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Abstract
Purpose Traumatic brain injury (TBI) has been proposed as a risk factor for Alzheimer’s disease (AD), although the mecha-
nisms underlying the putative association are poorly understood. We investigated elderly individuals with a remote history 
of TBI, aiming to understand how this may have influenced amyloidosis, neurodegeneration, and clinical expression along 
the AD continuum.
Methods Total of 241 individual datasets including amyloid beta (Aβ) positron emission tomography  ([18F]-AV45), structural 
MRI, and neuropsychological measures, were obtained from the Alzheimer’s Disease Neuroimaging Initiative. The data 
were stratified into groups with (TBI +) or without (TBI −) history of head injury, and by clinical dementia rating (CDR) 
scores, into subgroups with normal cognition (CDR = 0) and those with symptomatic cognitive decline (CDR ≥ 0.5). We 
contrasted the TBI + and TBI − subgroups with respect to the onset age and extent of cognitive decline, cortical thickness 
changes, and Aβ standard uptake value (SUVr).
Results Compared to the TBI −/CDR ≥ 0.5 subgroup, the TBI + /CDR ≥ 0.5 subgroup showed a 3–4 year earlier age of 
cognitive impairment onset (ACIO, p = 0.005). Among those participants on the AD continuum (Aβ + , as defined by a 
cortical SUVr ≥ 1.23), irrespective of current CDR, a TBI + history was associated with greater Aβ deposition and more 
pronounced cortical thinning. When matched for severity of cognitive status, the TBI + /CDR ≥ 0.5 group showed greater 
Aβ burden, but earlier ACIO as compared to the TBI −/CDR ≥ 0.5, suggesting a more indolent clinical AD progression in 
those with TBI history.
Conclusion Remote TBI history may alter the AD onset trajectory, with approximately 4 years earlier ACIO, greater amyloid 
deposition, and cortical thinning.

Keywords Traumatic brain injury · Alzheimer’s disease · Alzheimer’s Disease Neuroimaging Initiative (ADNI) · [18F]-
AV45 PET · Amyloid · Voxel-based morphometry

Introduction

Traumatic brain injury (TBI) is associated with an increased 
likelihood of developing dementia later in life [1, 2]. Cur-
rent thinking holds that a TBI event initiates or favours 
pathological pathways leading to neurodegenerative disor-
ders, including chronic traumatic encephalopathy and Alz-
heimer’s disease (AD) [3, 4]. The term TBI encompasses 
several forms of injury, including concussion, contusion, 
diffuse axonal injury (DAI), or open and closed head injury, 
as may occur during motor vehicle accidents, falls, violent 
assaults, and military combat [5]. Several reviews have sug-
gested that the severity or number of TBI injuries might cor-
relate with the risk for subsequent development of dementia 
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[3, 4, 6]. Furthermore, epidemiology studies have indicated 
an increased prevalence of dementia, or shorter latency 
to its onset, among those who have seemingly recovered 
from a TBI earlier in life. For instance, a study comparing 
178,779 military veterans with history of TBI to an equally 
large cohort of uninjured control veterans revealed that even 
a mild TBI imparted a more than two-fold higher risk of 
dementia diagnosis later in life [7]. Another analysis of over 
1200 TBI survivors and a similar-sized cohort of age- and 
gender-matched elderly people showed a 5 year earlier mean 
age of clinical AD onset in those with a TBI history [8]. 
In previously healthy elderly individuals, a TBI event was 
associated with a 1.5-fold higher risk of developing demen-
tia within the first 5 years following the injury [9], and older 
adults with self-reported TBI history had a 3–4 year earlier 
onset of cognitive impairment compared to a control group 
without any such injury [10]. Furthermore, a study of 2133 
cases with autopsy-confirmed AD showed a mean 2.3 year 
earlier onset of AD among those who had reported a history 
of TBI [11]. On the other hand, some researchers have ques-
tioned the evidence for an association with AD, proposing 
that TBI may be more strongly linked to elevated risk for 
later development of Lewy body disease or parkinsonism 
rather than AD [12–15]. While it is abundantly clear that 
TBI sets the stage for greater vulnerability for neurodegen-
erative diseases later in life, there is a need to understand 
better the pathways supporting this association, if timely 
interventions are to be developed.

According to the National Institute on Aging and Alz-
heimer’s Associations’ updated framework (NIA-AA) pub-
lished in 2018, AD is defined as a continuum characterized 
by biomarkers of aggregated Aβ and tau, neurodegeneration, 
and ultimately by cognitive decline. Among these markers, 
evidence of aggregated Aβ—which can be measured in vivo 
by amyloid positron emission tomography (PET) or in cer-
ebrospinal fluid—defines an individual as being on the AD 
continuum, irrespective of their tau burden, neurodegenera-
tion, or present clinical status [16].

