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Abstract

In order to establish the correspondences between different brains for comparison, spatial 

normalization based morphometric measurements have been widely used in the analysis of 

Alzheimer’s disease (AD). In the literature, different subjects are often compared in one atlas 

space, which may be insufficient in revealing complex brain changes. In this paper, instead of 

deploying one atlas for feature extraction and classification, we propose a maximum-margin based 

representation learning (MMRL) method to learn the optimal representation from multiple atlases. 

Unlike traditional methods that perform the representation learning separately from the 

classification, we propose to learn the new representation jointly with the classification model, 

which is more powerful in discriminating AD patients from normal controls (NC). We evaluated 

the proposed method on the ADNI database, and achieved 90.69% for AD/NC classification and 

73.69% for p-MCI/s-MCI classification.

1 Introduction

Accurate AD diagnosis, especially during early stage AD prognosis (i.e., the discrimination 

between progressive-MCI (p-MCI) and stable-MCI (s-MCI)), is essential to potentially 

prevent AD conversions via timely therapeutic interventions. The most straightforward ways 

to AD classification in the literature resort to direct morphometric measurement of spatial 

brain atrophy based on MRI [1,2]. In such methods, all subjects are spatially normalized into 

one common space (i.e., a pre-defined atlas) via non-linear registration, in which the same 

brain region across different subjects can be compared and consequently the anatomical 

characteristics related to AD can be revealed.

However, due to intrinsic anatomical shape variations, different atlases used in spatial 

normalization can lead to different morphometric representations for the same subject, 

which can subsequently cause very different results in the classification. On the other hand, 

registration of the same subject to different atlases can yield different registration errors, 

which can also significantly affect classification accuracy. In practice, people tend to 

empirically select one subject as an atlas if it can achieve the highest classification rate [2,3] 

(which can also be selected in an automatic manner [4]), or reduce the global registration 
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errors (e.g., using the mean image as the atlas from a set of subjects [5]). Recently, both [6] 

and [7] proposed to deploy multiple atlases as intermediate references to guide registration, 

instead of directly registering a subject to the common atlas. Representations generated via 

different intermediate references are then averaged to reduce the negative impact of 

registration errors during classification.

Although previous atlas deployment strategies are able to efficiently reduce registration 

errors, the representation generated from one single atlas or the average representation 

obtained from multiple atlases is not necessarily the best choice for the classification task. In 

fact, the high-dimensional representations generated from multiple atlases in their original 

spaces can form a low-dimensional manifold, in which the optimal representation (i.e., the 

best one for classification) could lie somewhere within this manifold.

In this paper, we propose a maximum-margin based representation learning (MMRL) 

method to learn the optimal representation from multiple atlases for AD classification, 

which can not only reduce the negative impact due to registration errors but also aggregate 

the complementary information captured from different atlas spaces. First, multiple atlases 

are selected to serve as unique common spaces based on affinity propagation [8]. Then each 

studied subject is non-linearly registered to the selected atlases, and multiple representations 

from different atlas spaces are further generated by an autonomous feature extraction 

algorithm [9]. Afterwards, we learn the optimal representation from multiple representations 

(of multiple atlases) in conjunction with the learning of a support vector machine (SVM) 

[10] based on the maximum-margin criteria. Finally, the learned representation and SVM 

are used for classification. Unlike traditional methods enforcing a prior in the representation 

learning (e.g., variance maximization in PCA, or the locality-preserving property in 

LaplacianScore [11], which is independent from the classification stage), our method learns 

both the optimal representation and the classifier jointly, in order to make the two different 

tasks consistently conform to the same classification objective. Experiments on the ADNI 

database show that our learned representation outperform both the representation generated 

from one single atlas and the average representation of multiple atlases. Moreover, the joint 

learning approach is more efficient than the independent learning approaches even when 

using state-of-the-art dimensionality reduction/feature selection techniques [12,11,13].

