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Abstract—Mild cognitive impairment (MCI) detection using magnetic resonance image (MRI), plays a crucial role
in the treatment of dementia disease at an early stage. Deep learning architecture produces impressive results in
such research. Algorithms require a large number of annotated datasets for training the model. In this study, we
overcome this issue by using layer-wise transfer learning as well as tissue segmentation of brain images to diag-
nose the early stage of Alzheimer’s disease (AD). In layer-wise transfer learning, we used the VGG architecture
family with pre-trained weights. The proposed model segregates between normal control (NC), the early mild cog-
nitive impairment (EMCI), the late mild cognitive impairment (LMCI), and the AD. In this paper, 85 NC patients, 70
EMCI, 70 LMCI, and 75 AD patients access form the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Tissue segmentation was applied on each subject to extract the gray matter (GM) tissue. In order to check the
validity, the proposed method is tested on preprocessing data and achieved the highest rates of the classification
accuracy on AD vs NC is 98.73%, also distinguish between EMCI vs LMCI patients testing accuracy 83.72%,
whereas remaining classes accuracy is more than 80%. Finally, we provide a comparative analysis with other
studies which shows that the proposed model outperformed the state-of-the-art models in terms of testing accu-
racy. � 2021 Published by Elsevier Ltd on behalf of IBRO.
Key words: Transfer learning, Alzheimer’s disease, Image classification, Early diagnosis.
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INTRODUCTION

Alzheimer’s disease (AD) is a kind of brain disease,

causing dementia in the aged population. It is thought to

begin 15–20 years before syndromes arise. Syndromes

occur due to the destruction of neurons involved in

memory, thinking, and learning functions (Wee et al.,

2013). Over time, syndromes tend to escalate and

become intrusive with performing daily activities such as
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planning family events, walking, and skill loss. At this

stage, cognitive decline is said to have dementia due to

Alzheimer’s disease. The small changes in the brain that

progress normal control (NC) to mild cognitive impairment

(MCI) and ultimately reaches the last stage of AD (Zeng

et al., 2018). AD is the 6th leading cause of death in the

united states, official accounting for 121,404 deaths in

2017. It is predicted that 60 million people will be affected

by AD in the next 20 years. According to the World Alzhei-

mer’s Report, it will grow to 152 million patients in 2050

(Oh et al., 2019). The total estimated cost for long term

health care for dementia patients is about $290 billion.

Researchers are ongoing early detection of AD to slow

down the abnormal degeneration of neurons of the brain.

it also produced the emotional and financial benefit for the

patient family (Mehmood et al., 2020). Brain imaging

modalities used for AD diagnose, such as functional mag-

netic resonance imaging (fMRI), magnetic resonance

imaging (MRI), single-photon emission computed tomog-

raphy (SPECT), positron emission tomography (PET),

and computed tomography (CT). If we compare these
er’s Disease on MRI Images. Neuroscience (2021), https://doi.org/10.1016/j.neuroscience.2021.01.002
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modalities MRI images generally available in a standard-

ized form for clinical practice (Bi et al., 2019). The

researcher developed functional connectivity modeling

for AD diagnose, such as sparse representation method,

graphical methods, and partial correlation-based tech-

nique (Yue et al., 2019). The cortical thickness, as well

as gray matter density, ventricles enlargements, and

brain atrophy, are used by researchers. On the other

hand, three main tissue in brain images such as white

matter (WM), gray matter (GM), and cerebrospinal fluid

(CSF) is of fundamental importance. In contrast,

researchers found GM atrophy correlates more with cog-

nitive decline in MCI (Khedher et al., 2015).

Mild cognitive impairment (MCI) is an intermediate

point to damage the memory neurons, more likely to

progress dementia due to AD. The investigated six-year

conversion rate between MCI to AD is 80%, respectively

(Wang et al., 2019). It is an ongoing topic for AD-related

researchers to identify MCI patients that are further

divided into two stages, such as early mild cognitive

impairment (EMCI) and late mild cognitive impairment

(LMCI) (Wang et al., 2010). The diagnosis at an early

stage of NC and MCI provides the information to clinicians

for treatment and take decisions on time. It was also help-

ful to reduce costs and offer longtime care (Ahmed et al.,

2017).