Post-mortem findings have indicated increased rates of 
Aβ positivity in those dying in the early months/years after 
a severe head injury [17] and a greater prevalence of tau 
pathology (and relatively more severe tau and Aβ pathol-
ogy) in long-term survivors of a single TBI event [18, 19]. 
These findings were most striking in subjects aged less than 
60 years, because AD pathology was essentially absent 
in the control population for that age group. Similarly, an 
 [11C]-PiB PET study of Aβ in TBI survivors in early and 
middle adulthood (all ≤ 55 years old) indicated significantly 
elevated standardized uptake value ratio (SUVr) in the corti-
cal grey matter and the striatum [20], while another study 
reported increased  [11C]PiB uptake in the precuneus and 
cerebellum [21]; this latter study found that tracer uptake 
in the posterior cingulate cortex negatively correlated with 

fractional anisotropy in the cingulum bundle, suggesting an 
association between Aβ deposition and neurodegeneration.

While a considerable body of epidemiological evidence 
indicates that TBI imparts increased risk of dementia in later 
life, other biological studies suggest an increased prevalence 
and/or severity of AD-associated pathology in younger, non-
demented TBI survivors. This study aimed to interrogate 
the ADNI database to reveal how a history of TBI modu-
lates neuropathology and clinical dementia expression in 
individuals on the AD continuum. We further examined the 
brain volumetric changes and the age of cognitive impair-
ment onset (ACIO) in relation to TBI history, with correc-
tion for the differing Aβ-positivity rates between the TBI and 
control groups. As such, this study is the first case-controlled 
analysis of the effect of TBI history on the development of 
cognitive and imaging markers of AD.

Materials and methods

Data used in this research were derived from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database. 
ADNI was launched in 2003 as a public–private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. 
Its primary goal was to combine serial MRI, PET, other 
biomarkers, and neuropsychological assessments to charac-
terize the progression of AD. Ethics approval of this study to 
use the de-identified data was obtained through the Human 
Research Ethics Committee at The University of Queens-
land, Australia (IRB number #2017000630).

Study participants

Complete imaging datasets comprising  [18F]-AV45 PET and 
structural T1-weighted MRI from 241 elders were down-
loaded from the ADNI database. Based on self-reported his-
tory of TBI in earlier life, the total cohort included 41 par-
ticipants with TBI and 200 age-matched non-TBI controls. 
The self-reported history of TBI was identified if the person 
had “concussion” and/or “head injury”. We also downloaded 
neuropsychological battery test scores collected by ADNI 
for each participant (http:// adni. loni. usc. edu/). Each partici-
pant had had their APOE genotype ascertained, and positiv-
ity was defined as carrying one or two APOE-ε4 alleles.

Participants were classified into four groups based on 
their self-reported history of TBI and whether they were 
symptomatic (clinical dementia rating (CDR) score ≥ 0.5) 
or asymptomatic (CDR = 0) for present cognitive decline. 
The four groups were (1) participants with self-reported his-
tory of TBI and a CDR ≥ 0.5 (TBI + /CDR ≥ 0.5, n = 19); 
(2) those with a TBI history and CDR = 0 (TBI + /CDR = 0, 
n = 22); (3) participants without history of TBI and a 

http://adni.loni.usc.edu/


Journal of Neurology 

1 3

CDR ≥ 0.5 (TBI −/CDR ≥ 0.5, n = 100); and (4) those with 
no TBI history and CDR = 0 (TBI −/CDR = 0, n = 100) 
(Fig. 1).

To examine the impact of TBI on levels of amyloid bind-
ing (PET) and neurodegeneration (MRI atrophy), analyses 
were undertaken of the subgroup of participants on the AD 
continuum. Our definition of being on the AD continuum 
was having a positive amyloid PET, as defined by a mean 
cortical SUVr > 1.23, this being the threshold recommended 
by ADNI [22]. Amyloid positive scans were also confirmed 
with a visual read of all PET scans by a clinician with expe-
rience in rating amyloid PET (PJN), who was blinded to the 
group classifications. The reason for focusing on the AD 
continuum for these imaging analyses was to isolate the 
effect of TBI on these biomarkers. For instance, if there were 
an increased rate of amyloid positivity in the TBI + com-
pared to TBI – group (as was indeed the case, see below), 
then finding higher average levels of amyloid binding or 
atrophy in the TBI + group could simply be a reflection of 
this group containing more individuals on the AD contin-
uum. We were interested, however, not only in whether TBI 
confers a greater risk of AD, but also in whether it alters 
the pathological expression of AD. Therefore, to address 
that question, we contrasted voxel-wise analyses of amy-
loid binding and cortical atrophy in TBI + and TBI – par-
ticipants who were all on the AD continuum (as defined 
above). These Aβ + subgroups were also stratified into 
symptomatic (CDR > 0.5) and asymptomatic (CDR = 0) as 
follows: TBI + /CDR ≥ 0.5, n = 17; TBI + /CDR = 0, n = 13; 

TBI −/CDR ≥ 0.5, n = 86; TBI −/CDR = 0, n = 39 (Fig. 1). In 
addition, we checked the T2-FLAIR images to identify any 
possible lesion or abnormalities in those with self-reported 
history of TBI, to be included as a confounding factor in our 
analysis if present. This screening revealed that none of the 
TBI + participants had any gross abnormalities in their MRI 
scans, other than atrophy attributable to normal ageing or 
Alzheimer’s neurodegeneration.

