
NeuroImage 205 (2020) 116266
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Monotonic Gaussian Process for spatio-temporal disease progression
modeling in brain imaging data

Cl�ement Abi Nader a,*, Nicholas Ayache a, Philippe Robert b, Marco Lorenzi a, for the Alzheimer’s
Disease Neuroimaging Initiative1
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A B S T R A C T

We introduce a probabilistic generative model for disentangling spatio-temporal disease trajectories from col-
lections of high-dimensional brain images. The model is based on spatio-temporal matrix factorization, where
inference on the sources is constrained by anatomically plausible statistical priors. To model realistic trajectories,
the temporal sources are defined as monotonic and time-reparameterized Gaussian Processes. To account for the
non-stationarity of brain images, we model the spatial sources as sparse codes convolved at multiple scales. The
method was tested on synthetic data favourably comparing with standard blind source separation approaches.
The application on large-scale imaging data from a clinical study allows to disentangle differential temporal
progression patterns mapping brain regions key to neurodegeneration, while revealing a disease-specific time
scale associated to the clinical diagnosis.
1. Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD) are
characterized by morphological and molecular changes of the brain, ul-
timately leading to cognitive and behavioral decline. Clinicians sug-
gested hypothetical models of the disease evolution, showing how
different types of biomarkers interact and lead to the final dementia stage
(Jack et al., 2010). In the past years, efforts have been made in order to
collect large databases of imaging and clinical measures, hoping to obtain
more insights about the disease progression through data-driven models
describing the trajectory of the disease over time. This kind of models are
of critical importance for understanding the pathological progression in
large scale data, and would represent a valuable reference for improving
the individual diagnosis.

Current clinical trials in AD are based on longitudinal monitoring of
biomarkers. Disease progression modelling aims at providing an inter-
pretable way of modelling the evolution of biomarkers according to an
estimated history of the pathology, as proposed for example in (Donohue
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et al., 2014), (Fonteijn et al., 2012), (Jedynak et al., 2012), (Lorenzi et al.,
2017), and (Young et al., 2014). Therefore, disease progression models
are promising methods for automatically staging patients, and quanti-
fying their progression with respect to the underlying model of the pa-
thology. These approaches entail a great potential for automatic
stratification of individuals based on their estimated stage and progres-
sion speed, and for assessment of efficacy of disease modifying drugs.
Within this context, we propose a spatio-temporal generative model of
disease progression, aimed at disentangling and quantifying the inde-
pendent dynamics of changes observed in datasets of multi-modal data.
With this termwe indicate data acquired via different imaging modalities
such as Magnetic Resonance Imaging (MRI) or Positron-Emission To-
mography (PET), as well as non-imaging data such as clinical scores
assessed by physicians. Moreover, we aim at automatically inferring the
disease severity of a patient with respect to the estimated trajectory.
Defining such a disease progression model raises a number of method-
ological challenges.

AD spreads over decades with a temporal mismatch between the
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onset of the disease and the moment where the clinical symptoms appear.
Either age of diagnosis, or the chronological age, are therefore not suit-
able as a temporal reference to describe the disease progression in time.
Moreover, as the follow-up of patients doesn’t exceed a few years, the
development of a model of long-term pathological changes requires to
integrate cross-sectional data from different individuals, in order to
consider a longer period of time. In virtue of the lack of a well defined
temporal reference, observations from different individuals are charac-
terized by large and unknown variability in the onset and speed of the
disease. It is therefore necessary to account for a time-reparameterization
function, mapping each individuals’ observations to a common temporal
axis associated to the absolute disease trajectory (Jedynak et al., 2012;
Schiratti et al., 2015). This would allow to estimate an absolute
time-reference related to the natural history of the pathology.

The analysis of MRI and PET data, requires to account for spatio-
temporally correlated features (voxels, i.e. volumetric pixels) defined
over arrays of more than a million entries. The development of inference
schemes jointly considering these correlation properties thus raises
scalability issues, especially when accounting for the non-stationarity of
the image signal. Furthermore, the brain regions involved in AD exhibit
various dynamics in time, and evolve at different speed (Whitwell, 2010).
From amodeling perspective, accounting for differential trajectories over
space and time raises the problem of source identification and separation.
This issue has been widely addressed in neuroimaging via Independent
Component Analysis (ICA) (Comon, 1994), especially on functional MRI
(fMRI) data (Calhoun et al., 2009). Nevertheless, while fMRI time-series
are usually defined over a few hundreds of time points acquired per
subject, our problem consists in jointly analyzing short-term and
cross-sectional data observations with respect to an unknown time-line.
This problem cannot be tackled with standard ICA, as time is generally
an independent variable on which inference is not required. Moreover,
ICA retrieves spatial sources based on the assumption of statistical in-
dependence. This assumption does not necessarily lead to clinically
interpretable findings. Indeed, dependency across temporal patterns can
be still highly relevant to the pathology, for example when modeling
temporal delay across similar sources.

The problem of providing a realistic description of the biological
processes is critical when analyzing biomedical data, such as medical
images. For example, to describe a plausible evolution of AD from normal
to pathological stages, smoothness and monotonicity are commonly
assumed for the temporal sources. It is also necessary to account for the
non-stationarity of changes affecting the brain from global to localized
spatio-temporal processes. As a result, spatial sources need to account for
different resolutions at which these changes take place. While several
multi-scale analysis approaches have been proposed to model spatio-
temporal signals (Mallat and Jul 1989; Bullmore et al., 2004; Hack-
mack et al., 2012), extending this type of methods to the high-dimension
of medical images is generally not trivial due to scalability issues. Finally,
the noisy nature of medical images, along with the large signal variability
across observations, requires a modeling framework robust to bias and
noise.

In this work, we propose to jointly address these issues within a
Bayesian framework for the spatio-temporal analysis of large-scale col-
lections of multi-modal brain data. We show that this framework allows
us to naturally encode plausibility constraints through clinically-inspired
priors, while accounting for the uncertainty of the temporal profiles and
brain structures we wish to estimate. Similarly to the ICA setting, we
formulate the problem of trajectory modeling through matrix factoriza-
tion across temporal and spatial sources. This is done for each modality
by inferring their specific spatio-temporal sources. To promote smooth-
ness in time and avoid any unnecessary hypothesis on the temporal tra-
jectories, we rely on non-parametric modeling based on Gaussian Process
(GP). We account for a plausible evolution from healthy to pathological
stages thanks to a monotonicity constraint applied on the GP. Moreover,
individuals’ observations are temporally re-aligned on a common scale
via a time-warping function. In case of imaging data, to model the non-
2

stationarity of the spatial signal, the spatial sources are defined as
sparse activation maps convolved at different scales. We show that our
framework can be efficiently optimized through stochastic variational
inference, allowing to exploit automatic differentiation and GPU support
to speed up computations.

The paper is organized as follows: Section 2 analyzes related work on
spatio-temporal modeling of neurodegeneration, while Section 3 details
our method. In Section 4 we present experiments on synthetic data in
which we compare our model to standard blind source separation ap-
proaches. We finally provide a demonstration of our method on the
modeling of imaging data from a large scale clinical study. Prospects for
future work and conclusions are drawn in section 5. Derivations that we
could not fit in the paper are detailed in the Appendices.

2. Related work in neurodegeneration modeling

To deal with the uncertainty of the time-line of neurodegenerative
pathologies, the concept of time-reparameterization of imaging-derived
features has been used in several works. The underlying principle con-
sists in estimating an absolute time-scale of disease progression by
temporally re-aligning data from different subjects. For instance, in
(Young et al., 2015) the time-evolution was approximated as a sequence
of events which need to be re-ordered for each patient. This approach
thus considers the evolution of neurodegenerative diseases as a collection
of transitions between discrete stages. This hypothesis is however
limiting, as it doesn’t reflect the continuity of changes affecting the brain
along the course of the pathology.

To address this limitation, we rely on a continuous parameterization
of the time-axis as in (Lorenzi et al., 2017; Donohue et al., 2014). In
particular, individuals’ observations are time-realigned on a common
temporal scale via a time-warping function. Using a set of relevant scalar
biomarkers, this kind of approach allows to learn a time-scale describing
the pathology evolution, and to estimate a data-driven time-line mark-
edly correlated with the decline of cognitive abilities. Similarly, in (Bilgel
et al., 2015) a disease progression score was estimated using biomarkers
from molecular imaging. These methods are however based on the
analysis of low-dimensional measures, such as collections of clinical
variables. Therefore, they do not allow to scale to the high dimension of
multi-modal medical images. Our work tackles this shortcoming thanks
to a scalable inference scheme based on stochastic variational inference.

