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Proteomic and imagingmarkers have beenwidely studied as potential biomarkers for diagnosis, monitoring and
prognosis of Alzheimer's disease. In this study, we used Alzheimer Disease Neuroimaging Initiative dataset and
performed parallel independent component analysis on cross sectional and longitudinal proteomic and imaging
data in order to identify the best proteomic model for diagnosis, monitoring and prediction of Alzheimer disease
(AD).
We used plasma proteins measurement and imaging data fromAD and healthy controls (HC) at the baseline and
1 year follow-up. Group comparisons at baseline and changes over 1 year were calculated for proteomic and
imaging data. The results were fed into parallel independent component analysis in order to identify proteins
that were associated with structural brain changes cross sectionally and longitudinally. Regression model was
used to find the best model that can discriminate AD from HC, monitor AD and to predict MCI converters from
non-converters.
We showed that five proteins are associated with structural brain changes in the brain. These proteins could
discriminate AD from HC with 57% specificity and 89% sensitivity. Four proteins whose change over 1 year
were associated with brain structural changes could discriminate AD from HC with sensitivity of 93%, and
specificity of 92%. This model predicted MCI conversion to AD in 2 years with 94% accuracy. This model has the
highest accuracy in prediction of MCI conversion to AD within the ADNI-1 dataset. This study shows that
combination of selected plasma protein levels and MR imaging is a useful method in identifying potential
biomarker.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is the most common neurodegenerative
disorder. Emerging diagnostic techniques using multiple imaging
modalities have contributed tremendously to our knowledge of the
disease in recent years (Perrin et al., 2009), but AD's pathophysiology
still remains largely elusive. Emerging disease-modifying strategies for
AD necessitate accurate biomarkers for early diagnosis, monitoring
g Centre, and Department of
s, Tehran 4739, Iran.

d from the Alzheimer’s Disease
du). As such, the investigators
tation of ADNI and/or provided
s report. A complete listing of
edu/wp-content/uploads/how_
and prognosis more than ever before. Magnetic resonance imaging
(MRI) measures have been shown to predict conversion of mild
cognitive impairment (MCI) to AD (deToledo-Morrell et al., 2004; Jack
et al., 1999; Risacher et al., 2010; Whitwell et al., 2008) and cognitive
decline in elderly people (Mungas et al., 2002; Rusinek et al., 2003).
Similarly proteomic indices have been shown to have diagnostic value
in AD (Britschgi and Wyss-Coray, 2009; Hye et al., 2006; Ray et al.,
2007) and predict MCI conversion to AD (Ray et al., 2007). There are
potential advantages of proteomics over imaging as biomarkers in AD.
For example, a recent study on familial AD estimated that changes in
Aβ amyloid and tau protein levels may occur 5 years before brain
atrophy is detectable in MRI (Bateman, 2012). A group of investigators
recently used multivariate approach for analyzing proteomic profile in
Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and found
that apoE, B-type natriuretic peptide, C-reactive protein, and pancreatic
polypeptide are significantly different between MCI and AD group (Hu
et al., 2012). They also showed that CSF Aβ42 levels and t-tau/Aβ42
ratios correlated with the number of apoE4 alleles, plasma levels of B-
type natriuretic peptide and pancreatic polypeptide (Hu et al., 2012).
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However it is not clear if any of these proteins are associated with
changes in the brain, as they did not use any imaging data in their
analysis.

Combining imaging markers with proteomics (i.e. imaging pro-
teomics) provides an opportunity to identify proteins that are specifi-
cally associated with changes in the brain (Mattay et al., 2008; Meyer-
Lindenberg andWeinberger, 2006). In addition, this approachmay pro-
vide further mechanistic insights into pathophysiological mechanisms
of AD, which in turn could serve as new targets for therapeutic strate-
gies (Britschgi and Wyss-Coray, 2009).

Datamining in a large dataset withmany different variables is prone
to the problem of over fitting, and is all the more challenging due to
the within-modality correlations with mass univariate techniques
(Pearlson, 2009). Simply reducing the number of features considered
does not necessarily address the problem, as the relationship between
variables may also provide crucial information; for example, the dis-
covery of metabolic syndrome X (Eckel et al., 2005) was based on a
set of closely correlated physiological variables.