The ACIO for CDR ≥ 0.5 participants was defined as 
the age when memory complaints were first reported either 
by the participant or an informant. The time since injury 
was defined as the time interval between the last reported 
TBI and the date of the PET scan; some participants in the 
database reported up to three TBI incidents. Details of the 
demographics and clinical information of the participants 
included in this study are summarized in Table 1 and Fig. 1.

Study design

To assess whether TBI influenced the risk of being amyloid 
positive on PET, we used a Chi-squared test to compare num-
bers of Aβ + and Aβ – cases in the TBI + and TBI – groups. 
Subsequent analyses aiming to examine the effect of TBI his-
tory on Aβ and neurodegeneration then focused only on those 
participants identified as being on the AD continuum by the 
criterion of a positive PET scan (SUVr > 1.23). Finally, to 
explore the effect of TBI in the symptomatic population, we 

Fig. 1  Group stratification. Participants with a history of traumatic 
brain injury (TBI) were classified based on clinical dementia rating 
(CDR) and Aβ-positive PET scans (Aβ +) (where the mean cortical 
uptake scaled to the reference region (SUVr) > 1.23). CDR, clinical 
dementia rating; TBI + , participants with self-reported history of 

TBI; TBI  −, participants without history of TBI; TBI + /CDR = 0, 
TBI + participants with CDR = 0; TBI −/CDR = 0, TBI − participants 
with CDR = 0; TBI + /CDR ≥ 0.5, TBI + participants with CDR ≥ 0.5; 
TBI −/CDR ≥ 0.5, TBI − participants with CDR ≥ 0.5
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compared the TBI + and TBI – subsets who were Aβ + and 
had CDR ≥ 0.5.

Cognitive measures

All participants had completed the following tests and scales 
for assessment of cognition: Everyday Cognition (Ecog); 
Clinical Dementia Rating (CDR); Mini-Mental State Exam 
(MMSE); Montreal Cognitive Assessment (MOCA); Alz-
heimer’s Disease Assessment Scale-Cognitive (ADAS-Cog); 
Geriatric Depression Scale; and Functional Assessment Ques-
tionnaire (FAQ); the Clock Drawing test; Clock Copy test; Rey 
Auditory Verbal Learning test; Category Fluency test; Trial 
Making test; Boston Naming test; and the American National 
Adult Reading Test.

MRI/PET image acquisition

At each imaging site, participants underwent the standard-
ized ADNI MRI protocol. Quality control of the MRI data 
was performed at a designated MRI Centres, and detailed 
descriptions of both protocols are found at http:// adni. loni. 
usc. edu/ metho ds/ docum ents/ mri- proto cols/. Amyloid PET 
images were acquired using the radiotracer Florbetapir 
 ([18F]-AV45). Data acquisition procedures were stand-
ardized across all ADNI sites [23]. In brief, 370 MBq 
(10 mCi; ± 10%)  [18F]-AV45 was administered as an intra-
venous bolus infusion. After a 50 min uptake phase, a 
series of four PET frames of 5 min each was acquired. 
After decay and attenuation correction, each frame was 

Table 1  Demographics of the participants in the four different groups

TBI +  participants with self-reported traumatic brain injury, TBI  − participants without self-reported traumatic brain injury, CDR Clinical 
Dementia Rating scale, TBI + /CDR = 0 TBI + participants with CDR = 0, TBI −/CDR = 0 TBI − participants with CDR = 0, TBI + /CDR ≥ 0.5 
TBI + participants with CDR ≥ 0.5, TBI  −/CDR ≥ 0.5 TBI  − participants with CDR ≥ 0.5, MMSE Mini-Mental State Exam, MOCA Montreal 
Cognitive Assessment, ADAS Alzheimer’s Disease Assessment Scale

TBI −/CDR ≥ 0.5 TBI −/CDR = 0 TBI +/CDR ≥ 0.5 TBI +/CDR = 0 p overall

Number of participants n = 100 n = 100 n = 19 n = 22
Age (SD) in years 73.6 (7.8) 70.9 (5.8) 73.5 (8.9) 74.1 (8.1) 0.035
Gender: female/male 48/52 50/50 5/14 9/13 0.265
Handedness: right/left 91/9 89/11 18/1 21/1 0.846
Education (SD) in years 15.8 (2.7) 16.7 (2.4) 15.9 (2.5) 17.6 (2.4) 0.004
APOE-ε4 status (−/+) 64/36 31/69 11/8 9/13 < 0.001
Aβ positivity < 0.001
 Aβ negative 14 (14%) 61 (61%) 2 (11%) 9 (41%)
 Aβ positive 86 (86%) 39 (39%) 17 (90%) 13 (59%)

