly with a single structural network including all regions involved neuropathologically in LOAD. Pathway anal-
ysis suggested that each component included several genes already known to contribute to LOAD risk (e.g.
APOE4) or involved in pathologic processes contributing to the disorder, including inflammation, diabetes,
obesity and cardiovascular disease. In addition significant novel genes identified included ZNF673, VPS13,
SLC9A7, ATP5G2 and SHROOM2. Unlike conventional analyses, this multivariate approach identified distinct
groups of genes that are plausibly linked in physiologic pathways, perhaps epistatically. Further, the study ex-
emplifies the value of this novel approach to explore large-scale data sets involving high-dimensional gene
and endophenotype data.
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Introduction

Late onset Alzheimer's disease (LOAD), the commonest cause of
late-life dementia (Bekris et al., 2010) has high heritability (Gatz et al.,
2006a, 2006b). However, its etiopathology, pathogenesis and major
risk genes are only partly known, mainly due to its genetic complexity
and heterogeneity. The “amyloid hypothesis” seems insufficient to
fully explain LOAD etiology and alternative hypotheses continue to be
advanced (Pimplikar et al., 2010).

To date only one gene of major effect, apolipoprotein E ε4 (APOE4),
replicates as significantly influencing LOAD risk (Strittmatter et al.,
1993), but does not account for all genetic variability, suggesting the in-
terplay of multiple, mostly unidentified susceptibility loci of smaller
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effect size acting multiplicatively under a common disease variant
model (Eccles and Tapper, 2010) and/or with environmental factors
(Traynor and Singleton, 2010). Recent high-throughput genome wide
association studies (GWAS) (Grupe et al., 2007; Harold et al., 2009;
Seshadri et al., 2010; van Es and van den Berg, 2009) have identified
and replicated in addition to APOE4, other genes such as BIN1, CLU,
ABCA7, CR1, PICALM, MS4A6A, CD33, MSA4E and CD2AP, all of which
(apart from APOE) have modest effect sizes and cumulatively account
for only 35% of the population attributable risk (Ku et al., 2011; Naj et
al., 2011). However, if LOAD risk is mediated in part by common poly-
morphisms individually conferring low disease risk, acting in concert,
typical univariate GWAS might not have enough power to consistently
detect these effects unless they utilize very large sample sizes. This
might be an inherent problem as obtaining such large sample sizes
are usually quite difficult. Also more importantly univariate studies do
not take into account the effect of multiple genes at once. This is impor-
tant because major LOAD risk factors include obesity, cerebrovascular
disease and diabetes, all disorders with significant genetic underpin-
nings (Profenno et al., 2010), suggesting causative genes might belong
to common biological pathways shared by these conditions. To circum-
vent some of these issues, multivariate analyses have been suggested as
an approach to identify important genetic factors in LOAD (Gandhi and
Wood, 2010).

MRI captures robust phenotypic neuroanatomical LOAD bio-
markers, most consistently implicating posterior cingulate and ento-
rhinal cortices, hippocampus and other medial temporal structures
(Jack et al., 2010a, 2010b; Smith, 2010; Villain et al., 2010) corre-
sponding to sites of early, severe LOAD-related neuropathology.
Imaging genetics attempts to bridge genetic variations with pheno-
typic trait markers, relating genotypic variations to underlying bio-
logical disease etiologies and increasing statistical power, thereby
requiring smaller sample sizes (Potkin et al., 2009). However, such
strategies require tools to simultaneously accommodate thousands
of data points per feature set (e.g. ~105 voxels from imaging data
and up to 106 SNPs from genetic data), posing a major statistical chal-
lenge. Often, large scale studies are performed in a univariate fashion
that significantly limits either one or both feature sets. However,
these techniques can curtail the usefulness of multidimensional data
to identify potentially informative relationships. Conventional
voxel-wise analyses are computationally time consuming on a
genome-wide scale and ineffectively capture cumulative effect spread
over multiple genes. Prior analyses (Biffi et al., 2010; Potkin et al.,
2009; Shen et al., 2010) on the multi-site MRI/genetic ADNI dataset
used massively univariate approaches: GWAS, that confirmed the
risk status of APOE4 and identified TOMM40 (Shen et al., 2010) and
hypothesis-driven analyses using pre-selected known affected brain
regions plus GWAS, that reinforced the status of promising individual
genes of interest (Biffi et al., 2010). However, no analyses have eval-
uated the premise that genetic determinants are not randomly dis-
tributed among relevant biological pathways but instead grouped
together among specific biological processes, nor have they detected
predicted groups of common, interactive risk polymorphisms.

Parallel independent component analysis (Para-ICA) a novel mul-
tivariate data-driven, hypothesis-free statistical technique, extends
ICA to analyze multiple modalities simultaneously (Calhoun et al.,
2009). Para-ICA identifies simultaneously clusters of associated, likely
interacting genes related to either: (a) functional brain networks,
(b) related structural brain regions, or (c) physiologic processes e.g.
EEG patterns or other potential endophenotypes and shows their
relationships (Calhoun et al., 2009). Beginning with two modalities
(here, SNP's and MRI-derived regional brain volume/thickness), we
sought to discover underlying factors from both modalities and
their connections. Similar to conventional ICA analyses, extracted
structural MRI components are maximally independent within mo-
dality and loading coefficients represent variation among individuals.
Networks or components extracted from genetic data are groups of
interacting SNP loci, contributing with varying degrees to a genetic
process affecting a downstream biological function, i.e. linear SNP
combinations highly associated with related phenotypes. To date,
this technique has been used mainly in schizophrenia and healthy
controls to find genes responsible for brain structure and function
using MRI and EEG patterns (Jagannathan et al., 2010; Liu et al.,
2008; Meda et al., 2010). However, subject and SNP numbers in
those studies were typically small.

Genetic and structural MRI data from the ADNI sample provide an
ideal test bed to explore LOAD and to validate application of Para-ICA
to larger datasets. The subject number (>800) and large genotypic
dataset (>600,000 SNPs) allow for examination of feasibility of scal-
ing up this technique where some valid results are published in this
dataset from conventional, hypothesis-driven analyses (Biffi et al.,
2010). Because many LOAD risk genes remain to be discovered, the
technique can simultaneously be used to identify novel risk genes,
as it identifies clusters of related, interacting SNPs.