Concerning the spatio-temporal representation of neurodegeneration,
a mixed-effect model was proposed by (Koval et al., 2017) to learn an
average spatio-temporal trajectory of brain evolution on cortical thick-
ness data. The fixed-effect describes the average trajectory, while random
effects are estimated through individual spatio-temporal warping func-
tions, modeling how each subject differs from the global progression.
Still, the extension of this approach to image volumes raises scalability
issues. It has also to be noted that, to allow computational tractability, the
brain evolution was assumed to be stationary both in space and time, thus
limiting the ability of the model to disentangle the multiple dynamics of
the brain structures involved in AD.

An attempt to source separation is proposed in (Marinescu et al.,
2019), through the decomposition of cortical thickness measurements as
a mixture of spatio-temporal processes. This is performed by associating
to each cortical vertex a temporal progression modelled by a sigmoid
function, which may be however too simplistic to describe the progres-
sion of AD temporal processes. We propose to overcome this issue by
non-parametric modeling of the temporal sources through GPs. More-
over, the model in (Marinescu et al., 2019) is lacking of an explicit
vertex-wise correlation model, as it only assumes correlation between
clustering parameters at the resolution of the mesh graph. For this
reason, it may still be sensitive to spatial variation at different scales and
noise. We address this problem by modeling the spatial sources through
convolution of sparse maps at multiple resolutions, allowing to deal with
signal non-stationarity and robustness to noise.
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3. Methods

In the following sections a matrix will be denoted by an uppercase
letter X, its n-th row will be given by Xn: and its n-th column by X:n. A
column vector will be denoted by a lowercase letter x. Subscript indices
will be used to index the elements of matrices, vectors or sets of scalars.
Superscipt indices will allow to index the blocks of block diagonal
matrices.

3.1. Individual time-shift

To account for the uncertainty of the time-line of individual mea-
surements, we assume that the observations are defined with respect to
an absolute temporal reference τ. This is performed through a time-
warping function tp ¼ f pðτÞ, that models the individual time-
reparameterization. We choose an additive parameterization such that:

f pðτÞ ¼ τ þ δp: (1)

Within this setting the individual time-shift δp encodes the temporal
position of subject p, which in our application can be interpreted as the
disease stage of subject pwith respect to the long-term disease trajectory.
We denote by δ ¼ fδpgPp¼0 the set of time-shift parameters.

3.2. Data modeling

We represent the spatio-temporal dataD by a block diagonal matrix in
which we differentiate two main blocks Y and V as illustrated in Fig. 1.
Each sub-block Ym is a matrix containing the data represented by one of
the M imaging modalities we wish to consider. These matrices have di-
mensions P� Fm, where P denotes the number of subjects and Fm the
number of imaging features for modality m, which in our case is the
number of voxels. The matrix V accounts for non-imaging or scalar data
such as clinical scores and has dimensions P� C, where C is the number
of scalar features considered. We postulate a generative model and
decompose the data as shown in Fig. 1.

For each sub-block Ym, the data is factorized in a set of Nm spatio-
temporal sources Ym ¼ SmAm. The columns of the matrix Sm describe
the non-linear temporal evolution of the corresponding spatial maps
contained in the rows of Am. Therefore, their product represents the
voxel-wise linear combination of the spatial maps modulated by the
corresponding temporal sources. The subjects share the same set of
Fig. 1. Spatio-temporal decomposition of each data block. A data matrix composed
sources Sm and corresponding activation maps Am. Monotonic sources are also used
and noise Em.
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temporal sources across S1; ::;SM , as these sources describe the temporal
evolution of the group-wise images through the regression problem
specified in Fig. 1. The data in matrix V is modelled by a matrix U whose
columns depict the temporal trajectories of the different scalar scores. In
the case of imaging data, we also consider a constant termmodeling brain
areas which don’t exhibit any intensity changes over time. This is done
by including constant matrix terms Zm that we need to estimate. We as-
sume for a given modality m that the vectors Zm

p: are common to every
subjects. Finally, for each modality m, scalar score c, and subject p, we
assume Gaussian observational noise Em

p: � N �
0; σ2mI

�
, and Hp;c � N �

0;

ν2c
�
for respectively imaging and scalar information.
Therefore, if we consider the data from modality m and scalar c of

patient p observed at time f pðτÞ we have:

Ym
p:

�
f pðτÞ; θm;ψm

� ¼ Sm
p:

�
f pðτÞ; θm

�
AmðψmÞ þ Zm

p: þ Em
p:;

Vp;c

�
f pðτÞ; θc

� ¼ Up;c

�
f pðτÞ; θc

�þHp;c:
(2)

We denote by θm and θc the temporal parameters related respectively to
the modality m and scalar feature c, while ψm represents the set of spatial
parameters of modality m. We assume conditional independence across
modalities and scalar scores given the time-shift information:

pðY;VjA;S;Z;U; δ; σ; νÞ ¼ �Q
m
pðYmjAm;Sm;Zm; δ; σmÞ

�
�Q

c
pðV:cjU:c; δ; νcÞ

�
:

(3)

Relying on classical regression formulation, we assume exchange-
ability across subjects allowing us to derive the data likelihood for a
given modality m. According to the generative model we can write:

pðYmjAm;Sm;Zm;δ;σmÞ ¼
 Q

p

1�
2πσ2

m

�Fm
2

exp

 
� 1
2σ2m

����Ym
p:

�
f p
�
τ
�
;θm;ψm

�

�Sm
p:

�
f p
�
τ
�
;θm
�
Am
�
ψm

�
�Zm

p:

����2!!
(4)

Naturally, a similar equation holds for pðV:cjU:c; δ; νcÞ. Within a
Bayesian modeling framework, we wish to maximize the marginal log-
likelihood logðpðY; VjZ; δ; σ; νÞÞ, to obtain posterior distributions for
the spatio-temporal processes. Since the derivation of this quantity in a
by M imaging modalities is decomposed as the product of monotonic temporal
to model the scalar biomarkers V, while we assume additive constant terms Zm,
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closed-form is not possible, we tackle this optimization problem through
stochastic variational inference. Based on this formulation, in what fol-
lows we illustrate our model by detailing the variational approximations
imposed on the spatio-temporal sources, along with the priors and con-
straints we impose to represent the data (Sections 3.3 and 3.4). Finally,
we detail the variational lower bound and optimization strategy in Sec-
tion 3.5.

For ease of notation we will drop the m and c indexes in Sections 3.3
and 3.4. As a result the matrix S will indistinctly refer to either any Sm or
U, while matrix A will refer to any Am, and Y to any Ym. For a given
modality m, the number of patients P will be indexed by p, the number of
sources Nm or the number of scalar scores C will be indexed by n, and
finally f will index the number of imaging features Fm.

3.3. Spatio-temporal processes

3.3.1. Temporal sources
In order to flexibly account for non-linear temporal patterns, the

temporal sources are encoded in a matrix S in which each column S:n is a
GP representing the evolution of source n and is independent from the
other sources. To allow computational tractability within a variational
setting, we rely on the GP approximation proposed in (Cutajar et al.,
2017), through kernel approximation via random feature expansion
(Rahimi and Recht, 2008). Within this framework, a GP can be approx-
imated as a Bayesian Neural Network with form: S:nðtÞ ¼ φðtðωnÞT Þwn.
For example, in the case of the Radial Basis Function (RBF) covariance,
ωn is a linear projection in the spectral domain. It is equipped with a
Gaussian distributed prior pðωnÞ � N ð0; lnIÞ with a zero-mean and a
covariance parameterized by a scalar ln, acting as the length-scale
parameter of the RBF covariance. The non-linear basis functions activa-
tion is defined by setting φð�Þ ¼ ðcosð�Þ; sinð�ÞÞ, while the regression
parameter wn is given with a standard normal prior. The GP inference
problem can be conveniently performed by estimating approximated
variational distributions for all the ωn and wn (Section 3.5). We will
respectively denote by Ω and W the block diagonal matrices whose
blocks are the ðωnÞT and wn. Considering the N temporal sources, we can
write pðΩÞ ¼Q

n
pðωnÞ and pðWÞ ¼ Q

n
pðwnÞ.