Loss of consciousness (yes/no) 7/12 10/12 0.81
TBI description: 0.848
Concussion 11 (58%) 11 (50%)
Head injury 8 (42%) 11 (50%)
Number of TBI events (SD) 1.26 (0.56) 1.27 (0.55) 0.956
 Once 15 17
 Twice 3 3
 Three times 1 2

Years Since TBI (SD) 31.1 (22.5) 38.6 (26.5) 0.956
Cerebral cortex SUVr 1.49 (0.14) 1.22 (0.14) 1.59 (0.31) 1.36 (0.23) < 0.001
Age of cognitive impairment onset (years) 70 (2.8) 66.3 (3.6) 0.005
MOCA 19.0 (4.2) 23.3 (2.5) 20.2 (4.2) 23.5 (2.9) < 0.001
MMSE 23.0 (2.4) 29.0 (1.2) 25.2 (2.7) 28.6 (1.3) < 0.001
ADAS Total 21.2 (7.5) 5.2 (3.1) 18.5 (9.7) 5.6 (3.1) < 0.001
ADAS-Cog 31.5 (9.1) 8.2 (4.5) 27.3 (12.4) 8.7 (5.2) < 0.001

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
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iteratively reconstructed in 3D with a matrix = 128 × 128, 
FOV = 256 × 256 mm, and slice thickness = 3.27 mm, and 
converted to standard uptake values (SUV) before averag-
ing to a single frame.

Data pre‑processing

Study‑specific template generation

A study-specific template was generated from all individual 
T1 images using Statistical Parametric Mapping (SPM12, 
www. fil. ion. ucl. ac. uk/ spm) and used to normalise the PET 
images to a common standard space as described in [24]. 
The individual T1-weighted MRI images were segmented 
into grey matter, white matter, and cerebrospinal fluid 
based on a priori anatomical templates. The segmented 
T1-weighted MRI images were then resampled to 1.5 mm 
isotropic resolution. The SPM-DARTEL pipeline [25] was 
run for six iterations to produce the study-specific template, 
the normalisation of individual T1 images into the study-
specific common space, and the warp field deformation 
maps of the T1 images, to be used later for normalization 
of the PET data into the common space. The cerebellum 
grey-matter mask was then defined based on the study-spe-
cific template and the inverse T1-to-study-specific-template 
transformations, which were used to resample the standard 
cerebellum mask to the individuals’ native space.

Pre‑processing of the  [18F]‑AV45 PET data

The  [18F]-AV45 PET images in DICOM format were pre-
processed by the ADNI team as described in http:// adni. loni. 
usc. edu/ metho ds/ pet- analy sis- method/ pet- analy sis/. We used 
the SUV maps smoothed at 8 mm isotropic resolution down-
loaded from ADNI. We linearly co-registered the SUV maps 
to the corresponding native-space T1-weighted MRI image 
of each participant to generate the co-registered SUV maps. 
To generate the SUVr maps, each individual’s SUV map 
was scaled to the mean activity in the cerebellar grey matter, 
which served as the reference region. The individual brain 
grey-matter SUVr map was generated using a mask created 
from the grey-matter segment of the T1-weighted image. 
These grey-matter SUVr maps were normalised to the struc-
tural study-specific template using the warp field deforma-
tion maps generated for the T1-to-study-specific-template 
normalization (non-linear registration) using DARTEL.

Cortical thickness pre‑processing

The T1-weighted MR images were skull-stripped prior to 
pial surface and grey-white matter interface reconstruction 
using Freesurfer (FS v6.0.0, http:// surfer. nmr. mgh. harva 
rd. edu). Errors in pial surface delineation were corrected 

manually [26]. The main structures affected by this pro-
cedure were the lateral occipital cortex, inferior temporal 
gyrus, pre- and post-central gyri, and occipito-temporal 
gyrus. Following this manual correction of the segmenta-
tion, the reconstruction was repeated for improved accuracy. 
The cortical thickness was calculated from the intensity 
and continuity information of the generated surfaces. The 
reconstructed maps were smoothed using a 20-mm FWHM 
Gaussian kernel [26].

Statistical analysis

Analysis of neuropsychological measures

To assess for differences between the subgroups in the dif-
ferent neuropsychological measures, we used one-way analy-
sis of variance (ANOVA) followed by post hoc Wilcoxon 
signed-rank tests to compare continuous data, and by Chi-
Squared tests to compare categorical data. Analyses were 
performed with R (version 3.3.1; R Foundation for Statisti-
cal Computing, Vienna, Austria), with Bonferroni correc-
tion (p ≤ 0.05) for multiple comparisons. Descriptive data 
are presented as mean and standard deviation throughout 
the article, unless indicated otherwise.

The effect of TBI on amyloid burden 
and neurodegeneration

Comparison between the TBI + and TBI − groups in the num‑
ber of Aβ + scans A chi-squared test was performed to com-
pare the numbers of Aβ + and Aβ − cases in the TBI + and 
TBI  − groups, using the positivity threshold SUVr > 1.23 
[22].