Previous researcher studies have shown that the

machine learning algorithm predicts better results for the

classification of AD as compared to clinicians. The early

achievement of AD classification has been

demonstrated by the support vector machine (SVM)

(López et al., 2011). Recently, deep learning-based meth-

ods such as sparse autoencoder and convolutional neural

network (CNN) provide optimal solutions for classification

in many domains such as computer vision, speech recog-

nition, and natural language processing (Xu et al., 2019).

However, deep learning methods have some limitations

during training the model on scratch data because the

model required a massive amount of annotated medical

images. Due to privacy and cost issues, a vast amount

of annotated data availability complicated, alternative

solution to overcome this issue by using transfer learning

techniques for classification on medical scans (Khan

et al., 2019). The concept behind transfer learning is to

use the pre-trained model on different problems with a

smaller dataset (Liu et al., 2019).

In this paper, we investigate the transfer learning

framework, which is based on the most profound CNN

architecture for classification of Alzheimer’s images into

four classes: NC, EMCI, LMCI, and AD. The

fundamental motivation behind transfer learning is to

transfer features from nature images to Alzheimer’s

images and introduce the new technique for the

classification of AD, which can assist the fresh

physicians in creating objective opinion and correct

diagnosis. Our primary purpose of getting state-of-the-

art results by using a smaller quantity of a dataset

without overfitting. To fulfill this requirement, we used

the data augmentation technique (Mehmood et al.,

2020), which helps us to avoid the overfitting problem,

and we achieve the desired results (Hernández-Garcı́a
Please cite this article in press as: Mehmood A et al. A Transfer Learning Approach for Early Diagnosis of Alzheim
and König, 2018). We apply layer-wise transfer learning

on a deep CNN architecture, where we redesign the last

fully connected layer and classifier layer. The proposed

model is divided into two groups, gradually trained on

some layers, whereas the rest of the others are frozen.

Applying transfer learning in this way, we predict the best

results on binary classification such as NC, EMCI, LMCI,

and AD. Another prominent problem faced in previous

studies is to overcome the less training data issue and

check the robustness of transfer learning and avoid over-

fitting. This study is based on GM scans obtain from MRI

which correlate more with cognitive performance to help

out the early diagnosis of AD.
162
RELATED WORK

In the last decades, many types of modalities are used for

disease prediction in medical fields. Positron Emission

Tomography (PET), MRI, and Diffusion Tensor Image

(DTI) are used by the researcher in Alzheimer’s

neuroimaging tools for classification of AD stages

(McGeer, 1986). Recently many development ongoings

in the field of computer vision to extract useful features

by using a machine learning algorithm and developing

models for the detection and classification of Alzheimer’s

disease. These models are working on manually

designed features, for this purpose required professional

expertise and the need to allocate maximum resources.

These approaches are divided into three main categories

such as support vector machine (SVM), regression-

based, and Bayesian methods (Chaddad et al., 2018).

The SVM approach is generally used for classification

purposes. Many researchers used SVM to find out the

MCI conversion rate. Young et al. (2013) have been

developed gaussian processes for predicting stable mild

cognitive impairment (sMCI). Experimental results have

been shown 74% accuracy for the prediction of AD con-

version between three years of sMCI and converted

MCI(cMCI). In Badakhshannoory and Saeedi (2011) this

study random forest classification algorithm used for

MCI classification and achieved 82.3% accuracy. Wang

et al. (2010) described during the training of these models

many shortcomings occur, several machine learning algo-

rithms perform better results on binary classification, but

accuracy declined when applies on multi-classification

images.

Recently, deep learning (DL) techniques overcome

the limitation for many medical computer-aided

diagnosis (CAD) systems, to extract the discriminative

features automatically on the raw image data. In end to

end learning four major steps involved to make an

accurate prediction of diseases such as feature

extraction, segmentation, skull stripping, normalization,

and smoothing (Hosseini-Asl et al., 2016). Many architec-

tures have been demonstrating classification results on

1000 categories in the ImageNet dataset (Deng et al.,

2009). The initial won the ImageNet challenge with a

seven-layer convolutional neural network and developed

efficient GPU implementation. They produced a 10%

improvement as compared to the previous winner. He

et al. (2016) developed the Deep Residual Network
er’s Disease on MRI Images. Neuroscience (2021), https://doi.org/10.1016/j.neuroscience.2021.01.002
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(DRN) to solved the degradation of training accuracy.