We had the following goals: 1) to evaluate whether Para-ICA
could be scaled up to deal with larger populations and many more
SNPs than previously analyzed; 2) to identify new risk genes for
LOAD and their corresponding endophenotypes and 3) to explore
the different LOAD-mediating biological interactive pathways in
which the identified risk genes might participate. We hypothesized
that the method might identify previously unknown LOAD risk
genes, as well as known candidate genes. We hypothesized that iden-
tified genes would group into LOAD-associated physiologic pathways
and processes.

Materials and methods

We evaluated associations between two data modalities, structur-
al MRI (sMRI), (regional brain volumes and cortical thicknesses), and
genome-wide genotypic data (SNPs), to reveal multivariate relation-
ships between structural brain regions and SNP's that differed be-
tween healthy controls, MCI and AD subjects.

Alzheimer's Disease Neuroimaging Initiative (ADNI) study

Data used in the preparation of this article were obtained from the
ADNI database (adni.loni.ucla.edu). ADNI results from efforts of many
co-investigators from a broad range of academic institutions and pri-
vate corporations, with subjects recruited from over 50 sites across
the U.S. and Canada. For up-to-date information, see www.adni-info.
org. The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California-San Francisco.

Study participants

Data derived from the ADNI database on 818 subjects included
baseline 1.5 T MRI scans, Illumina SNP genotyping data, APOE geno-
type status and demographic information. We limited analyses to
European-American ADNI subjects (classified initially into respective
ethnic groups based on self-report and validated subsequently using
genetic markers) to prevent confluence of population stratification
effects on data, yielding a total of 209 HC (mean/SD age=76.05/
4.94; 113 males) with no past history of neurological or psychiatric
disorder, 367 subjects with MCI (mean/SD age=74.95/7.37; 239
males) and 181 subjects with clinically-assessed AD (mean/SD age=
75.57/7.48; 100 males) for analysis.

Single nucleotide polymorphism (SNP)-genotype

Sample collection and single nucleotide polymorphism (SNP)
genotyping for more than 620,000 target SNPs across the whole ge-
nome was completed on all ADNI participants as described in
Saykin et al. (2010) and Shen et al. (2010).
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Quality control/pre-processing
Prior to Para-ICA, genotyped SNP's underwent two pre-processing

stages. First, quality control parameters were employed to discard
data unsuitable for further analysis. Samples (both subjects and
SNP's) were checked for missing data and those with missing call
rates>5% were excluded. Remaining samples were imputed for
missing values (b1%) by replacing data with the corresponding
major genotype. Following this, all uninformative SNP's (constant
variance) were excluded. SNP's were then checked for minor allele
frequency (MAF); rare SNP variants with MAFsb0.01 were excluded.
Highly correlated SNP's (r>0.95) (in block sizes of 100 kb) were
removed. Finally, SNPs (in controls only) were checked for Hardy–
Weinberg equilibrium set at a threshold of pb1E-7. QC'd SNP's
(N=533,872) were then carried over to the next processing stage.
The above analyses were performed using custom scripts in Matlab
7.0 (www.mathworks.com).

The above pre-processed SNP's were subjected to a univariate
GWAS type case–control association analysis to identify those differ-
ing significantly across the three diagnostic groups. This 1) effectively
restricted the core analysis to disease-related genetic data in the cur-
rent sample, 2) reduced potential noise from interacting genes with
little or no relationship to the disease model, providing hypothesis-
free data-driven “enrichment,” and 3) improved accuracy and the
linking coefficient of the Para-ICA algorithm (determined based on
previous simulation results (Liu et al., 2008)). All SNP's (coded
using an additive model) were entered into a mass univariate
ANOVA design with diagnostic group as the independent factor,
using Matlab 7.0. SNP's surviving a liberal pb0.05 uncorrected thresh-
old were then advanced to the Para-ICA multivariate association ana-
lyses. As noted, at this stage, no multiple comparison correction was
performed. All significant SNP's with a pb0.05 uncorrected threshold
(N=27,150) were carried forward to Para-ICA to determine genetic
associations (including weak effects spread across multiple SNPs)
with brain structures.

MRI structural imaging-phenotype

All subjects underwent a high-resolution 1.5T, 3D structural MRI
scan (MPRAGE) as detailed in http://www.adni-info.org. We utilized
recently published ADNI imaging data, analyzed in Freesurfer V4.1.0
(http://surfer.nmr.mgh.harvard.edu/fswiki) (Shen et al., 2010), thus,
brain structure preparation and analysis methods are described only
briefly. An automated Freesurfer Bayesian segmentation and parcella-
tion routine extracted and labeled cortical and subcortical tissue
classes (Shen et al., 2010), yielding target region volumes, cortical
thicknesses and total intracranial volumes for pre-defined brain
structure regions-of-interest (ROIs). Freesurfer values for two inde-
pendently collected MPRAGE scans per subject were averaged to
yield a single volume/cortical thickness value. Table 1 lists all imaging
phenotypes (N=94; bilateral volumes of interest and cortical thick-
ness values). All values were normalized by Z-score transformation
before entry into Para-ICA.