We wish also to account for a steady evolution of the temporal pro-
cesses, hence constraining the temporal sources to monotonicity. This is
relevant in the medical case, where one would like to model the steady
progression of a disease from normal to pathological stages. In our case,
we want to constrain the space of the temporal sources to the set of so-
lutions Cn ¼ fS:nðtÞjS0:nðtÞ � 0 8 t g. This can be done consistently within
the regression setting of (Riihim€aki et al., 2010), and in particular with
the GP random feature expansion framework as shown in (Lorenzi et al.,
2018). In that work, the constraint is introduced as a second likelihood
term on the temporal sources dynamics:

pðCjS0; γÞ ¼
Y
p;n

�
1þ exp

�� γS0
p;nðtÞ

� ��1
; (5)

where S0 contains every derivatives S0:n, γ controls the magnitude of the
monotonicity constraint, and C ¼ \nCn. According to (Lorenzi et al.,
2018) this constraint can be specified through the parametric form for
the derivative of each S:n:

S0
:nðtÞ ¼

dφ
�
tðωnÞT �
dt

wn: (6)

This setting leads to an efficient scheme for estimating the temporal
sources through stochastic variational inference (Section 3.5).

3.3.2. Spatial sources
According to the model introduced in Section 3.2, each observation

Yp: is obtained as the linear combination at a specific time-point between
the temporal and spatial sources. In order to deal with the multi-scale
4

nature of the imaging signal, we propose to represent the spatial sour-
ces at multiple resolutions. To this end, we encode the spatial sources in a
matrix A whose rows An: represent a specific source at a given scale. The
scale is prescribed by a convolution operator Σn, which is a applied to a
map Bn: that we wish to infer. This problem can be specified by defining
An: ¼ Bn:Σn, where Σn is an F � F Gaussian kernel matrix imposing a
specific spatial resolution. The length-scale parameter λn of the Gaussian
kernel is fixed for each source, to force the model to pick details at that
specific scale. Due to the high-dimension of the data we are modeling,
performing stochastic variational inference in this setting raises scal-
ability issues. For instance, if we assume a Gaussian distribution N ðμBn:

;

diagðΛÞÞ for Bn:, the distribution of the spatial signal would be pðAn:Þe
N ðμBn:

Σn; ΣndiagðΛÞðΣnÞTÞ. As a result, sampling from pðAn:Þ is not
computationally tractable due to the size of the covariance matrix, which
prevents the use of standard inference schemes on Bn:. This can be
overcome thanks to the separability of the Gaussian convolution kernel
(Marquand et al., 2014; Lorenzi et al., 2015b), according to which the 3D
convolution matrix Σn can be decomposed into the Kronecker product of
1D matrices, Σn ¼ Σn

x � Σn
y � Σn

z . This decomposition allows to efficiently
perform standard operations such as matrix inversion, or matrix-vector
multiplication (Saatçi, 2011). Thanks to this choice, we recover tracta-
bility for the inference of Bn: through sampling, as required by stochastic
inference methods (Kingma and Welling, 2013).

3.4. Sparsity

In order to detect specific brain areas involved in neurodegeneration,
we propose to introduce a sparsity constraint on the maps (or codes) Bn:.
Consistently with our variational inference scheme, we induce sparsity
via Variational Dropout as proposed in (Kingma et al., 2015). This
approach leverages on an improper log-scale uniform prior
pðjBn:jÞ∝

Q
f
1=
��Bn;f

��, along with an approximate posterior distribution:

q1ðBÞ¼
YN

n¼1
N
�
Mn:; diag

�
αn;1M2

n;1…αn;FM2
n;F

��
: (7)

In this formulation, the dropout parameter αn;f is related to the indi-

vidual dropout probability pn;f of each weight by αn;f ¼ pn;f ð1� pn;f Þ�1.
When the parameter αn;f exceeds a fixed threshold, the dropout proba-
bility pn;f is considered high enough to ignore the corresponding weight
Mn;f by setting it to zero. However, this framework raises stability issues
affecting the inference of the dropout parameters due to large-variance
gradients, thus limiting pn;f to values smaller than 0.5. To tackle this
problem, we leverage on the extension of Variational Dropout proposed in
(Molchanov et al., 2017). In this setting, the variance parameter is
encoded in a new independent variable Pn;f ¼ αn;fM2

n;f , while the poste-
rior distribution is optimized with respect to (M;P). Therefore, in order to
minimize the cost function for large variance Pn;f → ∞ (αn;f → ∞ i.e
pn;f → 1), the value of the weight’s magnitude must be controlled by
setting to zero the corresponding parameterMn;f . As a result, by dropping
out weights in the code, we sparsify the estimated spatial maps, thus
better isolating relevant spatial sub-structures. Spatial correlations in the
images are obtained thanks to the convolution operation detailed in
Section 3.3.2.

3.5. Variational inference

We detailed in the previous sections the choices of priors and con-
straints that we apply to the spatio-temporal processes in order to plau-
sibly model the data. To illustrate the overall formulation of the method,
we provide in Fig. 2 the graphical model over theMmodalities in the case
of imaging data. Naturally, this graph simplifies whenwe deal with scalar
data as we don’t need to account for any spatial dependence.

To infer the time-shift parameter δ, the sets of parameters θm, θc, and
ψm, as well as Z, σ and ν, we need to jointly optimize the data evidence



Fig. 2. Graphical model for imaging data, Y ¼ fYmg.
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according to priors and constraints:

logðpðY;V;CjZ; δ; σ; ν; γÞÞ ¼P
m
logðpðYm;CmjZm; δ; σm; γmÞÞ

þP
c
logðpðV:c;Ccjδ; νc; γcÞÞ:

(8)

We tackle the optimization of Equation (8) via stochastic variational
inference. Following (Cutajar et al., 2017) and (Lorenzi et al., 2018) we
introduce approximations, q2ðΩmÞ and q3ðWmÞ in addition to q1ðBmÞ in
order to derive a lower bound Lm for each modality. We recall that the
temporal trajectories Sm and U are treated similarly as described in
Section 3.3.1. We also note that the choice of distributions q1; q2 and q3 is
the same across modalities, while their parameters will be inferred
independently. This leads to:
log
�
pðYm;CmjZm; δ; σm; γmÞÞ � Eq1 ;q2 ;q3 ½logðpðYmjBm;Ωm;Wm;Zm; δ; σmÞÞ

	
þEq2 ;q3 ½logðpðCmjΩm;Wm; δ; γmÞ Þ �
�D½q1ðBmÞjjpðBmÞ � �D½q2ðΩmÞjjpðΩmÞ � �D½q3ðWmÞjjpðWmÞ �;

log
�
pðVc:;Ccjδ; νc; γcÞÞ � Eq2 ;q3 ½logðpðVc:jΩc;Wc; δ; σcÞÞ

	
þEq2 ;q3 ½logðpðCcjΩc;Wc; δ; γcÞ Þ �
�D½q2ðΩcÞjjpðΩcÞ � �D½q3ðWcÞjjpðWcÞ �

(9)
Where D refers to the Kullback-Leibler (KL) divergence. Combining the
lower bounds of the different modalities we obtain:

logðpðY;V;CjZ; δ; σ; ν; γÞ Þ �
X
m

Lm þ
X
c

Lc: (10)

A detailed derivation of the lower bound is given in Appendix A. The
approximated distributions q2ðΩmÞ and q3ðWmÞ are factorized across GPs
such that:

q2ðΩmÞ ¼
Y
n¼1

Nm

q2ðωnÞm ¼
Y
n¼1

Nm Y
j¼1

Nrf

N
�
Rn;j;Q2

n;j

�m
;

q3ðWmÞ ¼
Y
n¼1

Nm

q3ðwnÞm ¼
Y
n¼1

Nm Y
j¼1

Nrf

N
�
Tn;j;V2

n;j

�m
;

(11)

where Nrf is the number of random features used for the projection in the
spectral domain. Using Gaussian priors and approximations we intro-
duced above, we can obtain a closed-form formula for the KL divergence.
Moreover, the choice of prior and approximate posterior distribution for
the maps of Bm leads to an approximation for the divergence
D½q1ðBmÞjjpðBmÞ� detailed in (Molchanov et al., 2017). This allows to
analytically compute all the KL terms in our cost function. Formulas for
5

the KL divergences are detailed in Appendix B.
Finally, we optimize the individual time-shifts δ ¼ fδpgPp¼0, Z, σ ¼

fσmgMm¼1, ν ¼ fνcgCc¼1 as well as the overall sets of spatio-temporal pa-

rameters θ ¼ fθmgMm¼1[ fθcgCc¼1 and ψ ¼ fψmgMm¼1.