CNN requires a large number of training data, which is dif-

ficult to apply directly on medical imaging due to the short-

age of annotated datasets (Kingma and Ba, 2019). Suk

et al. (n.d.) produced promising results on binary classifi-

cation such as MCI vs NC, MCI converter, and stable MCI

by using a deep Boltzmann machine(DBM). They

obtained 95.35% accuracy using MRI and PET

modalities.

(Gupta et al., 2013) has been developed as a key

technique for AD classification. They used a sparse

autoencoder on natural image for learning the set of

bases and convolution applied for feature extraction on

MRI scans. The diagnostic classification in three cate-

gories: i) AD versus NC, ii) MCI versus NC, and iii) AD

versus MCI. In each task produced superior classification

results such as 94.74%, 86.35%, and 88.10%. Payan and

Montana (2015) introduced the combination of a sparse

autoencoder and convolutional neural networks (CNNs)

to improved AD classification results. They investigated

2D and 3D convolution and obtained an accuracy of the

system was 92.11% on NC vs MCI classification. In other

recent work (Li et al., 2015), the same classification prob-

lem has been investigated to identify different AD stages

on two modalities. Anthimopoulos et al. (2016) used

CNN architecture and shown an average success rate

of 85.61% and consumed significant efforts for labeling

the training data. However, when only a small training

dataset available of medical scans, to create the overfit-

ting problems (Lyndon et al., 2015). Shin et al. (2016)

shown the impact of transfer learning when applied to

medical image classification. During an investigation on

different modalities, they shown the fine-tuning processes

produced outperforms results. Chen et al. (2015) intro-

duced the transfer learning strategy applied to localize

plans in ultrasound scans, which can transfer the knowl-

edge on fewer layers. In researcher (Maqsood et al.,

2019) developed a transfer learning technique by utilizing

a pre-trained model for multi-class classification of AD.

They achieved a 92.80% success rate on un-segmented

scans. Aderghal et al. (2018) proposed a cross model

transfer learning technique to reduce the overfitting issue

during less number of training data. They trained the

model on structural MRI and transferred on the diffusion

tensor imaging (DTI) dataset. They have been investi-

gated the model on two modalities and attained a 92%

performance rate on NC vs AD, 85% AD vs MCI, and

80% on MCI vs NC. In (Phong et al., 2017) researcher

proposed three models based on LeNet, Inception

ResNet and GoogLeNet. During the training phase, they

train only fully connected layers of two models instead

of scratch but LeNet train all layers on medical images.

They achieved very promising results in terms of accu-

racy of 99.70%, 98.20%, and 99.20%.
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EXPERIMENTAL PROCEDURES

Image dataset

Individuals data used in this study were collected from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

publically available database (http://adni.loni.usc.edu).
Please cite this article in press as: Mehmood A et al. A Transfer Learning Approach for Early Diagnosis of Alzheim
ANDI began in 2004 with the help of a public–private

partnership under control of Dr. Michael W. Weiner. The

primary aims of ADNI to analyze more authentic and

sensitive techniques on different biomarkers such as

MRI, PET, structural magnetic resonance imaging

(sMRI), and clinical assessment to measure the

progression of MCI and early stages of AD (Jack et al.,

2019). Secondly, introduced the new innovative data-

access policy without restraint to all researchers in the

world. In this research work, we used 300 T1-weighted

MRI subjects, and all demographic information related

to four groups such as normal control (NC), EMCI, LMCI,

and AD are shown in Table 1.
Dataset preprocessing operations

In this research work, we applied a complete pipeline for

preprocessing on the T1-weighted images taken from

the ADNI database. We used the statistical parameter

mapping (SPM12; https://www.fil.ion.ucl.ac.uk/

spm/software/spm12/) for preprocessing and all data in

neuroimaging informatics technology initiative (NIFTI)

format. Our work focuses on gray matter (GM) because

GM segmentation of the brain would be useful to

demonstrate early changes in sporadic AD. During

preprocessing segmentation, applied on brain data and

dividing them into three major parts such as WM, GM,

and CSF (Young et al., 2013). During processing the bias

regularization set on very light regularization (0.0001),

bias full width at half maximum (FWHM) is 60 mm cutoff,

and the ICBM space template is used for affine regular-

ization on all datasets. We used the Montreal Neurologi-

cal Institute (MNI) space for spatial normalization. In this

study image, voxel size is (2 2 2), and finally, Gaussian

kernel used for smoothing the images. The shape of the

data samples after segmentation is 256 � 240. We

resized all images and get the final images in the form

of 224 � 224 that is used for training and testing in our

proposed model.
Convolutional neural networks and transfer learning

Convolutional neural networks (CNNs) are multilayered

structures working in a group form. These multilayered

include convolution layer, pooling layer, number of

consecutive fully connected, and lastly softmax layer.

