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Abstract—This paper investigates the use of semi-supervised
learning (SSL) for predicting Alzheimers Disease (AD) conver-
sion in Mild Cognitive Impairment (MCI) patients based on
Magnetic Resonance Imaging (MRI). SSL methods differ from
standard supervised learning methods in that they make use of
unlabeled data - in this case data from MCI subjects whose
final diagnosis is not yet known. We compare two widely used
semi-supervised methods (low density separation (LDS) and semi-
supervised discriminant analysis (SDA)) to the corresponding
supervised methods using real and synthetic MRI data of MCI
subjects. With simulated data, using SSL instead of supervised
learning led to higher classification performance in certain cases,
however, the applicability of semi-supervised methods depended
strongly on the data distributions. With real MRI data, the SSL
methods achieved significantly better classification performances
over supervised methods. Moreover, even using a small number
of unlabeled samples improved the AD conversion predictions.

I. INTRODUCTION

Mild Cognitive Impairment (MCI) is a transitional stage
between age-related cognitive decline and Alzheimers disease
(AD). For the effective treatment of AD, it would be important
to identify MCI patients with the high risk for conversion to
AD. Neuroimaging data is considered to be important for the
task because the progression of the AD pathology within the
brain starts many years before clinical symptoms and various
machine learning algorithms have been applied to construct
neuroimaging biomarkers to predict MCI-to-AD conversion at
an individual level, e.g., [1], [2]. However, the success of these
methods has been limited so far, with a possible exception
of the short-term conversion prediction [1]. One reason for
this is probably the limited number of labeled data available:
collecting data labels is challenging, since at the time of
imaging it is not known whether an MCI subject will develop
AD or not and subjects have to be followed-up for several
years after the imaging to obtain a reliable clinical diagnosis.

Semi-supervised learning (SSL) is halfway between super-
vised and unsupervised learning [3]. In addition to labeled data
(data from MCI subjects who have been followed up and it
is known if they will convert to AD or not), SSL methods
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make use of unlabeled data (data from MCI subjects for whom
reliable future diagnosis cannot be established). While in typi-
cal SSL applications in machine learning (speech recognition,
text classification, etc.) the number of available unlabeled
data is expected to be huge, in our case the number of both
unlabeled and labeled data is relatively small. Therefore, it
is important to study when the semi-supervised learning is
useful, i.e., when unlabeled data can improve the classification
accuracy and what the potential bottlenecks of SSL methods
are. The few SSL applications [4], [5], [6] to MRI-based
MCI-to-AD conversion prediction have used a data from AD
subjects and normal controls as the labeled data and tried to
classify the MCI subjects into two groups (progressive and
stable MCI; pMCI and sMCI). The success of these methods
has been limited, the best performing method reached area
under the ROC curve (AUC) of 0.73 for a short-term (15-
month) conversion prediction [5], but, on the other hand, the
use of unlabeled data has improved the predictions. We here
set to investigate a slightly different problem, where MRIs
from pMCI and sMCI subjects for whom a reliable diagnosis
is available are used as labeled data. Unlabeled data are MRIs
of the MCI subjects who have not been followed up for long
enough (at least 3 year follow-up is expected here) or for
who a reliable diagnosis cannot be assigned. We study semi-
supervised learning methods for the early (up to 3 years before
clinical diagnosis) detection of the MCI-to-AD conversion and
compare them to relevant supervised methods with data from
ADNI cohort and simulated data reminiscent of the ADNI data.
We will vary the number of labeled and unlabeled data to
establish bounds for the usefulness of the use of unlabeled
data. With simulated data, we will also address the feature
selection combined with semi-supervised learning.

II. MATERIALS AND METHODS

A. ADNI data

Data used in this work is obtained from the Alzheimers
Disease Neuroimaging Initiative (ADNI) database http://adni.
loni.usc.edu/. The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a 60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to mea-
sure the progression of MCI and early AD. Determination of978-1-4799-4149-0/14/$31.00 c©2014 IEEE



sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. ADNI is the result of efforts
of many co-investigators from a broad range of academic
institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. For
up-to-date information, see www.adni-info.org.