Parallel independent component analysis (PICA) greatly diminishes
this methodological problem (Liu et al., 2008). PICA is an unsupervised
multivariate algorithm to extract independent within-modality
patterns with strongest between-modality connections when more
than one modality is available. The intermodal associations between
resulting components are then further identified and quantified. These
components can be later compared on a component-wise basis between
experimental groups. PICA has been appliedwidely in neurosciences re-
search such as assessing relationships between electroencephalography
(EEG), structural and functional MRI (fMRI), with single-nucleotide
polymorphism (SNP) array (Jagannathan et al., 2010; Liu et al., 2009a,
b), EEG with fMRI (Wu et al., 2010) and positron emission tomography
(PET) with structural MRI (Tosun et al., 2011). Here, we used PICA to
explore the relationship between structural MRI data and proteomics
in ADNI dataset. The goal was to determine proteins that were associat-
ed with brain structural changes and therefore could have potential
value as biomarkers for diagnosis and monitoring AD as well as
predicting MCI conversion to AD.
Methods

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative database (adni.loni.
ucla.edu). The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60
million, 5-year public–private partnership. The primary goal of ADNI
has been to test whether serial MRI, positron emission tomography
(PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and
early AD. Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The principal investigator of this initiative
is Michael W. Weiner, MD, VA Medical Center and University of
California—San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects,
but ADNI has been followed by ADNI-GO and ADNI-2. To date these
three protocols have recruited over 1500 adults, ages 55 to 90, to partic-
ipate in the research, consisting of cognitively normal older individuals,
people with early or late MCI, and people with early AD. The follow up
duration of each group is specified in the protocols for ADNI-1, ADNI-2
and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date information,
see www.adni-info.org. Here, we used ADNI-1 and ADNI Plasma QC
Multiplex Data.

Subjects

The eligibility criteria for the inclusion of participants are de-
scribed at: http://adni.loni.ucla.edu/wp-content/uploads/2010/09/
ADNI_GeneralProceduresManual.pdf. Subjects are divided into the
following groups:

Healthy controls (HC): Mini-Mental State Examination (MMSE)
scores between 24 and 30, clinical dementia rating (CDR) of 0,
non-depressed and non-MCI.
MCI subjects: MMSE scores between 24 and 30, with memory com-
plaint, objective memory loss measured by education adjusted
scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5,
no significant levels of impairment in other cognitive domains, and
preserved activities of daily living.
Mild AD subjects: MMSE scores between 20 and 26, CDR of 0.5–1.0,
meeting NINCDS/ADRDA criteria for probable AD (McKhann et al.,
1984).

In this study, we chose AD and HC subjects from ADNI databasewho
had baseline and 12-month-follow-up plasma proteins measurement
and had pre-processed quality checked structural MRI data. For the
MCI patients, only those who had baseline plasma proteins levels and
had been followed up for at least two years were selected (n = 300),
of whom 110 subjects converted to AD during the follow up period.

Targeted multiplex proteomics

Procedure of plasma protein data collection and measurement is
explained in detail elsewhere (http://adni.loni.ucla.edu/wp-content/
uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf). In brief,
plasma proteins were measured in a subset of EDTA plasma samples
(obtained in the morning following an overnight fast) at baseline and
1 year follow up, using a 190 analyte multiplex immunoassay panel.
The panel, referred to as the human discovery map, was developed on
the Luminex xMAP platform by rules-basedmedicine (RBM) to contain
proteins previously reported in the literature to be altered as a result of
cancer, cardiovascular disease, metabolic disorders, and inflammation.
In addition, RBMpartneredwith Satoris (Inc., California, USA) to include
plasma proteins previously reported to change in patients with
Alzheimer's disease (Ray et al., 2007). Assays have been qualified
based on the least detectable dose, precision, cross-reactivity, dilutional
linearity, and spike recovery. Results of analyses on 148 analytes, which
passed quality control, were used in this study.