Voxel‑based analysis of  amyloid PET data To examine the 
effect of TBI on amyloid burden in those participants on 
the AD continuum (i.e. with Aβ + scans), we performed a 
voxel-based analysis of mean SUVr maps in the TBI + and 
TBI − groups, irrespective of their CDR scores. The voxel-
based analysis was conducted using the general linear model 
(GLM) with a permutation test of 5000 iterations using the 
program FSL-randomise, and corrected for multiple com-
parisons using family wise error correction (p ≤ 0.05). We 
also performed an ANOVA analysis of the mean cortical 
SUVr values to identify group differences in the Aβ burden, 
with Bonferroni correction (p ≤ 0.05). The gender, educa-
tion level, age, and APOE-ε4 status were considered as nui-
sance factors in this analysis.

Analysis of cortical thickness To assess the impact of TBI 
on neurodegeneration for those on the AD continuum, 
group differences in cortical thickness were assessed by 
contrasting Aβ + /TBI + to Aβ + /TBI − groups, irrespec-

http://www.fil.ion.ucl.ac.uk/spm
http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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tive of individual CDR scores. This was achieved by enter-
ing the smoothed deformation grey-matter cortical maps 
into the GLM, with TBI + versus TBI − as the contrast, 
and running the “mri_glmfit” function in Freesurfer. The 
cortical thickness analysis was corrected for age, gender, 
education level, and APOE-ε4 status as nuisance covari-
ates, and the resultant statistical maps were corrected for 
multiple comparisons using false discovery rate (p ≤ 0.05).

The effect of TBI in the cognitively symptomatic AD 
population

To test the effect of TBI on Aβ deposition, the 17 partici-
pants with Aβ + scans in the TBI −/CDR ≥ 0.5 group were 
randomly matched to other subjects with Aβ + scans in 
the TBI + /CDR ≥ 0.5 group. The groups were matched for 
MMSE score, gender, education level, age, and APOE-ε4 
status. We then ran an ANOVA to identify group differ-
ences in the total cortical SUVr values (considered as a 
single ROI) and the ACIO. To ensure that MMSE was a 
valid index of dementia severity, a similar second analysis 
in which the groups were matched for ADAS-Cog scores 
was also performed. Lastly, we undertook an analysis of 
the effect of TBI history on cognitive status in groups 
matched for the cortical  [18F]-AV45 SUVr (considered as 
a single ROI), gender, education level, age, and APOE-ε4 
status. For this, 17 participants with Aβ + scans in the 
TBI −/CDR ≥ 0.5 group were randomly matched to the 17 
Aβ + scans in the TBI + /CDR ≥ 0.5 group, and differences 
in MMSE scores and ACIO were tested for significance, 
with Bonferroni corrected (p ≤ 0.05).

Results

Demographics and clinical characteristics 
of the complete cohort

The group demographics and clinical characteristics are 
shown in Table 1. A higher percentage of Aβ + cases was 
observed in the TBI + /CDR = 0 group (59%; 13/22) than 
in the TBI −/CDR = 0 group (39%; 39/100) (chi-squared: 
p ≤ 0.001) (Table 1). The mean SUVr values of the entire 
cortex as a single ROI showed significantly higher amy-
loid deposition in the TBI + /CDR = 0 group compared to 
the TBI −/CDR = 0 group (p = 0.015) (Fig. 2). We also 
found that the mean ACIO was about 4 years earlier in 
the TBI + /CDR ≥ 0.5 group than in the TBI −/CDR ≥ 0.5 
group (p = 0.005, Table 1).

The effect of TBI on amyloid burden 
and neurodegeneration in participants on the AD 
continuum

Focusing on Aβ + cases participants with and without his-
tory of TBI, there was no significant difference in the pro-
portion of symptomatic subjects between groups (p > 0.05). 
TBI + participants did not show greater cognitive impair-
ment compared to the TBI − group (Table 2). In the symp-
tomatic cases (i.e. CDR ≥ 0.5), those with TBI + showed ear-
lier ACIOas compared to TBI − groups (64.8 ± 2.34 years 
vs. 68.5 ± 2.36 years, p ≤ 0.001; Fig. 3A).

Figure 3B, C depicts the effect of TBI history on Aβ dep-
osition and cortical thickness among the Aβ + cases. The 
results showed that TBI was associated with significantly 
higher Aβ deposition—reflected by higher  [18F]-AV45 
SUVr—in the bilateral medial frontal cortex (dorsal and 
ventral), precuneus, anterior and posterior cingulate cor-
tex, cuneus, lingual gyrus, fusiform gyrus, supramarginal 
gyrus, posterior part of the superior temporal gyrus, tempo-
ral pole, orbitofrontal gyrus, inferior frontal gyrus, cerebel-
lum, and right superior frontal gyrus, as compared to those 
Aβ + cases without a history of TBI (i.e., TBI − groups) 
(p ≤ 0.01; Fig. 3B).