2 Method

Fig. 1 illustrates the main idea in our proposed method. A subject is first nonlinearly 

registered to multiple atlases. Volumetric features are then extracted within each atlas space, 

so that multiple representations are generated from different atlases. Based on the 

representations obtained, an optimal representation is finally learned to maximize the 

classification accuracy. We will first present how multiple representative atlases can be 

selected. Then, the feature extraction method from multiple atlases is described. Finally, a 

novel maximum-margin based representation learning (MMRL) method is introduced to 

jointly learn both the optimal representation and the classifier for AD classification.
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2.1 Atlas Selection

In order to select the most representative atlases that can capture abundant information of 

volumetric brain changes related to AD, and also reduce the overall registration errors, 

affinity propagation (AP) [8] is performed to partition the studied population into K non-

overlapping groups (where normalized mutual information of image intensities is used as the 

similarity measure, and all subjects are linearly aligned in advance). The exemplar image of 

each group (automatically determined by AP) is then selected as an atlas, and thus a total of 

K atlases are selected {T1, T2, …, TK}. Different atlases can then be used to capture 

complementary information for the same subject, by performing feature extraction in each 

individual atlas space.

2.2 Feature Extraction

We adopt the feature extraction method proposed in [9] to identify the distinctive sets of 

imaging biomarkers from different atlases and extract the most relevant features in each 

individual atlas space. First, each subject is non-linearly registered to the K selected atlases. 

Then, in each atlas space, group analysis using Pearson correlation (for each voxel) is 

conducted on the training set to yield a response map of the atlas that signifies its voxel-wise 

discriminative power. Watershed segmentation is then applied to the response map of each 

atlas to partition the atlas into a large number of non-overlapping local regions. Finally, the 

M most discriminative regions are identified for each atlas by Pearson correlation using the 

training subjects. Consequently, for each subject, M features can be extracted by 

summarizing the gray matter volumes of the M identified regions on each atlas. Since we 

deployed K atlases for feature extraction, K distinctive representations are generated for one 

subject, where each representation is comprised of M features.

2.3 Maximum-Margin Based Representation Learning

Given the set of representations of a subject generated from K different atlases X = {xk ∈ 

ℝM×1, k ∈ [1, K]}, we want to find a new representation x* ∈ ℝM×1, which can yield the best 

classification result. Suppose that the new representation can be generated by applying a 

mapping to the set of original representations as:

(1)

Our goal is to learn the optimal mapping function f(·) which can yield the best representation 

x* for classification. To achieve this goal, we propose a maximum-margin based 

representation learning method (namely MMRL) to learn f(·) in conjunction with the 

learning of a SVM classifier, where the jointly learned mapping and classifier are both 

optimal for the targeted classification task.

Traditional SVM—Given a training set {(xi, yi), i ∈ [1, N]}, where xi ∈ ℝM×1 and yi ∈ 

{−1, 1} denote the feature vector and label of the i-th subject, respectively, a soft-margin 

support vector machine (SVM) [10] tries to find a hyperplane that maximizes the margin 

between two classes of samples and also minimizes the cost of misclassification:
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(2)

where {w, b} defines the SVM hyperplane, [·]+ = max(0, ·) denotes the hinge loss function, 

and C is the balancing factor between the hinge loss and the margin regularization. When 

the feature vector x̃ of an unknown subject is input, its associated label ỹ can be predicted 

using the learned hyperplane {w, b} as:

(3)

MMRL—In order to learn the optimal representation x* (i.e., learning the optimal mapping 

function f(·)) jointly with the classification model as defined in equation (2), given a training 

set {(Xi, yi), i ∈ [1, N]} where  is the set of representations generated 

from all K atlases, and  denotes one representation extracted from the k-th atlas 

for the i-th subject (using the method described in Section 2.2), we first define the mapping 

to the new representation as a linear combination of the K existing representations generated 

from different atlases as:

(4)

where Ak ∈ ℝM×M is a diagonal coefficient matrix to assign different weights to different 

features of the k-th representation (with all non-diagonal elements equal to zero). Then our 

goal is to find the optimal mapping  and hyperplane {w, b} that maximize the 

margin between different classes and also reduce the misclassification rate on the training 

set:

(5)

where  denotes the j-th diagonal element of the coefficient matrix Ak (i.e., the weight for 

the j-th feature from the k-th atlas). The inequality constraints in equation (5) confine the 

estimated weights into the first quadrant of a unit square, so that the generated representation 

lies within the manifold of original representations and has different importance on different 

feature locations.