θ ¼ �Rm
n:;Q

m
n:;T

m
n:;V

m
n:; ln; n 2 ½1;Nm�

�M
m¼1[

�
Rc:;Qc:;Tc:;Vc

c:; lc
�C
c¼1;

ψ ¼ �Mm
n:;P

m
n:; n 2 ½1;Nm�

�M
m¼1:

(12)

Following (Kingma and Welling, 2013) and using the reparameteri-
zation trick, we can efficiently sample from the approximated distribu-
tions q1; q2 and q3 to compute the two expectation terms from (9) for each
modality. We chose to alternate the optimization between the
spatio-temporal parameters and the time-shift. We set γm to the minimum
value that gives monotonic sources. This was done through multiple tests
on data batches with different numbers of imaging features Fm and
sources Nm. We empirically found that monotonicity was enforced when
the magnitude of γm was in the order of Fm � Nm. The threshold for the
dropout probability above which we set a weight Bm

n;f to zero was fixed at
95% (i.e α ¼ 19), while the σm and νm were optimized during training
along with the spatio-temporal parameters. The model is implemented
and trained using the Pytorch library (Paszke et al., 2017). The complete
experimental setting is detailed in Appendix C. We also provide a
pseudo-code detailing the optimization procedure in Appendix D. In the
following sections we will refer to our method as Monotonic Gaussian
Process Analysis (MGPA).

4. Experiments and results

In this section we first benchmark MGPA on synthetic data to
demonstrate its reconstruction and separation properties while
comparing it to standard sources separation methods. We finally apply
our model on a large set of medical data from a publicly available clinical
study, demonstrating the ability of our method to retrieve spatio-
temporal processes relevant to AD, along with a time-scale describing
the course of the disease.
4.1. Synthetic tests on spatio-temporal trajectory separation

For the synthetic tests we considered the case where the data is
associated to a single imaging modality only. We tested MGPA on syn-
thetic data generated as a linear combination of temporal functions and
3D activation maps at prescribed resolutions. The goal was to assess the
method’s ability to identify the spatio-temporal sources underlying the
data. We benchmarked our method with respect to ICA, Non-Negative
Matrix Factorization (NMF), and Principal Component Analysis (PCA),
which were applied from the standard implementation provided in the
Scikit-Learn library (Pedregosa et al., 2011).

The benchmark was specified by defining a 10-folds validation
setting, generating the data at each fold as a linear combination of
temporal sources ~SðtÞ ¼ ½~S:0ðtÞ;~S:1ðtÞ�, and spatial maps ~A ¼ ½~A0:;~A1:�. The
data was defined as Yp: ¼ ~Sp:

�
tp
�
~Aþ Ep: over 50 time points tp, where tp

was uniformly distributed in the range ½0; 0:7�, and Ep: � N �
0; σ2I

�
. The



Fig. 3. Slices extracted from the six sparse codes and the ground truth. Blue: Rejected points. Yellow: Retained points. (
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temporal sources were specified as sigmoid functions ~Sp;iðtpÞ ¼ 1= ð1 þ
expð� tp þ αiÞÞ, while the spatial structures had dimensions

ð30�30�30Þ such that ~Ai: ¼ ~Bi: ~Σ
i
. The ~Σi

were chosen as Gaussian
convolution matrices with respective length-scale of λ ¼ 2 mm and λ ¼ 1
mm. The ~Bi: were randomly sampled sparse 3D maps.

Variable selection. We applied our method by specifying an over-
complete set of six sources with respective spatial length-scale of λ ¼
f2; 2;1;1; 0:5;0:5 mmg. Fig. 3 shows an example of the sparse maps ob-
tained for a specific fold. The model prunes the signal for most of the
maps, while retaining two sparse maps, B0: and B4:, whose length-scale
are λ ¼ 2 mm and λ ¼ 1 mm, thus correctly estimating the right num-
ber of sources and their spatial resolution. As it can be qualitatively
observed in Fig. 3, we notice that the estimated sparse code convolved
with a Gaussian kernel matrix with λ ¼ 1 mm is closer to its ground truth
than the one convolved with a length-scale λ ¼ 2 mm. According to our
tests, sparse codes associated to high resolution details (low λ) are indeed
more identifiable. On the contrary, the identifiability of images obtained
via a convolution operator with larger kernels (large λ) is lower, since
these maps can be equivalently obtained through the convolution of
different sparse codes.

Sources separation. We observe in Table 1 that the lowest Mean-
Squared Error (MSE) for the temporal sources reconstruction is ob-
tained by MGPA, closely followed by ICA. Similarly, our model and ICA
show the highest Structural Similarity (SSIM) score (Wang et al., 2004),
which quantifies the image reconstruction accuracy with respect to the
ground truth maps, while accounting for the inter-dependencies between
neighbouring pixels. An example of image reconstruction from a sample
fold is illustrated in Fig. 4. In this standard benchmark, we note that
MGPA leads to comparable results with respect to the state of the art. In
the following section, we compare the models in the more challenging
setting in which the time-line has to be estimated as well.
4.2. Synthetic tests on trajectory separation and time-reparameterization

In this test, we modify the experimental benchmark by introducing a
Table 1
MSE and SSIM between respectively the ground truth temporal and spatial
sources with respect to the ones estimated by the different methods.

Temporal (MSE) Spatial (SSIM)

MGPA ð8	4Þ:10�5 98%	 1
ICA ð6	3Þ:10�4 97%	 2
NMF ð3	2Þ:10�2 40%	 17
PCA 0:44	 10�3 15%	 1
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further element of variability associated to the time-axis. The temporal
and spatial sources were modelled following the same procedure as in
Section 4.1, however the observations were mixed along the temporal
axis. To do so we generated longitudinal data as Yp;j;: ¼ ~Sp:ðtÞ~Aþ Ej:, by
sampling between 1 and 10 images per time-point and randomly re-
arranging them along the time-axis (cf. time-shift tp of each observa-
tion at initialization in Figs. 5 and 6, panel “Time-Shift”). The goal was to
assess the sources separation performances of MGPA when the time-line
is unknown. The experiment was run on 10 folds and Figs. 5 and 6
illustrate the sources estimation for two different folds. We present these
two figures to demonstrate how the time-shift inference affects the
temporal sources reconstruction. Since the model is agnostic of a time-
scale, we note that the time-shift may have a different range than the
original time-axis. However, its relative ordering should be consistent
with the original time points. We fitted a linear regression model over the
10 folds between the original time and the estimated time-shift param-
eter, and obtained an average R2 coefficient of 0.98 with a standard
deviation of 0.005 (cf. Table 2).

This is illustrated for two different folds in the Time-Shift panel of
Figs. 5 and 6, where we observe a strong linear correlation with the
original time-line, meaning that the algorithm correctly re-ordered the
data with respect to the original time-axis. However, we notice in
Table 2 that the MSE of the temporal sources significantly increased,
due to the additional difficulty brought by the time-shift estimation.
Indeed, in order to reconstruct the temporal signal we need to perfectly
re-align hundreds of observations. This is the case in Fig. 5 (optimal
reconstruction result), where the time-shift is highly correlated with the
original time-line, allowing to distinguish every single observation and
reconstruct the original temporal profiles. Whereas in Fig. 6 (sub-
optimal reconstruction result), the estimated time-shift doesn’t exhibit a
perfect fit, and generally underestimates the time-reparameterization
for the later and earlier time points. This is related to the challenging
setting of reconstructing the time-line identified by the original tem-
poral sources. Indeed, we observe that S:0 reaches a plateau for early
time points, while S:1 is flat for later ones. This behaviour increases the
difficulty of differentiating time points with low signal differences. As a
result, it impacts the time-shift optimization and adds variability to the
time-shift estimation performances, thus deteriorating the reconstruc-
tion of the temporal sources over the 10 folds compared to the previous
benchmark. The spatial sources estimation remains comparable to the
one without time-shift both quantitatively, with an average SSIM of
95%, and qualitatively, as shown in Figs. 5 and 6. Within this setting,
ICA, NMF and PCA poorly perform as they can’t reconstruct the time-
line. Results obtained using these three methods are provided in Ap-
pendix E.

mailto:Image of Fig. 3|tif


Fig. 4. Spatio-temporal reconstruction when inference on the time-line is not required. Spatial maps: Sample slice from ground truth images (A0 λ ¼ 2 mm, A1 λ ¼ 1
mm), the maps estimated by ICA, and the ones estimated by MGPA. Temporal sources: Ground truth temporal sources (red) along with sources estimated by ICA
(green) and MGPA (blue).