In addition, compared to the TBI  − group, corti-
cal thickness was reduced in the TBI + group in several 
cerebral cortical regions, including the bilateral middle 
frontal gyrus, orbitofrontal gyrus, supramarginal gyrus, 
superior parietal lobule, precuneus, posterior cingulate 

Fig. 2  Differences in cortical Aβ deposition between TBI + and 
TBI  − participants. The mean cerebral cortical  [18F]-AV45 SUVr, 
compared between all four groups showed that the CDR ≥ 0.5 groups 
exhibited significantly higher Aβ deposition compared to the CDR = 0 
groups, irrespective of TBI history, and that the TBI + /CDR = 0 
group showed significantly higher mean  [18F]-AV45 SUVr when 
compared to the TBI −/CDR = 0 group. **p ≤ 0.01; ***p ≤ 0.001
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cortex, angular gyrus, middle temporal gyrus, inferior 
temporal gyrus, hippocampus, and visual cortex (cuneus, 
lingual gyrus, fusiform gyrus, superior, middle, and infe-
rior occipital cortex), and left medial frontal gyrus (dorsal 
and ventral), anterior cingulate cortex, and superior fron-
tal gyrus (p ≤ 0.05; Fig. 3C).

The effect of TBI in the Aβ + , symptomatic 
population

In the symptomatic (CDR ≥ 0.5) Aβ + groups, when 
TBI − and TBI + subgroups were matched for MMSE 
scores, we found significantly higher Aβ deposition 

Table 2  Cognitive performance 
in Aβ + groups

TBI + participants with self-reported traumatic brain injury, TBI  − participants without self-reported 
traumatic brain injury, CDR Clinical Dementia Rating, TBI + /CDR = 0 TBI + participants with CDR = 0, 
TBI  −/CDR = 0 TBI  − participants with CDR = 0, TBI + /CDR ≥ 0.5 TBI + participants with CDR ≥ 0.5, 
TBI −/CDR ≥ 0.5 TBI − participants with CDR ≥ 0.5, MMSE Mini-Mental State Exam, GDtotal Geriatric 
Depression Scale, FAQ Functional Assessment Questionnaire, MOCA Montreal Cognitive Assessment

TBI − TBI + p value

Age at cognitive impairment onset 68.5 (2.36) 64.8 (2.34) < 0.001
Number of subjects (CDR ≥ 0.05/CDR = 0) 86/39 17/13
Gender (Female/Male) 66/59 9/21 0.025
Age 72.74 (7.37) 74.55 (7.18) 0.21
Loss of consciousness (Yes/NO) 15/15
Number of TBI injuries
 Once 24
 Twice 5
 Three times 1

Education (years) 15.80 (2.62) 16.40 (2.67) 0.26
ADAS 16.8 (9.91) 13.06 (9.59) 0.06
ADAS-Cog 24.88 (13.58) 19.27 (13.05) 0.04
CDR 0.61 (0.45) 0.5 (0.44) 0.20
MOCA 20.02 (4.37) 21.15 (3.74) 0.18
MMSE 24.78 (3.42) 26.67 (2.7) 0.004
FAQ 9.53 (8.32) 7.22 (8.71) 0.17
GD Total 1.35 (1.42) 1.45 (1.43) 0.74
Every day cognitive test
 Memory 2.99 (0.89) 2.56 (0.92) 0.02
 Language 2.34 (0.83) 2.29 (0.87) 0.77
 Plan 2.25 (0.96) 2.07 (0.94) 0.33
 Organization 2.47 (0.95) 2.1 (0.94) 0.05
 Divided attention 2.68 (1.01) 2.42 (0.98) 0.21
 Visuospatial 2.12 (0.93) 1.85 (0.8) 0.14
 Total score 2.48 (0.82) 2.22 (0.83) 0.12

Neuropsychological battery tests
 Clock copy test 4.53 (0.83) 4.67 (0.94) 0.43
 Clock drawing test 3.7 (1.38) 4 (1.21) 0.26

Logic memory
 Delayed recall 5.22 (6.1) 8.45 (6.01) 0.01
 Story units 7.2 (5.53) 10 (5.55) 0.01

Rey auditory verbal learning test
 Recognition scale 8.48 (4.64) 10.42 (4.21) 0.03
 Number of errors 2.07 (2.14) 1.82 (2.11) 0.55

Category fluency test 14.86 (6.19) 16.91 (6.42) 0.10
Boston naming test 24.11 (5.72) 26.39 (3.81) 0.03
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(p = 0.05), and again a 3–4 year earlier ACIO (p ≤ 0.001) 
in the TBI + subgroup (Table 3, top). When the analy-
ses were repeated matching for ADAS-Cog scores, the 
TBI + group likewise showed increased in amyloid depo-
sition (p = 0.05) and earlier AOCI (p = 0.04) (Table 3, 
middle). Finally, when the TBI − and TBI + groups were 
matched for total cortical SUVr, the TBI + subgroup 

showed earlier ACIO as compared to the TBI − subgroup 
(p ≤ 0.001), but no significant difference in MMSE scores 
(p > 0.05; Table 3, bottom).