The main mechanism of CNNs to extract the local

features with convolution layers from input data. These

low-level features are extracted through intermediate

layers and used in pattern recognition problems to build

high-level features (Sezer and Sezer, 2019). In artificial

neurons, each neuron is connected to the next layer of

over-weighted connections. The CNNs mechanism can

increase the depth and breadth size of those images

which have a complex structure (Ieracitano et al., 2019).

For the reduction of computational complexity, another

important CNN parameter is pooling layers, which is

mostly used with nonlinear function in the form of max

and min pooling. The pooling layer provides another ben-

efit in term of prevention of overfitting in the model

because the amount of computation and parameters are

reduced (Feng et al., 2019). In many studies, the max-
er’s Disease on MRI Images. Neuroscience (2021), https://doi.org/10.1016/j.neuroscience.2021.01.002
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Table 1. Demographic and clinical information from the ADNI dataset. Total of 300 patients data used for this study based on four classes. N shows the

number of subjects in each class. M and F represent the male and female subjects, � standard deviations, and mini-mental state examination (MMSE)

score

NC EMCI LMCI AD

N 85 70 70 75

Age 72.13 ± 8.4 73 ± 7.60 72.15 ± 8.20 74 ± 9.25

Gender [M/F] 50/35 40/30 42/28 45/25

MMSE 28.4 ± 1.24 28 ± 1.5 27.5 ± 1.74 23.5 ± 2.15
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pooling layer is commonly used with an activation func-

tion. In this study rectified linear unit (RELU) activation

function used because it converts the negative values of

the feature into zero and improved the speed of conver-

gence of CNN.

The modern CNNs based model is manually designed

by researchers with several different layers and

optimization approaches. During training the model with

varying parameters and learning rate, batch size, and

weight decay over ImageNet dataset (Krizhevsky and

Sutskever, n.d). Generally, in CNN lower layers can pro-

duce the general feature extraction ability, and higher lay-

ers capable to carry more relative information related to

the specific classification task (Chougrad et al., 2019).

Transfer learning has been produced promising results

on medical images such as classification of precancerous

disease, cardiac images, and lung disease classification.

In researcher introduced the technique for classification of

medical imaging by using CNN and transfer learning. All

these results have been shown by the transfer learning

produced the high accuracy for classification in medical

domains and also achieved maximum results on AD clas-

sification with less number of the dataset (Liu et al., 2018).
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Proposed transfer learning model

GroupA: block 1–3 are freezing.

GroupB: block 1–4 are freezing.

Due to promising results by CNN, many well-

established models have been developed by

researchers to solve the binary and multi-class

classification problems. The ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) benchmark

provides a big breakthrough in object recognition. The

major challenge is to classify the 1000 different objects.

We investigate those architectures which are the winner

of this challenge for the classification of objects. In this

study, we proposed a transfer learning model by

customizing VGG family architecture (Mehmood et al.,

2020). The reason behind choosing the VGG-19 architec-

ture because it produced high accuracy results and more

effective performance on computer-aided diagnosis prob-

lems. VGG-19 network which includes the 16 convolu-

tional layers, 5 max-pooling layers with stride 2, and

three fully-connected layers with a final softmax layer.

We modify the last two fully connected layers and final

classification layers as per our problem. These two fully

connected layers are 1000 and 512 with binary classifica-

tion. Secondly, we apply transfer learning to freeze the

convolutional layers. In many applications during the

transfer learning process only focus on trained fully con-
Please cite this article in press as: Mehmood A et al. A Transfer Learning Approach for Early Diagnosis of Alzheim
nected layer on training data and convolutional layers

are kept fixed. However, in our proposed model, we divide

our model into two groups and progressively frozen the

blocks of layers and training on with and without augmen-

tation dataset. The proposed model as seen in Fig.2 and

Fig.3. In GroupA, eight convolutional layers with three

max-pooling, and in GroupB, twelve convolutional layers

with four max-pooling layers are frozen. In the proposed

model, we used different hyperparameters as seen in

Table 2.