Genotype–phenotype associations (Para-ICA)

Para-ICA was implemented using the Fusion ICA Toolbox v2.0a;
http://icatb.sourceforge.net in Matlab 7.0 to compute independent
genetic/imaging networks and simultaneously identify and quantify
association between the two modalities/features. This variant of ICA
was designed for multimodality processing that extracts components
using an entropy term based on information theory to maximize inde-
pendence and enhances the interconnection bymaximizing the linkage
function in a joint estimation process (Calhoun et al., 2009; Liu et al.,
2008). In addition, Para-ICA estimated loading parameters expressing
the weight of the overall component for each subject. Overall correla-
tion values between loading coefficients of the two sets of imaging
and genetic component(s) were calculated component-wise for the ag-
gregate sample to identify significantly associated feature sets. Compre-
hensive mathematical details of the algorithm and methodology are
provided in Liu et al. (2008). Data values from all three diagnostic
groups were organized as a matrix of subjects by SNP's/imaging-ROI
values. These genotype and phenotype data matrices were input to
the Para-ICA algorithm (see diagram in Fig. 1). The number of indepen-
dent estimated components for both SNP (12 components) and imag-
ing data (8 components) was separately estimated using Akaike
information criteria (AIC) (Calhoun et al., 2001). Resulting correlation
values between the Para-ICA feature sets were appropriately corrected
for multiple comparisons at this stage and a Bonferroni correction was
applied based on 12×8=96 comparisons yielding a corrected p value
threshold of 0.05/96=0.0005. Once significant feature set associations
were identified, all contributing SNPs/imaging ROIs across each sig-
nificant feature/network/component were thresholded at a supra
level |Z|>2.0 to specifically identify dominant loadings for each individ-
ual network. SNP's or regions surpassing this thresholdwere deemed to
be contributing significantly to the overall signal of the corresponding
component/network. Subsequently, loading coefficients of significantly
associated components were tested in a case–control fashion to test if
they differed significantly among diagnostic groups.

Significant SNP's from each component were then batch queried
against the dbSNP database (http://www.ncbi.nlm.nih.gov/projects/
SNP/) to extract corresponding known gene information; genes from
this query (derived for each component) were entered into the func-
tional annotation tool, DAVID (http://david.abcc.ncifcrf.gov/) to iden-
tify enriched biological themes and visualize these genes on functional
pathways e.g. KEGG and/or BioCarta. The Ingenuity pathway analysis
tool (IPA; http://www.ingenuity.com/products/pathways_analysis.
html)modeled and analyzed the complex biology and genetic interac-
tions as canonical pathway models within the identified significant
genetic network(s). SNPs associated with known genes were mapped
to the Ingenuity Pathways Knowledgebase to delineate biological net-
works. Genes were also input to Funcassociate v2.0 (http://llama.
mshri.on.ca/funcassociate/) to reveal significantly enriched functional
attributes in each component compared against a gene ontology data-
base. Finally, we performed standard chi-square association analyses
on the top 10 Z-score-ranked genes from each Para-ICA-derived
genetic network, to determine their relative association with the dis-
ease model.

Results

Initial data pre-processing with a univariate “GWAS like” analysis
(pb0.05 uncorrected) revealed N=27,150 SNPs that differed signifi-
cantly across groups. It confirmed SNPs from APOE (ε4; p=6.6E-16;
ε3; p=3.6E-09) and TOMM40 (p=7.25E-08) as the top three candi-
date genes, whose genotypes differed significantly across diagnostic
groups, as identified in prior GWAS of the same parent dataset
(Potkin et al., 2009).

Genotype–phenotype associations using Para-ICA

From the 12 SNP and 8 anatomic principal component networks
identified by AIC, Para-ICA identified four different independent ge-
netic networks significantly associated with a single structural net-
work (following Bonferroni correction). These four networks were
component/networks 1 (G1; consisting of 169 significant genes/332
SNPs), 2 (G2; 182 genes/377 SNPs), 3 (G3; 267 genes/482 SNPs)
and 4 (G4; 169 genes/332 SNPs). G1 and G3 had significant loadings
(Z>2) from APOE (ε4). All four networks were significantly associat-
ed with only one structural brain network (S1) that encompassed 40
different unilateral regions (a combination of both volumes and cor-
tical thickness surpassing a Z=2 threshold). Key structural regions
loading heavily in this component were entorhinal cortex and middle
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Table 1
Details of all Freesurfer-derived regions of interest used as the imaging phenotype.

Rank order Region Abs Z-score for network S1

1 Left superior frontal⁎⁎ 2.82
2 Right superior frontal⁎⁎ 2.80
3 Left entorhinal cortex⁎⁎ 2.74
4 Left middle temporal⁎⁎ 2.72
5 Left rostral mid frontal⁎⁎ 2.65
6 Left caudal mid frontal⁎⁎ 2.64
7 Left inferior temporal⁎⁎ 2.58
8 Right middle temporal⁎⁎ 2.58
9 Right hippocampus volume⁎⁎ 2.57
10 Right entorhinal cortex⁎⁎ 2.56
11 Right rostral mid frontal⁎⁎ 2.54
12 Left hippocampus volume⁎⁎ 2.52
13 Left isthmus cingulate⁎⁎ 2.51
14 Right caudal mid frontal⁎⁎ 2.47
15 Right isthmus cingulate⁎⁎ 2.43
16 Right temporal pole⁎⁎ 2.39
17 Left temporal pole⁎⁎ 2.37
18 Right inferior parietal⁎⁎ 2.31
19 Right inferior temporal⁎⁎ 2.29
20 Left fusiform⁎⁎ 2.29
21 Left superior temporal⁎⁎ 2.28
22 Inferior lateral ventricle⁎⁎ 2.27
23 Left superior marginal⁎⁎ 2.24
24 Right superior marginal⁎⁎ 2.21
25 Left inferior parietal⁎⁎ 2.21
26 Right post cingulate⁎⁎ 2.17
27 Right precuneus⁎⁎ 2.16
28 Right superior temporal⁎⁎ 2.15
29 Right amygdala volume⁎⁎ 2.13
30 Right pars operculum⁎⁎ 2.11
31 Left precentral⁎⁎ 2.11
32 Left pars triangularis⁎⁎ 2.10
33 Left amygdala volume⁎⁎ 2.10
34 Left bank STS⁎⁎ 2.08
35 Right pars triangularis⁎⁎ 2.08
36 Left post cingulate⁎⁎ 2.07
37 Left lateral orbfrontal⁎⁎ 2.07
38 Left precuneus⁎⁎ 2.06
39 Right parahippocampus⁎⁎ 2.01
40 Right fusiform⁎⁎ 2.00
41 Right lateral orbfrontal 1.97
42 Left pars orbitalis 1.97
43 Right precentral 1.97
44 Left pars operculum 1.96
45 Left parahippocampus 1.95
46 Right bank STS 1.90
47 Left medial orbitofrontal 1.84
48 Right superior parietal 1.82
49 Right medial orbitofrontal 1.82
50 Frontal pole 1.79
51 Right ventricle DC 1.79
52 Left ventricle DC 1.78
53 Right paracentral 1.75
54 3rd ventricle 1.71
55 Left paracentral 1.68
56 Left superior parietal 1.68
57 Left frontal pole 1.61
58 Right pars orb 1.56
59 Right frontal pole 1.52
60 Right pallidum volume 1.47
61 Left post central 1.44
62 Left rostral ant cingulate 1.41
63 Right post central 1.38
64 Mid anterior corpus collosum 1.37
65 Left pallidum volume 1.32
66 Central corpus collosum 1.32
67 Right putamen volume 1.24
68 Left accumbens volume 1.20
69 Mid posterior corpus collosum 1.18
70 Right thalamus volume 1.18
71 Posterior corpus collosum 1.17
72 Left putamen volume 1.15
73 Left lingual 1.13
74 Left lateral occipital 1.11
75 Right lateral occipital 1.10