Fig. 3  Differences in age of onset, Aβ deposition and cortical thick-
ness between participants on the AD continuum (Aβ +) with and 
without self-reported TBI history, irrespective of present CDR status. 
Part A shows a 3–4-year earlier age of cognitive impairment onset in 
the TBI + /CDR ≥ 0.5 group compared to the TBI −/CDR ≥ 0.5 group. 

Considering all Aβ + participants irrespective of CDR status, the 
TBI + group showed greater deposition of Aβ (B) and reduced corti-
cal thickness (C) compared to the TBI − group (analyses corrected 
for nuisance covariates: age, gender, education, and APOE-ε4 status). 
***p ≤ 0.001

Table 3  Investigation of the 
TBI effect on Aβ deposition 
and age at the onset of cognitive 
impairment after matching for 
MMSE, ADAS-Cog, or Aβ 
levels (in Aβ + cases)

TBI +  participants with self-reported traumatic brain injury, TBI − participants without self-reported trau-
matic brain injury, CDR Clinical Dementia Rating, TBI + /CDR ≥ 0.5 participants with CDR ≥ 0.5 with a 
history of TBI, TBI −/CDR ≥ 0.5 participants with CDR ≥ 0.5 without a history of TBI, MMSE Mini-Men-
tal State Exam, ADAS-Cog Alzheimer’s disease Assessment Scale-Cognitive

TBI −/CDR ≥ 0.5 TBI +/CDR ≥ 0.5 p overall

MMSE matched
 Number of participants 17 17
 MMSE 23.8 (1.47) 23.8 (1.47) 1
 Age 73.6 (3.89) 73.9 (7.15) 0.45
 Cortical SUVr 1.51 (0.24) 1.65 (0.27) 0.05
 Age at cognitive impairment onset 68.8 (3.89) 64.8 (2.34) < 0.001

ADAS-Cog matched
 Number of participants 17 17
 ADAS-Cog 28.9 (11.75) 28.9 (12.12) 0.28
 MMSE 23.4 (2.62) 23.8 (1.47) 0.28
 Age 73.3 (2.06) 73.9 (7.15) 0.4
 Cortical SUVr 1.51 (0.14) 1.65 (0.27) 0.05
 Age at cognitive impairment onset 67.0 (4.58) 64.8 (2.34) 0.04

Cortical SUVr matched
 Number of participants 17 17
 MMSE 23.2 (2.77) 23.8 (1.47) 0.8
 Age 73.3 (2.06) 73.9 (7.15) 0.4
 Cortical SUVr 1.6 (0.21) 1.65 (0.27) 0.49
 Age at cognitive impairment onset 68.4 (2.06) 64.8 (2.34) < 0.001
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Discussion

This is the first study to investigate the association between 
self-reported history of TBI earlier in life and the age at 
first reported onset of cognitive deficits, present amy-
loid burden, and cortical thickness (a neurodegeneration 
marker) in a population on the AD continuum, as identi-
fied by their Aβ + PET scans. These cross-sectional results 
constitute preliminary but compelling evidence that TBI 
favours the cerebral accumulation of Aβ in later life within 
the continuum of AD progression as reflected by the Aβ 
positivity, in conjunction with earlier ACIO and more sig-
nificant cortical thickness loss. The results, furthermore, 
revealed that the group with a past history of TBI had a 
higher proportion of Aβ + scans, when using the recom-
mended cut-off for positivity to  [18F]-AV45 SUVr [22].

TBI has been associated with short-term cognitive 
impairment, including transient amnestic memory impair-
ment, confusion, and disorientation [27], while long-term 
cognitive impairment is reported in up to 65% of survivors 
of moderate-to-severe TBI [28, 29]. Having a history of 
TBI has been linked to the risk for several forms of demen-
tia, including AD [3, 4, 6–10], chronic traumatic encepha-
lopathy [30–32], and Lewy body disease or parkinson-
ism [12–15]. These associations between TBI and later 
development of dementia may possibly reflect a reduced 
capacity of the brain to resist or compensate for an ongo-
ing pathology following TBI, thus leading to a lack of cog-
nitive reserve. Alternately, the association could be further 
modulated through intervening factors such as post-
traumatic stress disorder [33]. In the current study, self-
reported history of TBI predicted fast-forwarding of the 
onset of cognitive impairment by about 4 years in TBI + /
CD ≥ 0.5 subgroup as compared to the TBI −/CD ≥ 0.5 
subgroup. This finding is consistent with past studies that 
reported a 2–4 year earlier onset of cognitive impairment 
in survivors of TBI [8, 10, 11]. Prospective investigations 
with large cohorts shall be required to substantiate the 
causality of TBI history on the risk of developing AD, as 
distinct from other neurodegenerative diseases. Let us sup-
pose that the increased dementia risk after TBI is mediated 
through a reduction in cognitive reserve. This might then 
bring forward the age of symptom onset for those who 
were destined in any case to develop the disease, which 
would potentially resolve the conflicting results in certain 
past studies [12–15]. For instance, because AD is usually 
a disease of the aged, its prevalence is partially censored 
by deaths from other causes. Therefore, reducing even 
slightly the age of onset could create the appearance that 
TBI is a cause of excess AD cases. Careful accounting for 
age of onset in future studies may potentially reconcile 
past conflicting results. Furthermore, the hypothesis of 

loss of cognitive reserve hypothesis might help to explain 
the increased risk of TBI survivors for other degenerative 
diseases [12–15].