MRI acquisition and preprocessing

High-resolution T1-weighted MRI scans were acquired on 1.5 Tesla
MRI scanners from Siemens, General Electric Healthcare, and Philips
Medical Systems with the standard ADNI MRI protocol (Jack et al.,
2008). Each subject was scannedwith a sagittal 3DMP-RAGE sequence,
with acquisition parameters: inversion time (TI)/repetition time (TR):
1000/2400 ms; flip angle: 8°; 24 cm field of view; 192 × 192 × 166 ac-
quisition matrix, and a voxel size of 1.25× 1.25 × 1.2 mm3. In plane,
zero-filled reconstruction yielded a 256 × 256 matrix for a reconstruct-
ed voxel size of 0.94 × 0.94 × 1.20 mm3, later reconstructed to 1 mm
isotropic voxels. The scan quality was evaluated by the ADNI MRI
quality control center at theMayo Clinic following standardized criteria.
Images were calibrated with phantom-based geometric corrections to
ensure consistency among scans acquired at different sites. Image
corrections were applied using a processing pipeline at theMayo Clinic,
consisting of: (1) correction of geometric distortion due to gradient
non-linearity (Jovicich et al., 2006), i.e., “gradwarp”, (2) “B1 correction”
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for adjustment of image intensity inhomogeneity due to B1 non-
uniformity (Jack et al., 2008), (3) “N3” bias field correction for reducing
residual intensity inhomogeneity (Sled et al., 1998), and (4) geometrical
scaling for removing scanner and potential session specific calibration
errors using a phantom scan acquired for each subject (Gunter et al.,
2009). All original image files as well as images with all of these correc-
tions are available to the general scientific community at http://www.
loni.ucla.edu/ADNI/Data/.

Voxel-based morphometry

For the cross-sectional (baseline) study, data pre-processing
and voxel-based morphometry (VBM) were performed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm) and MATLAB v7.11 (Math-Works,
Natick, MA, USA). First, tissue classification was carried out on MR im-
ages to separate graymatter (GM), white matter (WM) and cerebrospi-
nal fluid (CSF) using the standard unified segmentation model in SPM8
(Ashburner and Friston, 2005). Second, GM population templates were
generated from the entire image dataset using the diffeomorphic ana-
tomical registration using exponentiated Lie algebra (DARTEL) tech-
nique (Ashburner, 2007). Third, after an initial affine registration of
the GM DARTEL templates to the tissue probability maps in Montreal
Neurological Institute (MNI) space (http://www.mni.mcgill.ca/), non-
linear warping of GM images was performed to the DARTEL GM tem-
plate in MNI space. Fourth, images were then modulated to ensure
that relative volumes of GM were preserved following the spatial nor-
malization procedure. Finally, images were smoothed with an 8 mm
full width at half maximum Gaussian kernel. To identify group differ-
ences in the modulated GM a two-sample t-test was used at each
voxel. To find differences that were spatially extended, we used an in-
ference method on the t-test images called threshold free cluster
enhancement (TFCE) (Smith and Nichols, 2009). TFCE is an extension
of cluster-wise inference that does not depend on a cluster-forming
threshold. The risk of false positives over the brain was controlled
with the family wise error rate (5% level) using a permutation method
with 5000 permutations (Nichols and Holmes, 2002), (FSL version
4.1.9, http://www.fmrib.ox.ac.uk/fsl/). A binary mask was created
from voxels showing significant between group differences. Pre-
processed GM images and the resulting masks were used as inputs for
parallel ICA.

Tensor-based morphometry

Tensor based morphometry (TBM) was used to assess changes over
time i.e. for longitudinal analysis mainly using SPM8 software package.
Pre-processing stages for TBM have been described in detail elsewhere
(Kipps et al., 2005). Briefly, the follow up T1-weighted MRI image
scanwas co-registeredwith the baseline image. A high-dimensional de-
formation field was used to warp the corrected late image to match the
baseline image for each subject (Ashburner and Friston, 2000). The
amount of volume change was quantified by taking the determinant
of the gradient of deformation at the single-voxel level (Jacobian deter-
minants). The following formula was applied to the segmented gray
matter image obtained from the first scan and the Jacobian determinant
map: (Jacobian value− 1) ×GM. The resultingproduct image represent-
ed a measure of the gray matter specific volume change between the
baseline and follow up scans. The normalization parameters were esti-
mated by matching the customized gray matter template that was cre-
ated earlier with the segmented gray matter image from the first scan
and were then applied to the product image (Ashburner and Friston,
1999). Normalized images were smoothed using an 8 mm isotropic
Gaussian kernel. Finally, the smoothed imagesweremultiplied by an in-
clusive gray matter mask. The value of each voxel in pre-processed
image shows volume loss or expansion during 1-year follow up. Statis-
tical analysis was performed using permutation testing as described
above. Binary mask was created from voxels showing significant
group difference (AD b HC) in the pre-processed images (p b 0.05
FWE-corrected) during one year. The resulting binary mask and pre-
processed images from one year longitudinal TBM were used as inputs
for monitoring disease progression (see below).