To avoid overfitting, we propose to further partition the features into different groups, where 

features within the same group will be assigned to the same mapping weights (i.e., 

if the j1-th and j2-th features are in the same group). Introducing this additional constraint 

can efficiently reduce the degree of freedom of the proposed model, thus achieving 

improved generalization with limited training samples. The feature grouping strategy used in 
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our method is implemented by performing affinity propagation [8] on the feature covariance 

matrix calculated from the training set.

To optimize equation (5), we adopt the coordinate descent method to estimate the 

parameters. The mapping weights  and the hyperplane {w, b} are optimized in an 

iterative manner. In each iteration, one term is optimized while the other is fixed, and thus 

each optimization step is convex. With the learned mapping  and the learned 

decision boundary {w, b}, given the feature vectors X̃ of an unknown sample extracted from 

multiple atlases, the associated label ỹ can be predicted as:

(6)

in which the optimal representation can be regarded as .

3 Experiments

We demonstrate the advantages of the proposed MMRL method from two aspects: (1) the 

learned representation from multiple atlases significantly outperforms the representation 

generated from one single atlas and the average representation of multiple atlases; (2) our 

joint learning approach is more efficient than several independent representation learning 

(i.e., dimensionality reduction or feature selection) methods when representations from 

multiple atlases are utilized. In this section, we will first describe our data and experimental 

con-figurations; then we will show and discuss the obtained results.

3.1 Data and Experimental Configurations

We evaluated the proposed method on 459 subjects (97 AD, 128 NC, 117 p-MCI, and 117 s-

MCI) randomly selected from the ADNI database1. All subject scans followed the same pre-

processing pipeline consisting of bias correction, skull-stripping, and cerebellum-removing. 

Then the images from all subjects were linearly aligned and segmented into three tissues 

(i.e., GM, WM, and CSF).

Our experiments were conducted for two different classification tasks, namely AD/NC 

classification and p-MCI/s-MCI classification. 10-fold cross validation was performed for 

each task, in which each fold consists of roughly 1/10 of the entire data and roughly the 

same proportion from each class. In order to reveal the intrinsic characteristics of the MCI 

patients related to AD, the p-MCI/s-MCI classification was conducted in a transfer learning 

manner, where in each round 9 folds of the AD/NC data were used for training and 1 fold of 

the p-MCI/s-MCI data was used for testing (note that the labels of p-MCI and s-MCI were 

associated with the labels of AD and NC, respectively).

As for the other experimental configurations, linear SVM was used as the benchmark 

classifier with the default cost term C = 1; the number of selected atlases is K = 10 from 

1http://www.adni-info.org
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affinity propagation, and the number of biomarkers identified on each atlas is M = 20. 

Optimization of the proposed method was implemented based on CVX2.

3.2 Results and Discussion

In Table 1, we compare the classification performance of our learned representation (using 

MMRL from multiple atlases) with single atlas (SA) representations and the average 

representation of multiple atlases. For the representations generated from single atlases, we 

deployed the 10 atlases selected in our method and used each of the 10 atlases to perform 

feature extraction and classification separately. We report the classification rate of the best 

atlas (Best_SA) and the average result across the 10 atlases (Mean_SA), respectively. We 

then report the classification performance (listed as Average in Table 1) obtained by the 

average representation from multiple representations generated from all 10 atlases. In the 

table, it is clear that the representation learned by MMRL significantly outperforms both 

Best_SA and Average according to all evaluation metrics (accuracy, sensitivity, and 

specificity) for both AD/NC classification and p-MCI/s-MCI classification. Additionally, we 

show the classification rates obtained by concatenation of multiple representations (Concat) 

and multiple kernel learning (MKL) [14], which are also lower than the proposed MMRL 

method.

Table 2 shows the results comparing MMRL with four popular dimensionality reduction 

(DR) and feature selection (FS) methods when multiple atlases are used. In the table, PCA 

and AutoEncoder [12] are DR methods, whereas LaplacianScore [11] and mRMR [13] are 

the widely used FS techniques. For fair comparison, all techniques reduce the feature 

dimension to 20 (same as the MMRL learned representation). For AutoEncoder, a widely 

used configuration with a three-layer architecture [12] was adopted. Our results demonstrate 

that the proposed joint learning method yields the best classification results (90.69% for 

AD/NC and 73.69% for p-MCI/s-MCI) in comparison to the others, whose representations 

are learned prior to the final classification.