A key aim of the present study was specifically to exam-
ine the impact of TBI history on amyloid deposition, as 
opposed to dementia in general. In addition to revealing an 
earlier ACIO, present results also showed that those with a 
self-reported TBI history had relatively greater Aβ deposi-
tion, as depicted by the higher percentage of Aβ + cases in 
the non-demented TBI + /CDR = 0 subgroup as compared 
to the TBI −/CDR = 0 subgroup. Moreover, within those 
apparently following the AD continuum (i.e. Aβ + cases), 
our voxel-based PET analysis showed that self-reported 
history of TBI was associated with greater Aβ burden in 
widespread cortical regions matching the spatial profile 
of AD amyloid pathology [21, 34]. This spatial overlap is 
consistent with a model in which a TBI predisposed indi-
viduals to amyloid deposition in the context of their later 
transition to AD pathology; however, as the data are cross-
sectional, we can make no claims regarding causality or time 
course. There could, for instance, have been an acute, step-
wise increase of amyloid that persisted long after the TBI, 
to which the amyloidosis of AD was later added. Previous 
studies showed increased density of Aβ plaques in surgically 
resected tissue surrounding contusions in brain of acute TBI 
survivors and in post-mortem examinations of recent TBI 
victims [17–19, 33, 35–39]. Moreover, PET investigations 
of living TBI survivors have shown increased Aβ deposition 
in cortical regions overlapping with those typically involved 
in AD [20, 40, 41], but also including AD-atypical regions 
such as the cerebellum [21, 39]. This might suggest that TBI 
is an independent causative factor in Aβ deposition, which, 
by extension, may potentially influence the trajectory of AD 
progression through its spatial overlap with AD pathology. 
However, in a post-mortem examination of brains from TBI 
survivors obtained more than 3 years following their injury, 
Aβ plaques were evident in only one-third of the cases [36], 
suggesting the possibility that plaque accumulation occurs 
only in select predisposed individuals. This speculation 
could again be accommodated within a hypothesis that TBI 
brings forward the age of symptom onset, but only in those 
predisposed to develop AD.

In addition to the observed exacerbation of Aβ burden, 
we found that history of TBI was associated with reduction 
of cortical thickness in several regions, including mesial 
temporal lobe and posterior cingulate cortex. Earlier inves-
tigations likewise revealed that past TBI history was sig-
nificantly associated with atrophy following a similar dis-
tribution to the present findings [42–45]. However, as with 
the amyloid PET findings, the present cross-sectional design 
cannot establish the time course of the progression of corti-
cal thinning in the aftermath of TBI. Interestingly, although 
the MRI data suggested worse neurodegeneration in TBI 



 Journal of Neurology

1 3

survivors, there was no evidence of worse cognitive impair-
ment in this group. Indeed, in the analysis of those on the 
AD continuum, the TBI + group were slightly less impaired 
(Table 2). Likewise, in the final analysis that focused on 
those with symptomatic AD, although the TBI + subgroup 
had an earlier age of symptom onset, they were matched both 
for age and dementia severity (as defined by MMSE and also 
verified using ADAS-Cog). In other words, despite a 4-year 
longer symptom duration, they did not show worse cogni-
tive impairment, suggesting that TBI survivors with symp-
tomatic AD have had a more indolent disease course. Again, 
invoking the cognitive reserve hypothesis, we suppose that 
acquired loss of reserve might be the driver for the earlier 
onset of ADS seen in the TBI group. Furthermore, gender 
differences in the composition of the two groups might con-
tribute to this observation. Future studies of longitudinal 
design shall be required to identify the possible causes of 
the seemingly lesser cognitive impairment in TBI + group.

Chief among the limitations of this study is the small 
number of participants with TBI history (see Table 1). The 
retrospective nature of TBI reporting is also a major limita-
tion—a prospective study design would better enable assess-
ment of the critically important issues of nature and severity 
of the TBI and possible effects of comorbidities. A future 
prospective study recruiting from populations providing 
detailed information on the nature and severity of their TBI 
would help to elucidate the complex relationship between 
TBI, cerebral amyloid burden, and brain atrophy later in life.

Conclusion

In this retrospective, cross-sectional study, a self-reported 
history of TBI was associated with increased rate of amyloid 
positivity, increased Aβ deposition and greater cortical thin-
ning among those on the AD continuum, along with earlier 
ACIO, suggesting that TBI may alter the trajectory of AD 
development.
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