Fig. 5. Spatio-temporal reconstruction when inference on the time-line is required. Optimal reconstruction result. Spatial maps: Sample slice from ground truth images
(A0 λ ¼ 2 mm, A1 λ ¼ 1 mm) and estimated spatial sources. Temporal sources: In red the original temporal sources, in blue the estimated temporal sources. Time-Shift:
Time-shift tp of each image at initialization (top), and after estimation (bottom). In blue, linear fit with the ground truth.
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4.3. Application to spatio-temporal brain progression modeling

4.3.1. Data processing
Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lon
i.usc.edu). The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator MichaelW.Weiner, MD. For up-to-date
information, see www.adni-info.org.
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We selected a cohort of 544 amyloid positive subjects of the ADNI
database composed of 103 controls (NL), 164 Mild Cognitive Impairment
(MCI), 114 AD patients, 34 healthy individuals converted to MCI or to AD
(NL converter) and 129 MCI converted to AD (MCI converter). The term
amyloid positive refers to subjects whose amyloid level in the cerebro-
spinal fluid (CSF) is below the nominal cutoff of 192 pg/ml. Conversion
to MCI or AD was determined using the last follow-up available infor-
mation. We provide in Table 3 socio-demographic and clinical

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org


Fig. 6. Spatio-temporal reconstruction when inference on the time-line is required. Sub-optimal reconstruction result. Spatial maps: Sample slice from ground truth
images (A0 λ ¼ 2 mm, A1 λ ¼ 1 mm) and estimated spatial sources. Temporal sources: In red the original temporal sources, in blue the estimated temporal sources.
Time-Shift: Time-shift tp of each image at initialization (top), and after estimation (bottom). In blue, linear fit with the ground truth.

Table 2
MSE and SSIM between respectively the ground truth temporal and spatial
sources with respect to the ones estimated by MGPA. R2 coefficient of the linear
regression between the original time-line and the estimated time-shift.

Temporal (MSE) Spatial (SSIM) R2

MGPA ð2	0:8Þ:10�2 95%	 4 0:98	 0:005
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information across the different groups.
MRI, FDG-PET and AV45-PET of each individual were processed in

order to obtain respectively, volumes of gray matter density, glucose
uptake, and amyloid load in a standard anatomical space.

MRI processing protocol. Baseline MRI images were analyzed ac-
cording to the SPM12 processing pipeline (Ashburner and Friston, 2000).
Each image was initially segmented into gray, white matter and CSF
probabilistic maps. Gray matter images were used for the following
analysis, normalized to a group-wise reference space via DARTEL
Table 3
Baseline socio-demographic and clinical information for study cohort. Average value
normal subjects who converted to MCI or to AD, MCI: mild cognitive impairment, MCI
Alzheimer’s Disease Assessment Scale-cognitive subscale, 13 items. FAQ: Functiona
Tomography (PET) imaging. AV45: (18)F-florbetapir Amyloid PET imaging.

Group NL NL converter

N 103 34
Age 73 (6) 78 (5)
Education (yrs) 16.3 (3) 16 (3)
ADAS13 9.1 (4.4) 11.4 (4.3)
FAQ 0.3 (0.7) 0.2 (0.6)
Entorhinal (cm3) 3.8 (0.5) 3.5 (0.5)
Hippocampus (cm3) 7.4 (0.9) 6.9 (0.7)
Ventricles (cm3) 31 (16) 42 (21)
Whole brain (cm3) 1033 (104) 1019 (91)
FDG 1.3 (0.1) 1.3 (0.1)
AV45 1.3 (0.2) 1.3 (0.1)
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(Ashburner, 2007), andmodulated using the Jacobian determinant of the
subject-to-template transformation. The subsequent modeling was car-
ried out on the normalized images at the original spatial resolution.

PET processing protocol. Individuals’ baseline PET images were
initially affinely aligned to the corresponding MRI. After scaling the in-
tensities to the cerebellum, the images were normalized to the gray
matter template obtained with DARTEL and smoothed with a FWHM
parameter of 4.55.

Images have dimension 102� 130� 107 before vectorization, lead-
ing to 1;418;820 spatial features per patient. These spatial features
represent for each voxel their gray matter concentration in the case of
MRI images, their glucose metabolism for FDG-PET images, or their
amyloid concentration for AV45-PET images. To exploit the ability of our
model to automatically adapt to different spatial scales, we chose to keep
the MRI images at their native resolution for the analysis, and thus do not
perform additional smoohting to equalize to the PET FWHM. In addition
to the imaging data of each patient, we also integrate the ADAS13 score
assessed by clinicians. High values of this score indicate a decline of
s and standard deviation in parenthesis. NL: normal individuals, NL converter:
converter: MCI subjects who converted to AD, AD: Alzheimer’s patients. ADAS13:
l Assessment Questionnaire. FDG: (18)F-fluorodeoxyglucose Positron Emission

MCI MCI converter AD

164 129 114
73 (7) 73 (7) 74 (8)
15.7 (3) 16 (3) 15.6 (3)
14.6 (5.5) 20.4 (6.5) 31.6 (8.5)
1.9 (2.8) 5.0 (4.6) 13.5 (6.9)
3.6 (0.6) 3.2 (0.7) 2.8 (0.6)
6.9 (0.9) 6.4 (0.9) 5.9 (0.8)
39 (23) 40 (19) 48 (23)
1058 (103) 1037 (102) 1005 (115)
1.2 (0.1) 1.1 (0.1) 1.0 (0.1)
1.3 (0.2) 1.4 (0.2) 1.5 (0.2)
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cognitive abilities. We consider three matrices YMRI , YFDG, and YAV45 of
dimension ð543�1;418;820Þ containing the images of all the subjects,
and a matrix V of dimension ð543�1Þ containing their ADAS13 score.
From now on we will refer to the data as the block diagonal matrix
containing the four matrices YMRI ; YFDG, YAV45, and V as described in
Section 3.2. We note that the analysis is performed by only considering a
single scan per imaging modality and ADAS13 score for each patient.
Therefore, the temporal evolution has to be inferred solely through the
analysis of relative differences between the brain morphologies, glucose
metabolisms, amyloid concentrations and cognitive abilities across
individuals.

4.3.2. Model specification
We aim at showing howMGPA applied on the data extracted from the

ADNI cohort is able to temporally re-align patients in order to describe
AD progression in a plausible way, while detecting relevant spatio-
temporal processes at stake in AD. The model estimates AD progression
by relying on MR, FDG-PET, AV45-PET scans and ADAS13 score of each
patient. The temporal sources SMRI and SFDG associated respectively to
the loss of gray matter, and to the decrease of glucose uptake, are
enforced to be monotonically decreasing. On the contrary, the temporal
sources SAV45 and U:ADAS13, modeling respectively the evolution of am-
yloid concentration, and ADAS13 score, are enforced to be monotonically
increasing. Since we don’t consider any information about the disease
stage of each individual before applying our method, all the observations
are initialized at the same time reference τ ¼ 0. Therefore, as for the tests
in Section 4.2, the time-shift reparameterization describes a relative re-
ordering of the subjects not related to a specific time-unit. To decom-
pose the imaging data we apply our model by specifying an over-
complete basis of six sources with λ ¼ f8; 8;4;4; 2; 2 mmg, to cover
both different scales and the associated variety of temporal evolution.
Due to the high-dimension of the data matrix, the computations were
parallelized over six GPUs, and the model required eighteen hours to
complete the training. Details on the model convergence during training
are provided in Appendix F.