RESULTS

We check the performance of the proposed transfer

learning model on six binary classifications, which

include NC vs AD, NC vs EMCI, NC vs LMCI, EMCI vs

LMCI, EMCI vs AD, and LMCI vs AD. We also evaluate

our model with and without data augmentation. During

the experiment, we divide each class of data into three

steps. In the first step, we split data 20% for testing and

retain remaining data further for training 80% and

validation 20% as we have shown in the flow chart in

Fig. 4. During data augmentation technique rotation

range 10 degrees, width and height shift range 0.1

degrees, and shear range 0.15 degree, as shown in

Fig. 1. We used Keras library for the implementation of

our model on Z840 workstation Intel Xeon (R) E5-

2630v3 @2.40 GHz*32 with 1 TB memory.

Finally, we check the performance of the proposed

model through several measures sensitivity, specificity

and accuracy are described in terms of True Positive

(TP), True Negative (TN), False Negative (FN) and

False Positive (FP).

Sensitivity ¼ TP=ðTPþ FNÞ ð1Þ

Specificity ¼ TN=ðTNþ FPÞ ð2Þ

Accuracy ¼ ðTNþ TPÞ=ðTNþ TPþ FNþ FPÞ ð3Þ
Performance evaluation without augmentation

We applied our proposed transfer learning model on

binary classification and established the results on

testing data. In this section, we showed two methods of

performance without augmentation in six binary classes.

In GroupA, three blocks have been frozen, and GroupB

froze the four blocks, as shown in Fig. 2 and Fig. 3. Our

model achieved an accuracy result 93.83% on NC vs

AD classification on GroupA, we also used the same

number of images in GroupB and obtained the accuracy

95.33% (sensitivity 94.31% and specificity 96.26 %) on
er’s Disease on MRI Images. Neuroscience (2021), https://doi.org/10.1016/j.neuroscience.2021.01.002
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Fig. 1. Data for the proposed model in the form of gray matter. The first row showed the three views axial, coronal, and sagittal without

augmentation. The second and third rows show data after augmentation, used for the classification.

Fig. 2. The architecture of the proposed network with frozen of block1, block2, and block3. The first two blocks have four conv layers with two max-

pooling, and block three have four conv layers with one max-pooling layer. The kernel size of all conv layers is kept 3*3. Finally, FC layers are used

to attain results. (Conv:Convolution; FC: Fully connected layer).
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Fig. 3. The architecture of the proposed network with frozen of block1, block2, block3, and block4. The first two blocks have four conv layers with

two max-pooling and block3, block4 have eight conv layer with two max-pooling layers. kernal size of all conv layers is kepr 3*3. The filters for all the

blocks are: 64, 128, 256,512. Finally FC layers is used to obtain the results (Conv:Convolution; FC: Fully connected layer).

Table 2. Hyper-parameters for the proposed method, used during

training and testing, ReLU (rectified linear unit)

HYPERPARAMETERS

Activation Function ReLU

Sigmoid

Base Learning Rate 1e�5

Epochs 20

Batch Size 32

Optimizer Adam

Loss Fucntion Binary Cross Entropy

6 A. Mehmood et al. / Neuroscience xxx (2021) xxx–xxx

NSC 20041 No. of Pages 10

3 February 2021
NC vs AD classification. Furthermore, when we compare

the classification results of NC vs LMCI with two groups,

then GroupB performs the 5% comparatively higher

performance. As shown in Table 3, a proposed
Fig. 4. Framework of the proposed method on MRI data of each classification

AD, LMCI vs AD). Augmentation is applied to all data samples, i.e, 80% for

cognitive impairment, LMCI = late mild cognitive impairment, and AD = A

Please cite this article in press as: Mehmood A et al. A Transfer Learning Approach for Early Diagnosis of Alzheim
technique can discriminate between EMCI vs LMCI

accuracy and specificity of more than 83% in GroupB.