Parallel independent component analysis (PICA)

We used PICA to explore the relationship between plasma proteins
and regional brain atrophy simultaneously. The details of PICA have
been described elsewhere (Liu et al., 2009b). Briefly ICA estimates sets
of variables (components) that aremaximally independent; specifically,
it minimizes the mutual information between pairs of components.
PICA, for two modalities, simultaneously optimizes the independence
of components in each modality and the similarity of subject weights
between the modalities. Thus two sets of components are produced;
one for each modality, but a subset of the components will be defined
by subject weights that are similar between the two modalities (Liu
et al., 2009b). The number of components in each analysis was estimat-
ed by Akaike Information Criterion and Minimum Distance Length
(Calhoun et al., 2001). All of the components were normalized to Z
score to remove scaling and thresholded at z N 1.7 for visualization
purposes. The Pearson correlation coefficients were computed for
every possible pair of subject weights between the two modalities,
and significant relationships determined using false discovery rate
(PFDR b 0.05).

Following steps of analyses (see Fig. 1) were carried out:

1- To identify proteomic makers that may have potential value as bio-
markers for diagnosis of AD, we first used a two-sample t-test to
find significant differences (increase or decrease) in plasma protein
concentration between AD and HC groups as well as in their GM
density separately. Then PICA was run on those proteins and brain
regions that showed significant differences (increase or decrease)
between groups (after correction for multiple comparisons, FWE
for images, and FDR for proteomics). The result provides proteins
that are closely associated with modulated GM at the baseline.

2- To identify proteins that may have potential value as biomarkers
for monitoring AD progression, we first calculated TBM maps of
AD and HC subjects over one year showing longitudinal structural
brain changes. We then calculated plasma concentration differ-
ence (increase or decrease) of the proteins for each individual
over one year. A two-sample t-test on the longitudinal protein
concentration changes and TBM results to identify between
groups difference (corrected with FWE, p b 0.05). Finally PICA
was run on the TBM and protein changes (increase or decrease)
over 1 year in AD subjects only. This analysis identified proteins
whose changes over one year correlated with the structural
changes of the brain in AD.

3- To identify proteins that may have potential value as biomarkers
to determine the prognosis of MCI, we first carried out logistic re-
gression (using stepwise forward Wald method) on the resulted
proteomic factors of the cross-sectional analysis and corrected
that for age and sex, to develop the best model for discriminating
AD fromHC participants. The rational for this model was that pro-
teins that strongly correlated with brain structural changes were
likely to be useful potential biomarkers for diagnosis of AD. In ad-
dition, protein changes might precede brain structural changes
or/and cognitive changes. Also, we aimed to produce a totally
data-driven model rather than using a priori. A similar approach
was applied to the longitudinal data. We used this model to iden-
tify MCI subjects who converted to AD. Receiver operating char-
acteristic (ROC) curves was graphed, and areas under the curves
(AUC) along with its 95% confidence intervals (CI) were comput-
ed. Note that MCI subjects were not used for developing the “pre-
dictive” model to obtain unbiased estimates of MCI conversion
accuracy.

http://www.loni.ucla.edu/ADNI/Data/
http://www.loni.ucla.edu/ADNI/Data/
http://www.fil.ion.ucl.ac.uk/spm
http://www.mni.mcgill.ca/
http://www.fmrib.ox.ac.uk/fsl/


Fig. 1. Schematic representation of steps of data analysis.
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Results

Data from total of 49 HC, 300 MCI (of which 110 converted to AD
within 2 years), and 85 AD patients were analyzed. Participants' demo-
graphic and cognitive data are summarized in Table 1. Schematic
presentation of steps of analysis and the results is shown in Fig. 1.
Plasma level of 18 proteins that showed cross sectional group difference
at the baseline and 64 proteins that showed significant longitudinal
difference between groups in a year are shown in Table S1, S2, S3, S4
(supplementary data).