4.3.3. Estimated spatio-temporal brain dynamics
In Fig. 7 we show the spatio-temporal processes retained by themodel

for each imaging modality. Interestingly, the model adapts to the spatial
resolution of MRI and PET images. Indeed, we notice that the model
accounts for the high-resolution of MRI images by retaining a source
associated to the lowest length-scale (λ ¼ 2 mm). Concerning PET data,
we observe that the induced sparsity discards the highest resolution
codes (λ ¼ 2 mm) for both FDG and AV45, highlighting the ability of the
model to adapt to the coarser resolution of the PET signal.

In the case of MRI data, two sources were retained at two different
resolutions (λ ¼ 4 mm and λ ¼ 2 mm). Source SMRI

4 describes gray matter
loss encompassing a large extent of the brain with a focus on cortical
areas (see AMRI

4 ). We note that this map also targets subcortical areas such
as the hippocampi, which are key regions of AD. Source SMRI

2 (λ ¼ 4 mm)
indicates a mild decrease of gray matter which accelerates in the latest
stages of the disease, and targets the temporal poles (see AMRI

2 ). It is
interesting to notice that this differential pattern of gray matter loss also
affects the parahippocampal region, whose atrophy is known to be
prominent in AD (Echavarri et al., 2011). These results underline the
complex evolution of brain atrophy, and the ability of the model to
disentangle spatio-temporal processes mapping different regions
involved in the pathology (Bateman et al., 2012; Frisoni et al., 2010).
Concerning the spatio-temporal processes extracted from the FDG-PET
data, we see on Fig. 7 that the model retained two sources at the
coarsest resolutions (λ ¼ 8 mm). Source SFDG1 indicates a pattern of
hypometabolism that tends to plateau and which involves most of the
9

brain regions, thus describing a global effect of the pathology on the
glucose uptake. Source SFDG0 describes a linear pattern of hypometabolism
targeting areas such as the precuneus and the parietal lobe, which are
known to be strongly affected during the evolution of the disease (Brown
et al., 2014). Finally, the model extracted two spatio-temporal sources
from the AV45-PET data at two different resolutions (λ ¼ 8mm and λ ¼ 4
mm). We observe that source SAV452 highlights an increase of amyloid
deposition mapping a large extent of the brain, such as the parietal and
frontal lobes as well as temporal areas, thus concurring with clinical
evidence (Rodrigue et al., 2009). Similarly to the FDG-PET processes, we
have a source SAV450 exhibiting a differential pattern of amyloid deposi-
tion targeting mostly frontal, temporal, occipital areas and precuneus.

The estimated spatio-temporal processes can be combined to obtain
an estimated evolution SmAm of the brain along the time-shift axis for

each modality. In Fig. 8, we show the ratio
���Smp:Am �Sm0:A

m
���=Sm0:Am be-

tween the image predicted at four time-points tp and the image predicted
at t0 for the three imaging modalities. This allows us to visualize the
trajectory of a brain going from a healthy to a pathological state in terms
of atrophy, glucose metabolism and amyloid load according to our
model.

Finally, we also applied ICA, NMF and PCA on the ADNI data,
showing that the associated results are characterized by poor interpret-
ability and high variability. The complete experimental setting and re-
sults are detailed in Appendix G.

4.3.4. Model consistency
To verify the plausibility of the fitted model, we compare in Fig. 9 the

concentration predicted by the model and the raw concentration mea-
sures in different brain areas for the three imaging modalities. We
observe a decrease of gray matter and glucose metabolism as we progress
along the estimated time-line, allowing to relate large time-shift values to
lower gray matter density and glucose uptake. Moreover, we notice the
agreement between the predictions made by the model (in blue) and the
raw concentration measures (in red). In the case of AV45 data there is
only a mild increase of amyloid load according to the model, probably
due to the fact that the subjects selected in the cohort are already amyloid
positive. As a result, they already show a high baseline amyloid level
concentration, close to plateau levels.

In Fig. 10, we show the estimated GP U:ADAS13. We observe that the
model is able to plausibly describe the evolution of this cognitive score,
while demonstrating a larger variability than in the case of imaging
modalities.

4.3.5. Plausibility with respect to clinical evidence
We assessed the clinical relevance of the estimated time-shift by

relating it to independent medical information which were not included
in the model during training. To this end, we compared the estimated
time-shift to ADAS11, MMSE and FAQ scores. High values of ADAS11
and FAQ or low values of MMSE indicate a decline of performances. We
show in Fig. 11 that the estimated time-shift correlates with a decrease of
cognitive and functional abilities. In particular, a cubic model slightly
better describes the relationship between ADAS11 and the time-shift
(according to BIC and AIC), with a significance for the cubic coefficient
of p ¼ 0:04. Concerning MMSE and FAQ, quadratic and linear models
were almost equivalent; the significance of the linear coefficients was
p < 0:01, while the quadratic coefficient was never significant. Pearson
correlation coefficients for ADAS11, FAQ and MMSEwere respectively of
0.49, 0.41, and � 0:45, with corresponding p-values p < 0:01.

The box-plot of Fig. 12 shows the time-shift distribution across clin-
ical groups. We observe an increase of the estimated time-shift when
going from healthy to pathological stages. The high uncertainty associ-
ated to the MCI group is due to the broad definition of this clinical



Fig. 7. Estimated spatio-temporal processes for the three imaging modalities. The time-scale was re-scaled to the arbitrary range [0, 1].
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Fig. 8. Ratio between the model prediction at time tp and the prediction at t0 for the three imaging modalities. The time-scale was re-scaled to the arbitrary range
[0, 1].

Fig. 9. Model prediction averaged on specific brain areas (blue line), and observed values (red dots), along the estimated time-line for the three imaging modalities. L
and R respectively stand for left and right. The time-scale was re-scaled to the arbitrary range [0, 1].
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category, which includes subjects not necessarily affected by dementia.
We note that MCI subjects subsequently converted to AD (MCI converter)
exhibit higher time-shift than the clinically stable MCI group, high-
lighting the ability of the model to differentiate between conversion
status. A similar distinction can be noticed between NL and NL converter
groups. We found significant differences between median time-shift for
NL-NL converter, MCI-MCI converter and MCI converter-AD
11
(comparisons p < 0:01, Fig. 12). It is also important to recall that this
result is obtained from the analysis of a single scan per imaging modality
and ADAS13 score for each patient.

5. Discussion

We presented a generative approach to spatio-temporal disease



Fig. 10. Model prediction of the ADAS13 score (blue line), and observed values
(red dots) along the estimated time-line. The time-scale was re-scaled to the
arbitrary range [0, 1].

Fig. 12. Distribution of the time-shift values over the different clinical stages.
The time-scale was re-scaled to the arbitrary range [0, 1].
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progression modeling based on matrix factorization across temporal and
spatial sources. The proposed application on a large set of medical images
shows the ability of the model to disentangle relevant spatio-temporal
processes at stake in AD, along with an estimated time-scale related to
the disease evolution.

The model was compared to standard methods such as ICA, NMF and
PCA since they perform blind source separation similarly to our method.
This allowed us to demonstrate the advantages of building more complex
approaches such as MGPA for the problem we tackle in this work. Con-
cerning the comparison with the state of the art in disease progression
modelling, to the best of our knowledge the two closest approaches are
(Marinescu et al., 2019) and (Koval et al., 2017). However, these two
methods are specifically designed for modelling data defined on brain
surfaces. On the contrary, our method aims at progression modeling
using full 3D volumetric information. The data dimension we tackle is
thus an order of magnitude greater than the one of (Marinescu et al.,
2019) and (Koval et al., 2017), preventing these methods to scale to the
spatial geometry of our data.

There are several avenues of improvement for the proposed approach.
We found that the optimization is highly sensitive to the initialization of
the spatial sources. This is typical of such complex non-convex problems,
and requires further investigations to better control the algorithm
convergence. More generally, the problem of source separation tackled in
Fig. 11. Evolution of the ADAS11 (left), FAQ (middle) and MMSE (right) along the
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this work is intrinsically ill-posed, as the given data can be explained by
several solutions. This was illustrated for example in our tests on syn-
thetic data (Section 4.2), where the identification of the sources was
more challenging in the case of coarse resolution codes and of flat tem-
poral sources. We note however that this issue is general, and intrinsic to
the problem of disease progression modeling.