We use MRIs from 404 MCI subjects, 200 AD subjects,
and 231 normal controls for whom baseline MRI data (T1-
weighted MP-RAGE sequence at 1.5 Tesla, typically 256 x
256 x 170 voxels with the voxel size of 1 mm x 1 mm x 1.2
mm) were available. The data from AD subjects and normal
controls were only used for generating simulated data and to
aid the feature selection with the classification of MCI subjects
into pMCI and sMCI classes. For the diagnostic classification
at baseline, 404 MCI subjects were grouped as (i) sMCI (stable
MCI), if diagnosis was MCI at all available time points, but at
least for 36 months (n = 115); (ii) pMCI (progressive MCI),
if diagnosis was MCI at baseline but conversion to AD was
reported after baseline within 1, 2 or 3 years, and without
reversion to MCI or NC at any available follow-up (n = 151);
(iii) uMCI (unknown MCI), if diagnosis was MCI at baseline
but they are not diagnosed at the end of the project (n = 138).
The MRIs were preprocessed into gray matter tissue images in
the stereotactic space as described in [1], smoothed with 8-mm
FWHM Gaussian kernel, resampled to 4 mm spatial resolution
and masked into 29852 voxels.

B. Feature selection

Due to the high dimensionality of the data (29852 fea-
tures/voxels), the feature selection is performed before ma-
chine learning analysis of the data. Because MCI is a trans-
lational stage between age-related cognitive decline and AD,
we assume that the voxels that are discriminative between AD
subjects and normal controls are also discriminative between
pMCI and sMCI subjects. Thus, we performed the feature
selection using the data from AD subjects and normal controls
(without using any data from MCI subjects). The subset of
voxels best separating AD subjects from controls was identified
using elastic net regularized logistic regression (based on a
combination of L1 (LASSO) and L2 (Ridge) regularizer) [7].
This is an embedded feature selection method that is widely
applied in neuroimaging. We selected the parameter values for
the regularized logistic regression using a parametric Bayesian
estimate of the classification error [8], [9].

C. Simulated data generation

We generate simulated MRI data separately for both groups
(pMCI and sMCI). First, a subset of voxels discriminating AD
and healthy subjects were identified within MRI data by using
sparse logistic regression (based on L1 (LASSO) regularizer)
[7]. The analysis identified 158 voxels spread across the whole
brain with the largest number of voxels in hippocampi and
temporal and frontal cortices, matching well to previously
observed atrophy patterns in AD. These voxels are simulated
to be discriminative between pMCI and sMCI classes. Data
generation process consists of the following steps:
1) We divide the ADNI data from MCI subjects randomly into
two subsets in order to simulate training and testing datasets

separately and to model the natural variation in the data. Data
from 76 pMCI (Dp

train) and 58 sMCI (Ds
train), 75 pMCI

(Dp
test) and 57 sMCI (Ds

test) subjects were used for generating
simulated training and testing datasets.
2) For 158 discriminative voxels v ∈ VD, the mean µv(G) and
variance σ2

v(G) of GM image values are computed separately
for each group G = Ds

test, D
s
train, D

p
test, D

p
train. For the non-

discriminative voxels v ∈ VN , µv(G) and σ2
v(G) are computed

by pooling the data from two classes into Dtest = Ds
test ∪

Dp
test and Dtrain = Ds

train ∪ D
p
train, i.e., for these voxels

µv(D
s
test) = µv(D

p
test) and µv(D

s
train) = µv(D

p
train). A

simulated image representing a group G is created by, for each
voxel, drawing a random number from Gaussian distribution
with mean µv(G) and the variance σ2

0σ
2
v(G), where σ2

0 is
parameter to be varied.
3) Finally, the data is spatially smoothed by using the 3-D
Gaussian filter with 5 mm isotropic FWHM to introduce a
spatial dependence between the voxel values.

D. Learning algorithms

We selected to study two widely used, fairly recent SSL
algorithms: low density separation (LDS) [10] and semi-
supervised discriminant analysis (SDA)[11]. We combined
SDA with 10 nearest neighbors method to perform the classifi-
cations as recommended in [11]. We next give a brief overview
of the LDS and SDA algorithms and refer to [10], [11] for
details. LDS is a two step algorithm, which first derives a
graph-distance kernel for enhancing the cluster separability and
then it applies transductive support vector machine (TSVM)
[12] for classifier learning. Note that SSL methods applied
to MCI-to-AD conversion prediction include TSVM [6] and
Laplacian SVM [5]. LDS can be seen as an improved version
of TSVM and related to Laplacian SVM. SDA is a SSL
dimensionality reduction method that seeks to build a linear
projection respecting the discriminant structure from labeled
samples, such as in linear discriminant analysis (LDA), as
well as the intrinsic geometric structure from both labeled
and unlabeled samples. The LDA is a traditional supervised
dimensionality reduction that achieves the projection vector
by simultaneously maximizing the between class separability
and minimizing the within-class separability of the labeled
samples. However, in the case of scarce labeled samples over-
fitting may occur leading to inaccurate projection direction.
A common way to prevent overfitting is adding a regularizer.
When a set of unlabeled samples is available, SDA incorpo-
rates the information from unlabeled samples via a graph based
regularization into the LDA objective function.