Cross-sectional analysis at baseline

Eighteen proteins exhibited significant differences (p b 0.05, FDR-
corrected) between AD and HC subjects (Table S1). The cross-
sectional VBM analysis found significantly reduced (p b 0.05, FWE-
corrected) gray matter in AD subjects relative to HC in several brain
regions, including hippocampus, amygdala, thalamic nuclei, posterior
cingulate-precuneus junctions, inferior, middle and superior temporal
gyri, parahippocampal/fusiform cortices and right angular gyrus
(Fig. 2). PICA showed that 8 imaging components (components that
were resulted from running ICA on imaging data) associatedwith 9 pro-
tein components (Table S2). Of the 8 × 9 = 72 possible intermodal
pairwise correlations, 5 components had statistically significant rela-
tionship (PFDR b 0.05) (Fig. 2).ModulatedGM in hippocampus, amygda-
la and several other temporal lobe structures along with posterior
cingulate cortex and thalamus was associated with decreased
interleukin-16 (IL-16), and apolipoproteinE (apoE) as well as increased
thyroxin-binding globulin (TBG), and alpha-2-macroglobulin levels.
Modulated GM in right inferior and middle temporal gyri was
Table 1
Demographic and cognitive characteristics of subjects.

Groups HC MCI AD F/χ2 (p-values)

Number 49 300 85
Age 75.1 (5.7) 74.7 (7.2) 75.2 (7.8) 0.171(0.84)
Percent female 44.9% 35.3% 44.7% 3.73(0.15)
Education (yrs) 15.5 (2.9) 15.8 (2.9) 15.1 (3.1) 1.41 (0.24)
MMSE 29.0 (1.2) 27.1 (1.7) 23.5 (1.9) 196 (b0.001)
ADAS-Cog 9.7 (4.3) 18.2 (6.3) 28.7(7.6) 151(b0.001)

HC = healthy control; MCI = mild cognitive impairment; AD = Alzheimer's disease;
MMSE = Mini–Mental State Examination; ADAS-Cog = Alzheimer's Disease Assessment
Scale-cognitive subscale.
associated with increased brain natriuretic peptide (BNP), pancreatic
polypeptide (PPP), and peptide YY (PYY) concentrations. Thalamic GM
was significantly correlated with decreased IgM, as well as increased
Eotaxin-3, and PYY levels. Among the 5 significant intermodal compo-
nents, a total of 9 proteins had significant Z-scores (PFDR b 0.05). The
proteins and brain regions in these components are summarized in
Table 2.

Longitudinal analysis

Sixty-four proteins showed significant difference in their changes
over 1 year in AD when compared with controls (PFDR b 0.05)
(Table S1). Similarly, caudate, putamen, amygdala, fusiform cortex,
posterior cingulate, lingual, and parahippocampal gyri, and right anteri-
or cingulate and right middle temporal gyri showed significantly
(PFWE b 0.05) more gray matter loss in AD than healthy subjects over
1 year followup (Fig. 3). PICA onAD subjects (n=85) identified 10 pro-
teomic components associated with 12 structural imaging components
(Table S1, S3 and S5). Of the 10 × 12 = 120 possible intermodal
pairwise correlations, 4 components were significant (PFDR b 0.05)
(Fig. 3). In AD, right fusiform cortex atrophy rate was associated with
decreased bone morphogenetic protein 6 (BMP6), and fibroblast
growth factor 4 (FGF4), while these factors increased in healthy con-
trols. Right fusiform atrophy was also associated with less reduction in
AD (compared to normal reduction) of neuronal cell adhesionmolecule
(NCAM), and matrix metalloproteinase-10 (MMP-10). In addition, in-
creased matrix metalloproteinase-9 (MMP-9), and superoxide dismut-
ase 1- soluble (SOD-1) levels were associated with right fusiform
atrophy. Cingulate gyrus and left fusiform cortex atrophy rate were as-
sociated with more reduction (compared with normal reduction) of
VonWillebrand factor (vWF) level. Atrophy rate of amygdala was asso-
ciated with reduced E-selectin level (Table 2). Among the 4 significant
intermodal components, a total of 8 proteins had significant Z-scores
(PFDR b 0.05).