(continued on next page)

Table 1 (continued)

Rank order Region Abs Z-score for network S1

76 Right accumbens volume 1.06
77 Anterior corpus collosum 1.05
78 Right caudal ant cingulate 1.03
79 Right lingual 0.95
80 Left transverse temporal 0.84
81 Right rostral ant cingulate 0.75
82 Left caud ant cingulate 0.69
83 Left thalamus volume 0.68
84 Right corpus collosum 0.66
85 Left corpus collosum 0.56
86 Right cuneus 0.55
87 Right transverse temporal 0.51
88 Left Pericalcarine cortex 0.46
89 Left caudate volume 0.31
90 Right caudate volume 0.31
91 Left cuneus 0.30
92 Right cerebellar cortex 0.18
93 Right Pericalcarine cortex 0.08
94 Left cerebellar cortex 0.05

⁎⁎ Denotes regions with significant loadings on imaging network S1, ranked in order
of Z-score loads. S1 was the only imaging network that was significantly associated
with any (in this case all four) genetic networks.
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temporal cortex thicknesses and amygdala and hippocampus vol-
umes. A complete list of significant regions is highlighted with double
asterisks in Table 1 and illustrated in Fig. 2. Significant genotype–
phenotype correlations (between loading parameters of eachmodal-
ity or feature) were as follows: 1) G1–S1 (r=−0.53; pb0.0001)
2) G2–S1 (r=0.32; pb0.0001) 3) G4–S1 (r=0.24; pb0.0001) and
G3–S1 (r=−0.14; p=0.0001). Fig. 2 summarizes these data with
the top 10 representative genes from each genetic network along
with their corresponding biological functions. Fig. S1 shows correla-
tion (scatter) plots for these associations. Testing loading coefficients of
the above networks for between-group differences revealed that in ad-
dition to having significant associations they also significantly discrim-
inated groups by baseline diagnosis (AD, MCI, or healthy control). Mean
loading coefficients across each genetic/structural network are shown
in Fig. S2.
Pathway analysis of genetic networks (components)
Ingenuity Pathway Analysis (IPA) software (http://www.ingenuity.

com/) was used to detect, visualize, and explore relevant biological net-
works associated with each genetic component. Top networks for G1
were cellular assembly/organization, cell morphology and develop-
ment. G2 was enriched with genes related to cardiovascular disease,
neurologic disease and cardiac arteriopathy. Primary networks for G4
were cell cycle, cell death and inflammatory response. G3 had an
over-representation of genes related to neurological and psychological
disorders. All the above networks contained knownAlzheimer's-related
proteins in their pathway interactions. Top dynamic networks from
each genetic component are illustrated in Fig. 3. Based on known gene
functions, the top five IPA canonical pathways for each gene network
(sorted in terms of genotype–phenotype linkage significance) were as
follows:

G1: cAMP mediated signaling, sulfur metabolism, calcium signal-
ing, vascular NO signaling and regulation of IL-2 expression in
T lymphocytes. G2: neuro-protective role of THOP1 in Alzheimer's,
NOS endothelial effects, Type 2 diabetes signaling, tyrosine metabo-
lism, CYP450. G4: cAMP-mediated signaling, cardiac beta-adrenergic
signaling, synaptic long-term potentiation, molecular cancer
mechanisms, NOS endothelial effects. Significantly associated non-
neurologic disorders were type 2 diabetes (N=80), coronary artery
disease (N=71), Crohn's/inflammatory bowel disease (N=65). G3:
protein kinase A signaling, cardiac beta-adrenergic signaling, cAMP-
mediated signaling, amino sugars metabolism, glycosaminoglycan
degradation. Significantly associated non-neurologic disorders were

http://www.ingenuity.com/
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Fig. 1. Flow diagram illustrating the Para-ICA technique employed in this study.
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Type 2 diabetes (N=70), Crohn's disease/IBD (N=57), coronary
artery disease (N=57).

The DAVID functional annotation tool revealed that the significant
genes from all four genetic networks are involved in multiple biological
pathways including Alzheimer's disease, adherens junction, arrhythmo-
genic right ventricular and dilated cardiomyopathy, axon guidance, cal-
cium signaling, cell adhesion, ECM receptor interaction, focal adhesion
and tight junction and smooth muscle contraction. Fig. 4 illustrates
(markedwith red stars) the significant genes in our study directly relat-
ed to Alzheimer's disease on a KEGG pathway map derived from the
above tool. Genes analyzed using the Funcassociate v2.0 toolkit
revealed several (N=60) significantly over-represented attributes
compared against the gene ontology database. The results presented
in Table 2 are rank ordered based on adjusted p value along with the
number of genes in the query, number of genes in the overall attribute
and their odds ratios.