The support vector machine (SVM) with a RBF kernel
as implemented in [13] and regularized LDA [14] were used
as supervised methods in comparisons. The RBF kernel was
selected instead of the linear one because its use led to
better results in the preliminary testing. Even with the feature
selection, data dimensionality here exceeds the number of
samples and we used the regularized version of LDA with
Tikhonov regularizer as described in [11], [14]. The parameters
for all learning algorithms are selected via cross-validation
within the training set in the case of experiments with real data.
In the case of experiments with simulated data, the parameters
are selected in a separate validation dataset (simulated with the
parameters of training set) of a relatively large size to ensure
good parameter values.



III. EXPERIMENTS AND RESULTS

A. Simulated data

We generated different datasets based on ADNI MRI data
as described in Sect. II.C. Since the SSL methods studied here
are based on the cluster assumption, we investigated the effect
of the number of unlabeled data in different data sets with
different variance of the data. (The cluster assumption states
that if the feature vectors are in the same cluster, they probably
have the same label. This assumption clearly breaks down
with higher variances.) We generated datasets with different
σ0 for this purpose. We generated 200 labeled samples (100
per class) with different number of unlabeled samples Nu
ranging from 100 to 2000. We note that having Nu as large as
2000 may appear unrealistic, however, we wished to test the
methods also in the case of large unlabeled dataset. We used
the AUC as the performance criterion [15]. Each experiment
was repeated 10 times (with a different, randomly generated
simulated dataset) and we report the average AUCs across
these 10 repetitions. We performed two types of experiments
to address the importance of feature selection. 1) We used the
knowledge of the simulated discriminative voxels and fed only
the data from these 158 voxels to learning algorithms. 2) We
performed the feature selection in simulated training data using
elastic net regularized logistic regression as described in Sect.
II.B.

The AUCs in Tables 1 and 2 indicate that the data vari-
ance was a major factor in semi-supervised learning when
considering SVM-based schemes (SVM and LDS). When the
data variance was not too high, adding unlabeled data im-
proved the classification performance with LDS. However, in
datasets with higher deviations adding unlabeled data degraded
the performance of the classifier as the cluster assumption
broke down. When the variance was high (σ0 = 1.5), su-
pervised method (SVM) outperformed the semi-supervised
method (LDS) and adding more unlabeled data degraded
the classification performance with LDS. The data variance
was not a factor between SDA and LDA in a sense that
semi-supervised method (SDA) was always superior to its
supervised counterpart (LDA). Also, the SDA achieved its
optimal performance with already relatively small number of
unlabeled data (Nu = 100) and it did not benefit from larger
numbers of unlabeled data. LDS was better of the two SSL
methods with the 3 lowest variance levels, but with the highest
variance SDA was better than LDS.

Comparing the AUCs in Tables 1 and 2 shows the impor-
tance of feature selection in the performance of the classifier.
Not surprisingly, knowing which voxels were discriminative
resulted in a better performance than using the feature se-
lection (as we would need to do in real life). However,
the AUCs sometimes improved as much as by 0.15 by
knowing the important features beforehand (see, e.g., LDS,
Nu = 2000, σ0 = 1.5). The amount of improvement did not
vary much between the learning algorithms, however it was
clearly more important to know the discriminative features
when the data variance was higher, probably indicating that
the feature selection becomes more difficult when the noise
level increases. Finally, application of the learning algorithms
to the full data with 29852 features led to performances close
to the chance level (AUC ≈ 0.5) and thus feature selection
was a required step (results not shown).

TABLE I. AVERAGE AUCS, WITH KNOWN FEATURES. Nu IS THE
NUMBER OF UNLABELED DATA.