However, on the other hand, in GroupA EMCI vs AD

produced optimal results 82.34% as compare to GroupB

in terms of accuracy and sensitivity. Detailed results of

both methods are shown in Fig. 5.
398
Performance evaluation with augmentation

Table 4 shows the effect of two groups based on transfer

learning with the augmentation dataset. Here, we see that

the proposed model has shown promising results on NC

vs AD classification and obtained 98.73% accuracy

shows in GroupB. Next, we examine in Table 4, EMCI

vs LMCI results in almost the same on both groups and

accuracy performance more than 81%. For the pair of

NC vs LMCI, the best accuracy result was achieved by
task (NC vs AD, NC vs EMCI, NC vs LMCI, EMCI vs LMCI, EMCI vs

training, and 20% testing. NC = normal control, EMCI = early mild

lzheimer’s disease.

er’s Disease on MRI Images. Neuroscience (2021), https://doi.org/10.1016/j.neuroscience.2021.01.002

https://doi.org/10.1016/j.neuroscience.2021.01.002


399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

Table 3. Evaluation metric on testing data for GroupA and GroupB without data augmentation. These two groups showed the accuracy, sensitivity, and

specificity rate on six binary classes as shown in Fig. 5

GroupA GroupB

Image Classes Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

NC vs AD 93.83 92.15 95.13 95.33 94.31 96.26

NC vs EMCI 81.20 80.25 82.15 85.16 84.29 85.98

NC vs LMCI 82.72 81.63 83.81 87.91 86.61 89.01

EMCI vs LMCI 79.5 79.05 81.11 83.72 82.09 85.13

EMCI vs AD 82.34 81.22 83.17 81.93 81.63 81.98

LMCI vs AD 74.22 73.15 75.33 82.31 82.18 82.03

Fig. 5. Proposed model performance in term of accuracy, sensitivity and specificity on six binary classes without data augmentation. In above

figure,from left to right in box plot A, B and C the overall performance achieved by Group B which are 95.33%, 94.31% and 96.26% respectively.

Table 4. Evaluation metric on testing data for GroupA and GroupB with data augmentation. These two groups showed the accuracy, sensitivity and

specificity rate on six binary classes. NC vs Ad attained the highest rate 98.73% in term of accuracy as shown in Fig. 6

GroupA GroupB

Image Classes Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

NC vs AD 95.38 95.93 94.61 98.73 98.19 99.09

NC vs EMCI 85.14 84.61 85.42 87.06 86.61 86.63

NC vs LMCI 85.89 86.17 85.39 89.15 89.24 88.86

EMCI vs LMCI 81.73 80.12 83.07 81.06 80.61 81.52

EMCI vs AD 83.69 83.64 83.43 84.15 83.76 83.12

LMCI vs AD 76.73 77.31 75.78 82.07 81.39 82.41
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GroupB with an accuracy of 89.15% with an

augmentation approach. On the other hand, if we see

the EMCI vs AD classification performance in terms of

sensitivity, the GroupA obtained the highest value of

83.69%. Detailed results of both methods are shown in

Fig. 6.
420

421

422

423

424

425

426

427

428

429

430
DISCUSSIONS

Researchers have recently conducted many studies on

the early diagnosis of AD using machine learning and

deep learning approaches. Therefore, many researchers

developed the computer-aided system, which helps to

diagnose the early stage of AD, especially in deep

learning. CNN produced promising results in video and

image processing (Barros et al., 2018). It is a fully train-

able system that did not require the experts to manipulate
Please cite this article in press as: Mehmood A et al. A Transfer Learning Approach for Early Diagnosis of Alzheim
the datasets because of CNN, which can automatically

extract the features. Max pooling is the main part of

CNN, which reduces the size of the feature map

(Krizhevsky and Sutskever, n.d). However, the lack of

an annotated dataset to train the model on scratch is a

big problem. This study has developed a transfer learning

or fine-tuning approach with MRI images to attain the

automatic detection of different stages of Alzheimer’s dis-

ease. In order to resolve the overfitting issue on a small

dataset, augmentation plays a key role in the transfer

learning model.

The designed model tests the performance based on

three parameters such as accuracy, sensitivity, and

specificity. In the clinical field, these measures help

correctly classify healthy and ill patients. MRI is a potent

modality for the Alzheimer’s patient’s classification and

helps the doctors to diagnose this at an early stage.
er’s Disease on MRI Images. Neuroscience (2021), https://doi.org/10.1016/j.neuroscience.2021.01.002
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Fig. 6. Proposed model performance in term of accuracy, sensitivity and specificity on six binary classes data with augmentation. In above figure,

from left to right in box plot A, B and C the overall performance achieved by Group B which are 98.73%, 98.19% and 99.09% respectively.

Table 6. Evaluation results coincide with the EMCI/LMCI classification.