Supplementary association analysis of top genes from Para-ICA
Association analysis (to illustrate their relative disease association)

of allelic frequencies for the top ten genes (based on ranked Z-scores)



Fig. 2. Significant genotype–phenotype associations identified using the hypothesis-free Para-ICA approach. Genetic factors combine effects from all risk loci, thus explaining more phenotypic variability than traditional analytic approaches.
Figure shows the top ten genes, ranked by Z-scores, plus their known functions, from each of the four genetic networks that were significantly correlated with the MRI network. Numbers of significant genes and SNPs within each network is
listed at top. *Indicates that the same gene appears among the top ten genes of another network. Genes in red text have been previously implicated in LOAD risk.
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Fig. 3. Representation of the top canonical pathways derived from Ingenuity pathway software for all four significant genetic networks. G1: pathway enriched for cellular assembly/organization, cell morphology/development; G2: pathway
enriched for cardiac arteriopathy, cardiovascular and neurological disease; G4: pathway enriched for cell cycle, cell death and inflammatory response; G3: enriched for genetic, neurological and psychological disorders. Key: red=known AD
implicated gene; blue=involved in long-term memory, green=involved in long-term potentiation of CA1 neurons.
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Fig. 4. Genes identified as part of the significant Para-ICA networks highlighted on a KEGG Alzheimer's pathway diagram derived from the DAVID functional association tool. Genes identified using red stars occurred in 1 or more of our 4 gene
networks. Genes indicated in red text are the primary genes identified to date responsible for the early form of AD (PSEN, APP) or account for a major proportion of LOAD risk (APOE).
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Table 2
Results derived from the Funcassociate web tool showing significantly enriched functional attributes, queried against the gene ontology database. Genes fed into the analysis
comprised all significant genes from all four genetic networks identified in the study. Key: rank: position in the attribute list ranked by significance of association with the
query, N: number of genes that went into the query with this attribute, X: number of genes overall in the ontology database with this attribute, LOD: logarithm (base 10) of the
odds ratio, p-val: single hypothesis p-value of the association between attribute and query (based on Fisher's exact test), p-adj: adjusted p-value; fraction of 1000 null-
hypothesis simulations having attributes with this single hypothesis p-value or smaller.

Rank N X LOD P P-adj Gene ontology attribute

1 20 100 1.847 3.50E-28 b0.001 Antigen processing and presentation of peptide antigen via MHC class I
2 20 103 1.831 6.70E-28 b0.001 Antigen processing and presentation of peptide antigen
3 23 206 1.56 3.70E-26 b0.001 MHC class I protein complex
4 23 335 1.327 2.90E-21 b0.001 MHC protein complex
5 23 377 1.271 4.10E-20 b0.001 Antigen processing and presentation
6 121 2180 0.409 6.60E-17 b0.001 Plasma membrane part
7 28 1152 0.864 5.60E-14 b0.001 Immune response
8 28 1348 0.791 2.50E-12 b0.001 Immune system process
9 160 3765 0.289 5.90E-12 b0.001 Plasma membrane
10 298 9033 0.234 1.10E-11 b0.001 Membrane
11 254 7427 0.237 3.40E-11 b0.001 Membrane part
12 7 33 1.841 8.80E-11 b0.001 MHC class I receptor activity
13 9 150 1.364 1.30E-09 b0.001 Thiolester hydrolase activity
14 8 115 1.43 3.40E-09 b0.001 Ubiquitin thiolesterase activity
15 8 118 1.418 4.20E-09 b0.001 Ubiquitin-specific protease activity
16 8 119 1.414 4.50E-09 b0.001 Small conjugating protein-specific protease activity
17 19 171 0.776 5.90E-09 b0.001 Rho protein signal transduction
18 100 6558 0.316 3.30E-08 0.002 Intrinsic to membrane
19 16 131 0.802 4.50E-08 0.002 Rho guanyl-nucleotide exchange factor activity
20 275 8319 0.183 8.10E-08 0.003 Protein binding
21 35 558 0.475 1.10E-07 0.003 Cytoskeletal protein binding
22 15 140 0.802 1.10E-07 0.003 Regulation of Rho protein signal transduction
23 11 192 0.979 1.10E-07 0.003 ATPase activity, coupled to transmembrane movement of substances
24 11 193 0.976 1.20E-07 0.003 ATPase activity, coupled to movement of substances
25 521 19305 0.204 1.30E-07 0.003 Cell part
26 521 19306 0.204 1.30E-07 0.003 Cell
27 11 197 0.967 1.40E-07 0.003 Hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances
28 15 143 0.792 1.50E-07 0.003 Ras guanyl-nucleotide exchange factor activity
29 31 2607 0.533 1.50E-07 0.003 Protein complex
30 50 909 0.38 1.80E-07 0.003 Cell adhesion
31 50 909 0.38 1.80E-07 0.003 Biological adhesion
32 6 15 1.551 2.00E-07 0.003 Prostaglandin E receptor activity
33 64 1301 0.328 2.40E-07 0.003 Intrinsic to plasma membrane
34 96 6449 0.297 2.50E-07 0.004 Integral to membrane
35 11 209 0.939 2.60E-07 0.004 Primary active transmembrane transporter activity
36 11 209 0.939 2.60E-07 0.004 P–P-bond-hydrolysis-driven transmembrane transporter activity
37 63 1285 0.326 3.30E-07 0.005 Integral to plasma membrane
38 3 6 2.561 4.30E-07 0.007 Sulfonylurea receptor activity
39 27 390 0.511 6.50E-07 0.012 Proteinaceous extracellular matrix
40 6 15 1.457 6.90E-07 0.012 Cell adhesion molecule binding
41 32 1350 0.468 6.90E-07 0.012 Transmembrane transporter activity
42 17 577 0.677 7.00E-07 0.012 Active transmembrane transporter activity
43 3 4 2.603 7.90E-07 0.017 cGMP-dependent protein kinase activity
44 58 1262 0.329 7.90E-07 0.017 Calcium ion binding
45 19 258 0.622 9.10E-07 0.018 Guanyl-nucleotide exchange factor activity
46 6 19 1.398 1.00E-06 0.019 Prostaglandin receptor activity
47 27 400 0.499 1.10E-06 0.019 Extracellular matrix
48 41 3215 0.416 1.10E-06 0.019 Macromolecular complex
49 34 589 0.433 1.20E-06 0.022 Metal ion transport
50 8 246 1.082 1.20E-06 0.022 Cysteine-type peptidase activity
51 136 3975 0.212 1.30E-06 0.023 Localization
52 14 409 0.733 1.60E-06 0.027 ATPase activity, coupled
53 45 1158 0.366 1.60E-06 0.029 Ion transmembrane transporter activity
54 8 258 1.06 1.80E-06 0.029 Ubiquitin-dependent protein catabolic process
55 8 259 1.059 1.80E-06 0.029 Modification-dependent protein catabolic process
56 8 259 1.059 1.80E-06 0.029 Modification-dependent macromolecule catabolic process
57 8 260 1.057 1.90E-06 0.029 Proteolysis involved in cellular protein catabolic process
58 8 262 1.053 2.00E-06 0.032 Cellular protein catabolic process
59 15 152 0.688 2.50E-06 0.046 Calcium ion transport
60 8 42 1.057 2.60E-06 0.047 Voltage-gated calcium channel activity
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from the four genetic components revealed that the genes SLC9A7,
SHROOM2, ZNF673, APOE (ε3, ε4), VPS13C and ATP5G2 showed stron-
ger effects of disease associations compared to other genes within the
component. Table 3 details the allelic frequency and the associated sta-
tistical value for each of the top 10 genes from all four genetic networks;
due to partial overlap (1 gene could appear inmore than 1 component)
totaling 32unique genes. Aweighting scorewas derived by normalizing
the chi-square value of each gene to the chi-square of the genemost as-
sociated with clinical disease status within each component.