4 Conclusion

In this paper, we introduced a maximum-margin based representation learning (MMRL) 

method using multiple atlases for AD classification. The proposed method adopts multiple 

atlases to obtain different representations for the same subject and learns the optimal 

representation jointly with the classification model based on the maximum-margin criteria. 

The learned representation can efficiently reduce registration errors and is able to aggregate 

complementary information captured from different atlas spaces to improve classification, 

which is more powerful than the representation generated from one single atlas and the 

average representation of multiple atlases previously used in the literature. In addition, the 

joint learning approach in MMRL enables both the learned representation and classifier 

conform to the same classification objective, which is more effective in AD diagnosis than 

independent representation learning methods. Experiments on the ADNI database 

demonstrated significant improvements for both AD/NC classification and p-MCI/s-MCI 

classification.

2http://cvxr.com/cvx

Min et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cvxr.com/cvx


References

1. Ashburner J, Friston KJ. Voxel-based morphometry – the methods. NeuroImage. 2000; 11(6):805–
821. [PubMed: 10860804] 

2. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, Chupin M, Benali H, 
Colliot O. Automatic classification of patients with alzheimer’s disease from structural mri: A 
comparison of ten methods using the adni database. NeuroImage. 2011; 56(2):766–781. [PubMed: 
20542124] 

3. Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classification of alzheimer’s disease/mild 
cognitive impairment. NeuroImage. 2011; 55(3):856–867. [PubMed: 21236349] 

4. Sabuncu MR, Balci SK, Shenton ME, Golland P. Image-driven population analysis through mixture 
modeling. IEEE TMI. 2009; 28(9):1473–1487.

5. Leporé, N.; Brun, CA.; Pennec, X.; Chou, Y-Y.; Lopez, OL.; Aizenstein, HJ.; Becker, JT.; Toga, 
AW.; Thompson, PM. Mean template for tensor-based morphometry using deformation tensors. In: 
Ayache, N.; Ourselin, S.; Maeder, A., editors. MICCAI 2007, Part II. LNCS. Vol. 4792. Springer; 
Heidelberg: 2007. p. 826-833.

6. Leporé, N.; Brun, C.; Chou, YY.; Lee, A.; Barysheva, M.; De Zubicaray, GI.; Meredith, M.; 
Macmahon, K.; Wright, M.; Toga, AW.; Thompson, PM. Multi-atlas tensor-based morphometry 
and its application to a genetic study of 92 twins. In: Metaxas, D.; Axel, L.; Fichtinger, G.; Székely, 
G., editors. LNCS; 2nd Workshop on MFCA, MICCAI; 2008; Springer; 2008. p. 48-55.

7. Koikkalainen J, Lötjönen J, Thurfjell L, Rueckert D, Waldemar G, Soininen H. Multi-template 
tensor-based morphometry: Application to analysis of alzheimer’s disease. NeuroImage. 2011; 
56(3):1134–1144. [PubMed: 21419228] 

8. Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007; 315(5814):
972–976. [PubMed: 17218491] 

9. Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C. Compare: Classification of morphological patterns 
using adaptive regional elements. IEEE Trans Med Imaging. 2007; 26(1):93–105. [PubMed: 
17243588] 

10. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20(3):273–297.

11. He, X.; Cai, D.; Niyogi, P. NIPS. MIT Press; Cambridge: 2006. Laplacian score for feature 
selection; p. 507-514.

12. Bengio Y. Learning deep architectures for ai. Found Trends Mach Learn. 2009; 2(1):1–127.

13. Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Trans PAMI. 2005; 27(8):1226–1238.

14. Rakotomamonjy A, Bach F, Canu S, Grandvalet Y. Simplemkl. Journal of Machine Learning 
Research. Nov.2008 9

Min et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Framework of the proposed method: learning an optimal representation (R*) from the 

representations (R1 ~ RK) generated in multiple atlas spaces (T1 ~ TK)
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