Indeed, identifiability ultimately remains a critical issue when
training the model. Concerning the spatio-temporal parameters, their
number is extremely high due to the fact that we scale our method to 3D
volumetric images. Estimating a single spatial source from a single mo-
dality requires to estimate the mean and variance of its sparse code, i. e
1;418;820� 2 ¼ 2; 837; 640 parameters. In practice, hypotheses are
explicitly introduced to reduce the number of effective parameters. For
instance, the convolution of the spatial maps using Gaussian kernels al-
lows to enforce smoothness, and thus reduces the number of effective
degrees of freedom via spatial correlation across the related parameters.
This is equivalent to the regularization applied to image registration
problems, in which the number of parameters is of the same order of
magnitude than in our setting. Moreover, our sparsity constraint allows
to sensibly reduce the number of parameters at test time. Indeed, after
training, the sparse codes of the MRI sources have 2; 213; 359 non-zero
estimated time-line. The time-scale was re-scaled to the arbitrary range [0, 1].

mailto:Image of Fig. 10|eps
mailto:Image of Fig. 11|eps
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elements instead of 17;025; 840, which amounts in 87% reduction in the
number of parameters. In the case of the FDG-PET and AV45-PET sparse
codes, the number of non-zero elements at test time is respectively of
9; 023; 695 and 1; 362;067, which is equivalent to a reduction in the
number of parameters of 53% and 92%. Nonetheless, this high number of
parameters still remains a factor of potential convergence issues during
the parameters estimation procedure. We present graphs in Appendix F
showing the evolution of the different terms composing the cost function
during training. These figures show convergence profiles typical of those
obtained with stochastic variational inference schemes, such as with
Variational Autoencoders or Bayesian Neural Networks. Moreover, the
stability of the solution has been ensured through multiple runs of the
model. Finally, as mentioned in Section 3.4, the Variational Dropout
framework leads to stability issues affecting inference, which are mostly
due to the use of an improper prior. This problem may motivate the
identification of alternative ways to induce sparsity on the spatial maps.

In this work, we modelled the time-shift of each subject as a trans-
lation with respect to a common temporal reference. However, since
pathological trajectories are different across individuals, it would be
valuable to account for individual speed of progressions by introducing a
scaling effect, as it has been proposed for example in (Koval et al., 2017;
Schiratti et al., 2015). This was not in the scope of the current study, as
we focused on the analysis of cross-sectional data, thus having only one
data point per subject. Therefore, one of the main extensions of this
model will be the integration of longitudinal data for each individual,
which will allow a more specific time-reparameterization.

Our noise model for the reconstruction problem of Equation (2) is
homoscedastic and i. i.d. Gaussian with zero mean. For this reason, data
variability for the entire image is encoded by the variance parameter of
the Gaussian noise. Similarly as in standard regression problems, this
modelling choice has been motivated to promote simplicity of the model
and computational efficiency. However, around 40% of the values in the
brain images do not provide relevant information as they represent zero
and constant background areas. For this reason, during training, the
model can perfectly fit this background and increases its confidence on
the overall regression solution, thus lowering the value of the noise
variance σm (cf Fig. 9). This is in contrast to what we observe with the
ADAS13 data (cf Fig. 10), where the problem corresponds to standard
univariate regression. A potential way to fix this issue could be to train
the model only on non-zero image areas, or by implementing an heter-
oscedastic noise model. However, this latter solution may further in-
crease the number of model parameters.

The modeling results are also sensitive to the specification of the
spatio-temporal processes priors. In our case, the monotonicity constraint
imposed to the GPs may be too restrictive to completely capture the
complexity of the progression of neurodegeneration. From a clinical
point of view, the model could also benefit from the integration of data
measuring the concentration of Tau protein via PET imaging, in order to
quantify key neurobiological processes associated to AD (Kametani and
Hasegawa, 2018).

In order to guarantee that all the subjects belong to the same patho-
logical trajectory due to AD, the model has only been applied to a cohort
of amyloid positive subjects. However, this choice restricts the dynamics
of evolution that we could estimate. Indeed, only considering these
subjects narrows down the time-line of the pathology, as we study pa-
tients at potentially advanced disease stages. Therefore, it would be
interesting in a future work to apply the model on a cohort including
amyloid negative subjects, to model the brain dynamics over the whole
disease natural history. This extension would require to define a proper
13
methodology for disentangling sub-trajectories associated, for example
with normal ageing and different pathological subtypes (Lorenzi et al.,
2015a; Sivera et al., 2019; Young et al., 2018). Moreover, we know that
many patients diagnosed with AD can be associated to mixed pathologies
such as vascular disease or Lewy bodies. Therefore, a potential clinical
application of our method could be to investigate if the spatio-temporal
dynamics estimated by MGPA are able to disentangle the contribution
of each comorbidity.

Assessment of clinical plausibility of MGPA on the ADNI must be
corroborated by further validation on independent datasets. Therefore, in
a future work, we wish to validate the model on different cohorts to
demonstrate its generalization properties. The validation step for each
subject would be done by estimating the time-point minimizing the cost
between the images of each tested individual, and the image progression
model previously estimated on ADNI. The estimated time-shift would
provide a measure of the pathological stage of the individual with respect
to the modelled trajectory, and could be then compared with the clinical
diagnosis of the subject, allowing to test the reliability of our model. This
additional validation step could ultimately allow to use the model as a
diagnostic instrument of AD. This validation would require an important
effort in terms of data harmonisation across multiple cohorts, as well as in
terms of clinical interpretation. For this reason, this work will be part of a
subsequent publication.

We planned to release the source-code alongwith instructions in order
for the model to be used by a large audience. It will be available as a
complementary tool on the platformhttp://gpprogressionmodel.inria.fr/,
which already offers a simple front-end to Gaussian Process Progression
model.
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Appendix A

In this Appendix, we detail the complete derivation of the lower bound.

logðpðYm;CmjZm; δ; σm; γmÞÞ ¼ log
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By observing that dSm
dt is completely identified by Sm, the equation can be written as:

logðpðYm;CmjZm; δ; σm; γmÞÞ ¼ log
� Z

pðYmjBm;Sm;Zm; δ; σmÞp
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����dSm
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�
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pðSmÞdBmdSm�
Similarly this derivation can be applied to logðpðV:c;Ccjδ;νc; γcÞÞ.

logðpðYm;CmjZm; δ; σm; γmÞÞ ¼ log
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This derivation gives us the lower boundLm of a givenmodality m. The same technique can be used to derive a lower bound for logðpðVc:;Ccjδ;νc;γcÞÞ,
and by summation over m and c we obtain the lower bound of Equation (10) for logðpðY;V;CjZ;δ;σ;ν; γÞÞ.

Appendix B

In this section we provide formulas for computing the three KL terms of the lower bound. The total KL divergences are:

D½q1ðBÞjjpðBÞ � ¼
X
m

D½q1ðBmÞjjpðBmÞ �;

D½q2ðΩÞjjpðΩÞ � ¼
X
m

D½q1ðΩmÞjjpðΩmÞ � þ
X
c

D½q1ðΩcÞjjpðΩcÞ �;

D½q3ðWÞjjpðWÞ � ¼
X
m

D½q3ðWmÞjjpðWmÞ � þ
X
c

D½q3ðWcÞjjpðWcÞ �
14
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For ease of notation we will drop the m and c indices and will give formulas for a single modality. In (Molchanov et al., 2017), authors provide an
approximation of the KL for the maps B:

�D½q1ðBÞjjpðBÞ�¼
X
n;f

k1h
�
k2 þ k3log

�
αn;f

��� 0:5log
�
1þα�1

n;f

�
� k1;

where h is the sigmoid function and k1 ¼ 0:63576; k2 ¼ 1:87320; k3 ¼ 1:48695.
In the case ofΩ andW, we’ve seen that they have Gaussian priors and approximations which are detailed in Sections 3.3.1 and 3.5. As a result we can

obtain closed-form formulas for their KL, leading to:

D½q2ðΩÞjpðΩÞ � ¼ 1
2

X
n;j

Q2
n;jln þ R2

n;jln � 1� log
�
Q2

n;jln
�
;

D½q3ðWÞjpðWÞ � ¼ 1
2

X
n;j

V2
n;j þ T2

n;j � 1� log
�
V2

n;j

�
By summation over the different modalities we finally obtain the total KL divergences.