Discussion

As hypothesized, we validated a scaled-up Para-ICA approach
to reveal novel interactive genes and pathways for LOAD, thus



Table 3
Results of association analysis performed on the top ten genes from each genetic network sorted in descending order of their weighting scores. Weighting scores represent the rel-
ative effect of each SNPs association with disease status within a particular component, ranging from 0 to 1. A and B refer to the different allelic frequencies.

Gene Location Function rs # AD
(# alleles)

MCI
(# alleles)

HC
(# alleles)

Chi-
Square

P-value Weighting
score

A B A B A B

G1
APOE3 19q13.2 N/A E3 162 200 269 465 39 279 88 1.00E-16 1.000
APOE4 19q13.2 N/A E4 209 153 521 273 358 60 80 1.00E-15 0.909
SHROOM2 Xp22.3 Intron rs2405940 209 153 503 231 294 124 16.58 0.0003⁎⁎ 0.188
ZNF673 Xp11.3 Intron rs7876304 103 259 250 484 172 246 14.04 0.0009⁎⁎ 0.160
SLC9A7 Xp11.23 Intron rs1883255 99 263 241 493 165 253 13 0.0015⁎⁎ 0.148
SLC16A2 Xq13.2 Intron rs479640 89 273 252 482 138 280 11.15 0.0038 0.127
MAGI3 1p13.2 Intron rs7552954 154 208 373 361 226 192 10.97 0.0041 0.125
COBL 7p12.2 Intron rs1437490 195 167 374 360 255 163 10.9 0.0043 0.124
PLXDC2 10p12.31 Intron rs2358839 102 260 265 469 150 268 7.54 0.0229 0.086
CTNND2 5p15.2 Intron rs757459 215 147 388 346 210 208 6.93 0.0311 0.079

G2
ZNF673 Xp11.3 Intron rs7876304 103 259 250 484 172 246 14.04 0.0009⁎⁎ 1.000
SLC9A7 Xp11.3 Intron rs1883255 99 263 241 493 165 253 13 0.0015⁎⁎ 0.926
TNXB 6p21.3 Intron rs2239689 133 229 213 521 114 304 9.47 0.0088 0.675
ZSCAN12 6p22.1 Mis-sense rs1361385 260 102 497 237 258 160 9.24 0.0098 0.658
EHMT2 6p21.3 Intron rs2844457 146 216 236 498 131 287 8.9 0.0116 0.634
ZKSCAN3 6p22.1 Intron rs213228 258 104 491 243 258 160 8.03 0.018 0.572
SLC44A4 6p21.3 Intron rs2736428 139 223 227 507 127 291 7.41 0.0246 0.528
CFB 6p21.3 Intron rs4151657 223 139 509 225 286 132 6.96 0.0307 0.496
C6orf15 6p21.3 Intron rs3130977 259 103 504 230 264 154 6.7 0.0349 0.477
CCHCR1 6p21.3 Intron rs746647 256 106 490 244 261 157 6 0.0496 0.427

G3
ATP5G2 12q13.13 Intron rs1800634 111 251 166 568 134 284 14.97 0.0006⁎⁎ 1.000
VPS13C 15q22.2 Intron rs1981916 190 172 449 285 216 202 12.84 0.0016⁎⁎ 0.858
ATF7 12q13.13 Intron rs784568 189 173 337 397 230 188 9.82 0.0073 0.656
CEP57 11q21 Intron rs3017756 154 208 316 418 215 203 8.95 0.0113 0.598
EHMT2 6p21.3 Intron rs2844457 146 216 236 498 131 287 8.9 0.0116 0.595
MTMR2 11q21 Intron rS193364 225 137 437 297 219 199 8.66 0.0132 0.578
PTCHD2 1p36.22 Intron rs2379135 160 202 259 475 165 253 8.32 0.0156 0.556
CNTN5 11q22.1 Intron rs10892901 134 228 314 420 146 272 7.86 0.0196 0.525
SLC44A4 6p21.32 Intron rs2736428 139 223 227 507 127 291 7.41 0.0246 0.495
C2 6p21.3 Intron rs2734335 204 158 355 379 211 207 6.22 0.0445 0.415