Our proposed model results compared with different four studies in

term of accuracy, sensitivity and specificity. It attained the highest

classification results 83.72%

Methods Accuracy Sensitivity Specificity

Wee et al. [1] 75.05 63.5 84.41

Basaia et al. [46] 75.1 75.8 74.1

Lei et al. [47] 78.05 81.58 75

Yang et al. [48] 72.19 73.82 73.05

Proposed model 83.72 82.09 85.13

8 A. Mehmood et al. / Neuroscience xxx (2021) xxx–xxx

NSC 20041 No. of Pages 10

3 February 2021
MCI is a critical stage for Alzheimer’s patients (Liu et al.,

2018). MCI is divided further into two stages showing the

conversion of patients on early-stage or late stages. EMCI

has demonstrated the early stage of AD and provides the

option of treatment to overcome the dementia risk factor.

In aging research fields, many CAD systems are devel-

oped for the classification of AD stages. This research

work focused on segregation, such as NC people, EMCI,

LMCI, and AD patients. These prediction results focused

on the specific gray matter (GM) region, which is more

useful in predicting AD’s early diagnosis. In the first step,

the method prediction of average performance without

augmentation on GroupA 82.58% and 86.18%, which

showed the effectiveness of the proposed model. More-

over, we investigate our model prediction with augmenta-

tion, and we attain the 98.73% performance accuracy for

NC vs AD and averages accuracy of Group 1, is 84.76%

and 87.06% for Group-2, which is the highest perfor-

mance amongst the proposed models.

We observed the model which used the 3D

convolutional neural network to classify without skull

stripping data. Secondly, to improve the effectiveness

and performance accuracy using transfer learning on

ADNI datasets attained 99.33% results during the binary

classification of normal control and AD patients

(Hosseini-Asl et al., 2016). MCI conversion is linked with

the number of risk factors that affect to convert in AD. In

terms of gray matter, density showed a clear difference

between healthy subjects and AD. Therefore, the MCI
477
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485
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Table 5. Evaluation results coincide with the AD/NC classification. Our

proposed model results compared with different five studies in term of

accuracy, sensitivity and specificity

Methods Accuracy Sensitivity Specificity

Ortiz et al. [45] 90.09 86.12 94.1

Wee et al. [1] 92.35 90.35 94.31

Khedher et al. [7] 87.53 88.65 86.17

Basaia et al. [46] 98.2 98.1 98.3

Ahmed et al. [10] 90.2 82.92 97.2

Proposed model 98.73 98.19 99.09
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conversion part shown gray matter intensity reduction

compared to the non-conversion part, which is useful for

diagnoses (Yang and Liu, 2020). However, the pre-

trained model helps diagnose the disease in daily clinical

practice because it took less time to process and produce

high-performance results on a less annotated dataset. In

this approach, they introduced the convolutional network

to achieve a state of the art results (Wu et al., 2018).

The major advantage produced by the model to reduce

the parameters which directly impact in term of regulariza-

tion and improve the results of classification.

Tables 5 and 6 shows the comparison with several

studies that have investigated the early diagnosis of AD

patients. However, the proposed model produces the

best results in terms of accuracy on AD vs NC 98.73%

score and EMCI vs LMCI 83.72%. In researcher (Basaia

et al., 2019) produced the 98.10% results in terms of sen-

sitivity for AD vs NC. In addition, our model also outper-

forms for the remaining four classification tasks, such as

NC vs EMCI 87.06%, NC vs LMCI 89.15%, EMCI vs AD

84.15%, and LMCI vs AD 82.31% in term of accuracy. It

can be seeming transfer learning extract the more useful

features for the classification of AD on the brain’s GM

segmentation.

In this study, we propose a layer-wise transfer

learning approach for six classification tasks. We

selected the approved architecture capable of early-

stage diagnosis of AD. The distinction between EMCI

and LMCI to help out the experts to treat on time of
er’s Disease on MRI Images. Neuroscience (2021), https://doi.org/10.1016/j.neuroscience.2021.01.002
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dementia disease. To overcome this issue on a small

number of annotated data, we apply transfer learning

with the augmentation technique and improve

performance accuracy. We investigate proposed models

with detailed experiments on 300 ADNI subjects with six

binary classes. We also checked the effects on

performance after frozen the number of blocks in our

model. Furthermore, we compared our proposed

technique results with state-of-the-art methods. We

discovered that our model significantly outperforms on

AD vs NC classification and achieved 98.73% in terms

of testing accuracy. Future implication includes applying

the proposed model for lungs and breast cancer

detection.
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