Diagnostic and prognostic utility of the potential biomarkers

The 9 proteins, which significantly correlated with regional brain at-
rophy at the baseline, were entered into the stepwise logistic regression,
and 5 proteins were found to be capable of meaningfully classifying AD
from control (Table 3). This model discriminated AD from normal sub-
jects with specificity of 62% and sensitivity of 93% (AUC = 0.917,
CI= [0.86,0.96], SD= 0.02, p b 0.0001). Cross validation using discrim-
inant analysis with leave one out (DALOO) showed sensitivity of 89.4%,



Fig. 2. Results of VBM group comparison (top) using t-test corrected for multiple comparisons using TFC thresholded at p N 0.05. Bottom shows the result of parallel independent
component analysis at the baseline thresholded at z N 1.7.
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and specificity of 57%. When this model was applied on MCI patients
(n = 342) at the baseline, 64.5% (40 out of 62) of converters to AD
were correctly identified.

In addition, the four proteins whose changes over time correlated
with structural brain changes were used as a model to discriminate AD
from control. This model had 92.9% sensitivity and 69.4% specificity.
Cross validation of this model using DALOO showed sensitivity of 92.9%,
Table 2
Plasma proteins and structural MRI components.

Study Plasma proteins Z Prot.IC

Cross-sectional Interleukin-16 2.8 A
Thyroxine-binding globulin 1.7

Alpha-2-Macroglobulin 1.7
Apolipoprotein E 1.7

Brain natriuretic peptide 2.6 B
Pancreatic polypeptide 2.1
Peptide YY −2.0
IgM 2.0 C
Eotaxin-3 1.7
Peptide YY −1.6

Longitudinal Bone morphogenetic protein 6 4.0 A
Matrix Metalloproteinase-9 3.1
Neuronal cell adhesion molecule 3.1
Fibroblast growth factor 4 2.5
Matrix Metalloproteinase-10 −2.4
Superoxide Dismutase 1- Soluble 1.7
Von Willebrand factor 6.9 B

E-selectin 7.8 C
and specificity of 91.8%. We, then, used this model to predict MCI con-
verters and found that the model correctly identified 93.5% (58 out of
62) of the converters. When ApoE (a well known risk factor for AD)
was removed from the model, the sensitivity and specificity of the
model for discriminating AD from control dropped to %85 and %50 re-
spectively and the predictive power of MCI convertors to AD fell to 56%.
Adding age and sex to the model did not affect the result significantly.
sMRI IC Brain Regions (|z| N 2.3) r (p)

A Hippocampus, posterior cingulate,
inferior and middle
temporal gyrus, thalamic nuclei

0.41 (b0.0001)

B Amygdala, anterior hippocampus,
temporal fusiform cortex

0.30 (0.002)

C Fusiform cortices, parahippocampal gyri,
right inferior temporal gyrus

0.22 (0.02)

D Right inferior and middle temporal gyrus −0.22 (0.02)

E Thalamic nuclei −0.22 (0.02)

A Right fusiform cortex −0.30 (0.04)

B Cingulate gyrus 0.30 (0.04)
C Left fusiform cortex −0.27 (0.04)
D Amygdala 0.26 (0.04)

image of Fig.�2


Fig. 3. Results of TBM group comparison (top) using t-test corrected for multiple comparison using TFC thresholded at p N 0.05. Bottom shows the result of parallel independent compo-
nent analysis over 1 year thresholded at z N 1.7.
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Discussion