G4
SKIV2L 6p21.3 Intron rs592229 227 135 388 346 239 179 9.69 0.0078 0.999
TNXB 6P21.3 Intron rs2239689 133 229 213 521 114 304 9.47 0.0088 0.976
EHMT2 6p21.3 Intron rS159445 268 94 486 248 277 141 7.71 0.0211 0.795
AKAP9 7q21.2 Intron rs756647 234 128 461 273 234 184 7.39 0.0248 0.762
SLC44A4 6p21.3 Intron rs2242665 227 135 397 337 238 180 7.34 0.0254 0.757
CFB 6p21.3 Intron rs4151657 223 139 509 225 286 132 6.96 0.0307 0.718
ATF6B 6p12.3 Intron rs2228628 242 120 526 208 315 103 6.9 0.0316 0.711
C6orf10 6p21.3 Intron rs485774 203 159 455 279 272 146 6.81 0.0331 0.702
CYP51A1 7q21.2 Intron rs2301559 233 129 454 280 234 184 6.34 0.0419 0.654
C2 6p21.3 Intron rs2734335 204 158 355 379 211 207 6.22 0.0445 0.641

⁎⁎ Genes that significantly discriminate groups after correction for multiple comparisons (Bonferroni-corrected across 40 chi-square tests).
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highlighting one of the primary advantages of Para-ICA which is the
use of modest sample sizes compared to conventional GWAS analyses
to effectively capture genotype–phenotype relationships. Dominant
loading coefficients were contained in all major regions affected by
LOAD pathology in the single structural component significantly asso-
ciated with four different SNP/genetic networks. Seven other struc-
tural components were unassociated with other gene components.
The genetic components identified included SNPs from APOE4 plus
multiple other risk genes (and putatively protective SNPs, e.g.
APOE2) either previously identified in LOAD risk (e.g. ATF7 in G3;
Lin et al., 2006) or involved in one or more biological processes
thought to contribute to LOAD pathology. Fig. 5 summarizes the in-
volvement of these four genetic risk networks on a LOAD physiologic
pathway diagram.

The most significant association was between G1 and S1. This ge-
netic network had significant loading contributions from a total of
169 different genes (332 SNPs) and correlated negatively with brain
network S1, implying increased genetic load is related to decreased
brain volume/thickness within the network. This association was
notable as the S1 had high loadings from APOE4 (in the top 10 gene
loadings) and S1 included regions known to be affected early and se-
verely in LOAD, including entorhinal, middle temporal and prefrontal
cortices and hippocampus. More importantly, this genetic network
had high loadings from several other genes (SLC9A7/NHE7, ZNF673,
SHROOM2) previously unidentified in LOAD pathology. Given that
they were part of the same independent genetic component as
APOE, this finding both confirms APOE's established role as an impor-
tant LOAD risk gene and suggests that these additional SNPs may in-
teract with APOE to influence disease risk, supporting APOE's role as a
LOAD risk factor rather than a direct cause (Guerreiro et al., 2010).
The protein encoded by SLC9A7 mediates Na+/H+ exchange across
cell surface plasma membranes (Kagami et al., 2008) cycling between
the cell surface and intracellular trans-Golgi network and recycling
endosomes, which are vital to APP processing (Marks and Berg,
2010). SLC9A7 co-localizes with actin, implicated in tau formation
(Gallo, 2007). LOAD lymphoblasts show abnormalities modulated by
sodium/hydrogen exchanger blockers (Urcelay et al., 2001). Overall,
this genetic network was enriched with genes dominant in cell



Fig. 5. A summary of different genetic components (circled in red) identified in the current study projected onto an Alzheimer's disease functional interaction pathway (modified
from Sleegers K et al., TIGS 2009).
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signaling pathways. Other strongly contributing genes are involved
in lipid transport and tau formation (via actin/myosin binding).
ZNF673 is associated with X-linked mental retardation, (Lugtenberg
et al., 2006; Ramaswamy et al., 2010) and is close (~0.2 MB) to
SCL9A7 on Xp11.3.

The second most significant association in genotype–phenotype
correlation was G2–S1. This correlation was positive. G2 comprised
182 unique genes (377 SNPs). Some top-ranked genes from this
component overlapped with those from G1, including ZNF673 and
SLC9A7. These genes had a significant differential distribution
among diagnostic groups, suggesting a role of actin localization and
transcriptional regulation in LOAD. Other top genes from this net-
work involved in important AD-related processes included the
complement system, involved in amyloid-beta formation and inflam-
matory damage (van Es and van den Berg, 2009).

Network G4 correlated positively with S1. G4 contained several
genes associated with risk for non-neurologic disorders, including di-
abetes and cardiovascular disease, both LOAD risk factors (Profenno
et al., 2010). Top genes from this network, previously unidentified
in the context of LOAD, belonged to the complement factor/inhibition
pathway related to amyloid-beta clearance (35) or are associated
with major histocompatibility class III. Additionally, AKAP9, a top 10
gene in this network, maintains neuronal Golgi integrity and is in-
volved in LOAD pathogenesis (Stieber et al., 1996). Regarding associ-
ation analysis, no top 10 gene from this network was significantly
differentially distributed in the disease groups, suggesting that G4
comprises multiple SNPs of low effect acting together through diverse
biological risk pathways, especially inflammation, (see Eikelenboom
et al., 2006) to significantly affect LOAD-related neuropathology.

The final genotype–phenotype association was a negative correla-
tion between G3 and S1. G3 included ATP5G2, a subunit of mitochon-
drial ATP-synthase, which was over-represented in the disease group.
Mitochondrial ATP-synthase in entorhinal cortex is a target of oxida-
tive stress in LOAD (Terni et al., 2010) and part of LOAD apoptosis
pathways. Several other G3 genes included dominant signaling from
CNTN5, recently associated with multiple AD MRI characteristics
(Biffi et al., 2010), CEP57, a microtubular/centrosomal localizer
(Meunier et al., 2009), MTMR2, an endosomal regulator (Lee et al.,
2010), and ATF7, associated with LOAD in Lin et al. (2006). The load-
ing of previously identified LOAD genes and associated pathobiologi-
cal pathways further supports the relevance of this genetic network.

Analyzing significant genes from all four components using DAVID
and visualizing related processes on KEGG pathways revealed that
genes grouped in multiple LOAD-relevant biological processes (see
Fig. 4). Additional prominent processes not shown in the figure in-
cluded cellular communication, cardiovascular diseases, signal trans-
duction, calcium signaling, cell adhesion and neuronal developmental
processes (e.g. axon guidance). Many such processes are implicated
in LOAD pathology (e.g. neuronal calcium signaling; Kostiuk et al.,
2010; LaFerla, 2002; Mattson and Chan, 2003). Semaphorin 3A, an
axon-guiding membrane protein, accumulates in hippocampus in
AD (Koncina et al., 2007).