Appendix C

We provide in this Appendix details for the experiments on real data.


 The number of random features for the GP estimation was set to 10, as it was enough to recover the temporal sources in the synthetic experiments.

 The γ parameter controlling monotonicity was set to γm ¼ 107 for each imaging modality (Fm ¼ 1; 418; 820 imaging features and Nm ¼ 6 sources)
and γc ¼ 1 for ADAS13 (Cc ¼ 1 scalar feature).


 The lower bound was optimized using the ADAM optimizer (Kingma and Ba, 2015).

 We used an alternate optimization scheme between the spatio-temporal parameters and the time-shift of [2000, 1000] iterations repeated 20 times,
followed by 30000 iterations in which we only optimized the spatio-temporal parameters.


 The expectation terms in the lower bound were approximated using only one Monte-Carlo sample as proposed in (Kingma and Welling, 2013).

 The table below gives the learning rates (LR) of all the parameters of the model.
Table 1

Learning rates (LR) of the different parameters of the model.

θ M P Z σ;ν δ
15
LR
 10�2
 10�3
 10�1
 10�1
 10�2
 10�4
Appendix D

In this Appendix, we first provide a pseudo-code for sampling from a normal distribution using the reparameterization trick (see Algorithm 1). The
second pseudo-code (Algorithm 2) details the steps to compute the lower boundLm for a given imaging modality m. We recall that we want to optimize
the following sets of parameters (see Section 3.5): δ ¼ fδpgPp¼0, Z, σ ¼ fσmgMm¼1, ν ¼ fνcgCc¼1, θ ¼ fθmgMm¼1[ fθcgCc¼1, and ψ ¼ fψmgMm¼1. Where P is the

number of subjects, M the number of imaging modalities, C the number of scalar features, and Nm the number of spatio-temporal sources for a given
modality m.

θ ¼ �Rm
n:;Q

m
n:;T

m
n:;V

m
n:; ln; n 2 ½1;Nm�

�M
m¼1[ fRc:;Qc:;Tc:;Vc:; lc; gCc¼1;

ψ ¼ �Mm
n:;P

m
n:; n 2 ½1;Nm�

�M
m¼1:

(1)

Similarly to Algorithm 2, we can derive a function LOSS_SCALAR when dealing with scalar scores by removing the computations on the spatial
sources. Finally the last pseudo-code (Algorithm 3) details the model optimization. For sake of clarity we denote by Π, the set of all the spatio-temporal
parameters of the model.
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Algorithm 1. Sampling from N ðμ;ΣÞ using the reparameterization trick.
Algorithm 2. Compute loss for a given imaging modality m.
16
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Algorithm 3. Model optimization.
Appendix E

In this Appendix, we show results obtained with standardmethods (ICA, NMF, PCA) when applied within the experimental setting of Section 4.2. We
recall that for these experiments observations were randomly aligned along the time-axis. The goal was to assess the ability of the different methods to
reconstruct the spatio-temporal sources underlying the data when the time-axis is unknown. Results obtained in Table 1 show a substantial decrease of
performances for the MSE and SSIM compared to MGPA (cf Table 2 in Section 4.2). Indeed, these methods do not consider time as a variable on which
inference is required, thus preventing them from reconstructing correctly the temporal sources. Fig. 1 shows an example of reconstruction when using
ICA. We observe that even though the spatial reconstruction remains acceptable, the estimated temporal sources are not interpretable as ICA re-
constructs the data using the time-axis on which observations have been mixed.
17
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Table 1

MSE and SSIM between respectively the ground truth temporal and
spatial sources with respect to the ones estimated by the different stan-
dard methods.

Temporal (MSE) Spatial (SSIM)
18
ICA
 0:24	 0:08
 54%	 2

NMF
 0:25	 0:03
 22%	 14

PCA
 0:66	 0:05
 9%	 3
Fig. 1. Spatial maps: Sample slice from ground truth images (A0 λ ¼ 2 mm, A1 λ ¼ 1 mm), the maps estimated by ICA. Temporal sources: Ground truth temporal
sources (red) along with sources estimated by ICA (blue).

Appendix F

We provide in this Appendix details on the model convergence when applied on the ADNI data. The training was divided in three iterations of 30000
epochs each. During the two first iterations the spatio-temporal parameters and the time-shift are trained alternatively following a scheme of
[2000,1000] epochs ten times. The third iteration only optimizes the spatio-temporal parameters. In Fig. 1, we show the evolution of the total loss and
the different terms composing it during training. The term reconstruction cost stands for

P
m
Eq1 ;q2 ;q3 ½logðpðYmjBm;Ωm;Wm;Zm;δ;σmÞÞ�, monotonicity cost

for
P
m
Eq2 ;q3 ½logðpðCmjΩm;Wm; δ; γmÞ Þ � and KL for

P
m
D½q1ðBmÞjjpðBmÞ� þ D½q2ðΩmÞjjpðΩmÞ� þ D½q3ðWmÞjjpðWmÞ�. We observe that through the first two

iterations the reconstruction and monotonicity costs decrease, and become stable during the last iteration. Differently, the KL cost increases during the
first iteration as the model is driven by the reconstruction and monotonicity constraints. The KL term decreases during the second iteration, thus
regularizing the model, before becoming stable during the third iteration. We also note that the graphs in Fig. 1 show convergence profiles typical of
those obtained with stochastic variational inference schemes, such as with Variational Autoencoders or Bayesian Neural Networks.

mailto:Image of Fig. 1|tif
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Fig. 1. Evolution of the total loss, reconstruction cost, monotonicity cost and KL during training. Each iteration corresponds to 30000 epochs.

Appendix G

In this Appendix, we provide the results obtained when applying ICA, NMF and PCA on the ADNI data of Section 4.3.1. We used the three imaging
modalities for each subject and concatenated these images in a ð544�4256460Þ matrix. Our goal was to compare the spatio-temporal processes
extracted using these standard methods with the ones from MGPA. We recall that in the case of MGPA the model automatically re-aligns the obser-
vations following monotonic assumptions for each biomarker, while these standard methods don’t perform any inference on the time variable.
Therefore, we created three experimental settings in which we changed the observations’ alignment. In the first one, subjects were aligned by their
chronological age (Figs. 1–3), in the second one by ADAS13 (Figs. 4–6) and in the last one time was randomly initialized like in the experiments of
Section 4.3.3 (Figs. 7–9). We extracted six spatio-temporal sources for each method and each time-alignment, like in 4.3.2.

We observe that the temporal profiles are generally noisy and hard to interpret due to the lack of constraints on the temporal evolution. This
motivates the need of smooth and monotonic constraints as in MGPA. Moreover, due to the concatenation of all the modalities they all share the same
temporal patterns. This is an important difference with the modality-specific modelling of MGPA. Finally, we note that the spatial patterns associated
with each method are very similar, independently from the time-initialization, while the temporal sources substantially differ. This is also true when
time is randomly initialized. These observations point to the challenge of giving a clinical interpretation of the results obtained with these approaches,
and therefore to the need of plausible spatio-temporal constraints as provided in MGPA.
19
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Subjects aligned by age

Fig. 1. Spatio-temporal processes extracted by ICA with subjects aligned by age.
20
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Fig. 2. Spatio-temporal processes extracted by NMF with subjects aligned by age.
21
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Fig. 3. Spatio-temporal processes extracted by PCA with subjects aligned by age.
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Subjects aligned by ADAS13

Fig. 4. Spatio-temporal processes extracted by ICA with subjects aligned by ADAS13.
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Fig. 5. Spatio-temporal processes extracted by NMF with subjects aligned by ADAS13.
24
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Fig. 6. Spatio-temporal processes extracted by PCA with subjects aligned by ADAS13.
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Subjects randomly aligned

Fig. 7. Spatio-temporal processes extracted by ICA with subjects randomly aligned.
26
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Fig. 8. Spatio-temporal processes extracted by NMF with subjects randomly aligned.
27
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Fig. 9. Spatio-temporal processes extracted by PCA with subjects randomly aligned.
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