σ0 SVM LDS LDS LDS LDA SDA SDA SDA

Nu 0 100 1000 2000 0 100 1000 2000

0.8 0.946 0.952 0.961 0.964 0.767 0.924 0.918 0.917

1.0 0.897 0.890 0.909 0.909 0.706 0.869 0.859 0.857

1.25 0.835 0.811 0.833 0.832 0.636 0.798 0.792 0.789

1.5 0.703 0.676 0.693 0.688 0.577 0.738 0.740 0.736

TABLE II. AVERAGE AUCS, WITH FEATURE SELECTION

σ0 SVM LDS LDS LDS LDA SDA SDA SDA

Nu 0 100 1000 2000 0 100 1000 2000

0.8 0.850 0.856 0.890 0.895 0.636 0.829 0.820 0.814

1.0 0.734 0.739 0.747 0.755 0.535 0.721 0.705 0.699

1.25 0.678 0.705 0.662 0.668 0.510 0.632 0.619 0.617

1.5 0.596 0.572 0.548 0.538 0.506 0.580 0.575 0.573

B. ADNI data

In this section, we present the experimental results for the
ADNI MRI data described in Sect. II.A. while varying the
number of labeled and unlabeled data used for training the
classifier. We first randomly selected (without replacement)
only a limited number of labeled data for training (60,100,
or 140 samples, equally divided between the pMCI and sMCI
classes). Then, we randomly selected (without replacement)
a limited number of data from sMCI, pMCI, and uMCI
subjects to be used without label information as unlabeled
data (from 50 to 350 samples, with the increments of 50
samples). These random selections were repeated 100 times
to create 100 different datasets per a configuration. For the
evaluation of the classifier performance and estimation of the
nuisance parameters for the classifiers, we computed the AUCs
using two nested cross-validation loops (stratified 10-fold for
each loop, inner loop for the parameter selection, outer for
performance evaluation; note that the number of samples was
selected so that each fold can be balanced).

Fig. 1 shows the average AUCs across 100 different sam-
plings for the studied methods (SVM, LDS, SDA, LDA) for
fixed numbers of labeled samples (indicated by different colors
in Fig. 1) and with increasing number of unlabeled samples.
When the number of unlabeled samples was zero, the used
methods were SVM and LDA and otherwise the used methods
were LDS and SDA. The feature selection within the training
set (by regularized logistic regression) resulted in worse AUCs
with all 4 methods than the feature selection with AD and NC
data of Sect. II.B, and thus only the AUCs with the feature
selection of Sect. II.B are reported. Using unlabeled data
and SSLs improved the classification performance markedly,
even with 50 unlabeled samples, the average AUCs always
improved, on average by 0.05. The highest improvement (from
0.58 to 0.67) was with SDA compared to LDA with 60 labeled
samples. In order to make statistically precise statements, we
computed the p-value for unpaired AUC scores (across 100
different re-samplings of the data) with a permutation test.
The improvement was always significant when comparing SSL
methods (LDS and SDA) to the corresponding supervised
methods (in each case p < 0.00001 except for the case
of LDS vs. SVM with 60 labeled samples p = 0.0045).
Thus, the use of SSL significantly improved the classification
performance. The AUCs of the two SSL methods with 60
and 100 labeled samples and all available unlabeled data



Fig. 1. The mean AUC score of LDS and SDA methods within 100 computation times with respect to different number of unlabeled data using original MRI
data. When the number of unlabeled data is zero, the corresponding supervised methods (SVM and LDA) are used.

was statistically similar (p > 0.2) and with 140 labeled
samples LDS outperformed SDA in terms of the average AUC
(p = 0.0025). The differences between the AUCs within a
fixed SSL method when the number of unlabeled data was
varied were statistically not significant.

IV. CONCLUSION

We studied the value of unlabeled data from MCI subjects
without final diagnosis in the MRI-based MCI-to-AD conver-
sion prediction. We compared two semi-supervised learning
methods, LDS and SDA, and their supervised counterparts,
SVM and regularized LDA, by using ADNI MRI data and
simulated data while varying the number of labeled and unla-
beled samples. The use of SSL and unlabeled data significantly
improved the classification performance with the ADNI data,
independently on how many labeled samples were available.
Importantly even a small number of unlabeled samples im-
proved the conversion predictions. With the simulated data, the
use of unlabeled data improved the classification performance
in most cases, however, the improvement was smaller than with
the real data and, as expected, diminished with increasing noise
level. Of the two SSL methods studied, LDS had the superior
performance.
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