Major themes deriving from the top 32 Z score-defined genes in
the 4 SNP components suggest several major pathophysiological
LOAD pathways, especially when such genes co-occurred within a
component. From G1, APOE may relate to LOAD risk through path-
ways not directly linked to amyloid-beta, including actin-related
mechanisms. Actin cytoskeletal changes as a path to tau formation
(Gallo, 2007) are implicated across all components by SCLC987/
NHE7 (Kagami et al., 2008; Ohgaki et al., 2008), SHROOM2 and
COBL (Dominguez, 2009) and microtubule-related genes including
MTMR2, CEP57 and CTNND2 (Bamburg and Bloom, 2009; Meunier
et al., 2009). Three such genes were present in component 1. Immune
function, especially the complement system, related to amyloid-beta
clearance (Guerreiro et al., 2010; Kolev et al., 2009) and expressed
in cerebrovascular smooth muscle (Walker et al., 2008), is suggested
by ATF7, CFB, C2, SKIV2L, C6orf10 and C6orf15 (Li et al., 2006;
Veerhuis, 2011). These genes support the known role of the
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complement system in LOAD pathogenesis (van Es and van den Berg,
2009), while adding new gene candidates, e.g. C2. Complement is
present in dystrophic LOAD neurites, involved in immune response
and linked to synaptic pruning (Hollingworth et al., 2011). Five im-
mune related/complement genes are present in G4.

CTNND2/Delta Catenin/NPRAP is associated with GSK3-beta,
hence BAP and tau (Bareiss et al., 2010). CNTN5 encodes contactin5;
other contactins participate in LOAD risk (Biffi et al., 2010;
Osterfield et al., 2008). The prominence of SCLC987/NHE7(and
MTMR2) suggests the importance of the trans-Golgi network and
recycling endosome (Lee et al., 2010). Endosomal processing of APP
involving SorLA is of importance in LOAD (Lin et al., 2005; Marks
and Berg, 2010; Ohgaki et al., 2008). VPS proteins are related to this
process (He et al., 2005; Marks and Berg, 2010), although VPS13C
has yet to be implicated. VPS13C is associated with maintenance of
plasma glucose levels (Saxena et al., 2010); the related VPS26 is
linked with BACE/memapsin2 (He et al., 2005). CL44A4 is involved
in choline uptake (Jurgensen and Ferreira, 2010). MTMR2 has rele-
vance to excitatory synapses (Lee et al., 2010). ZKSCAN3/ZNF263 is
associated with vascular endothelial growth factor (Yang et al., 2008).

The above data suggest involvement of multiple genes influencing
varied, complex pathways that might interact mutually to contribute
to LOAD. Output from Para-ICA lends itself readily to functional path-
way analysis and ultimately systems biology. We also identified novel
putative LOAD risk genes, confirmed via testing allelic frequency dis-
tributions among diagnostic groups in standard case–control associa-
tion analyses. It is notable that while none of these genes survived a
standard GWAS study, they have high impact when their effect is
evaluated in the context of other SNPs. In addition, the SNP compo-
nents detected several genes previously unknown in the context of
LOAD risk, having high Z scores, exceeding those for APOE. Several
of these (e.g. SLC9A7, ZNF673, VPS13) were: (a) identified by multi-
ple (up to 17) SNPs, (b) mediate processes plausibly associated with
LOAD risk from pathway analyses and prior publications, (c) had
SNPs differentially distributed among diagnostic groups and (d) are
prominently expressed in brain. These results suggest validity of
these novel loci as candidate LOAD risk genes.

Examining loading coefficients of the gene and structural networks
revealed a stepped response pattern (see Fig. S2), with MCI values
falling between those of healthy control and AD, except in G3, where
they were elevated in MCI compared to AD, suggesting that this
gene component may act to either protect against or hasten regional
brain deterioration in MCI to influence progression rate to AD.

Our study has limitations. Although the Para-ICA method is data
driven, we restricted the genetic dataset to a disease-related subset.
This focused analysis might fail to uncover genes affecting LOAD
pathology via other interactive pathways that may not straightfor-
wardly show group differences. However, since we employed a liber-
al statistical threshold to limit the genetic dataset to disease-related
genes, we were able to include numerous SNPs discarded by conven-
tional univariate studies. Our AD/MCI-focused gene set analysis may
not have detected other genetic associations to brain structure. The
analysis was carried out only in European-Americans, by far the
most numerous ethnicity in the dataset. Future studies could include
larger mixed populations. Also, since Para-ICA identified multivariate
relationships at the gene network level (comprised of linear combina-
tions of SNPs), the directionality and effect magnitude of individual
SNPs is not immediately transparent. Our supplementary association
analysis to derive the top SNPs might be slightly biased, as they
were already pre-selected at a liberal cut-off to be included in the
multivariate analysis. Given these limitations and the novelty of our
study, our results require further validation and replication in more
diverse and larger independent datasets.

In conclusion, we met our major study goals by 1) confirming the
feasibility of a hypothesis-blind, multivariate approach to corroborate
LOAD genes associated with known pathologic mechanisms and to
discover new putative disease-relevant genes that interact but fail in-
dividually to reach genome-wide significance. These data thus extend
existing GWAS and hypothesis-driven analyses on the same ADNI
data set (Biffi et al., 2010; Saykin et al., 2010; Shen et al., 2010). 2)
The Para-ICA approach identifies genes in relatively modest sized
samples that are plausibly linked collectively in known physiologic
pathways, perhaps epistatically and suggests itself as a novel method
for exploring other large-scale data sets involving gene and endophe-
notype information such as BSNIP or COGS (Calkins et al., 2007;
Thaker, 2008), in psychotic disorders where the neuropathology
and genetic basis are less well-defined than LOAD. Finally, 3) we iden-
tified plausible new biological pathways associated with AD neuropa-
thology. Possible therapies resulting from our findings might include
agents targeted to the complement and/or immune systems.
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