Protein changes at baseline

There are differences in GM in AD patients relative to controls in
hippocampus, amygdala, thalamic nuclei, posterior cingulate-
precuneus junctions, inferior, middle and superior temporal gyri,
parahippocampal/fusiform cortices and right angular gyrus. This is
consistent with previous studies (Echavarri et al., 2011; Karas et al.,
2003; Shiino et al., 2006; Singh et al., 2006). We also found that plas-
ma levels of 18 proteins were significantly changed in AD subjects
when compared with control group. Among these proteins the levels
of IL-16, TBG, α2-Macroglobulin, apoE, BNP, PPP, PYY, IgM, and
Eotaxin-3 were associated with regional brain atrophy at baseline.
Current biological evidence supports relevance of these proteins to
pathophysiology of Alzheimer disease. For example, many studies
showed the role of apoE in AD particularly through its catalytic ac-
tion on amyloid Aβ (Potter and Wisniewski, 2012). In our study,
apoE plasma level was associated with atrophy of hippocampus, pos-
terior cingulate, inferior and middle temporal gyri, thalamic nuclei,
amygdala, temporal fusiform cortex, and parahippocampal gyri.
This is consistent with previous studies showing positive correlation
between apoE level and GM density (Gupta et al., 2011), and apoE
level and cognitive function (Yasuno et al., 2012a). A more recent
study in a non-demented elderly population showed that persons
with the APOEε4 allele have a smaller hippocampal volume (den
Heijer et al., 2012). Another study showed that APOEε4 carriers ex-
hibited greater atrophy of medial temporal lobe structures (Wolk
and Dickerson, 2010). A task related fMRI study on AD patients, in
which subjects were asked to detect novel items from previously
learned items, showed that subjects with APOEε4 demonstrated
less signal change in hippocampus (Johnson et al., 2006). Plasma
apoE levels were also found to correlate with Aβ burden (Gupta
et al., 2011) and cognitive performance in the aging population
(Yasuno et al., 2011; Yasuno et al., 2012b).
Previous studies showed α2-Macroglobulin (A2M) increase in plas-
ma (Hye et al., 2006) and its association with neural metabolism in hip-
pocampus (Thambisetty et al., 2008) of patients with AD. In our study,
association of A2M with atrophy of medial temporal lobe structures
may be a representation of amyloid deposition and subsequent cell
loss in these areas that often occur in AD. There are also independent
studies showing A2M elevation in temporal cortex of AD patients
(Wood et al., 1993). A2M is induced by inflammatory cytokines released
by neural cells (Strauss et al., 1992) and is a marker for brain blood bar-
rier breakdown (Cucullo et al., 2003). In addition, we found that IL-16
level was associated with atrophy of hippocampus, posterior cingulate,
inferior and middle temporal gyri, and thalamus. Together these find-
ings support an inflammatory process in early AD, which may be a use-
ful target for future therapies. Interestingly, plasma IL-16 was reported
to increase in mild and moderate AD but not in severe AD cases
(Motta et al., 2007), suggesting that these proteins may only be useful
markers at the early stages of the disease.

IgM, another inflammatory marker, was increase in AD group. In-
creased IgM in patients with AD has been previously reported (Kell
et al., 1996; Soares et al., 2012); however, there is no evidence to sup-
port the specificity of IgM for a pathologic process in thalamus in AD.
IgM increase may be an epiphenomenon related to an inflammatory
or infectious process in AD subjects (Miklossy, 2008).

We found that BNP level was associatedwith right inferior andmid-
dle temporal gyri atrophy. We found no evidence in the literature to
support a specific link between BNP and these structures. However, a
previous report showed independent association of raised N-terminal
pro-hormone of BNP (NT-proBNP) level with poor cognitive perfor-
mance, even in subjects with no history of prior stroke or coronary
heart disease (Daniels et al., 2011). BNP is co-secreted from strained car-
diac myocytes and has been associated with congestive heart failure. A
study on a cohort of dementia showed that high plasma BNP levels
was associated with vascular dementia, whereas they failed to demon-
strate a significant increase in the AD subjects (Kondziella et al.,
2009). Using a multiplex platform, it was shown that elevated NT-

image of Fig.�3


Table 3
Comparing the results of different logistic regressions.

1st Logistic
regression

2nd Logistic
regression

3rd Logistic
regression

Diagnostic Sens.,
Spec. (DALOO)

A2Macro BNP BNP
Angiotensinogen IL16 IL16
Apo AII PYY PYY
Apo B TBG TBG
Apo E APO E APO E
Calcitonin PLGF
CK-MB SGOT
Factor VII
FASLG receptor
FSH
HGF
IL16
Interferon gamma
induced protein 10
MCP2
MMP9
PLGF
PYY
Resistin
SGOT
Vitronectin
100%, 100%
(89.2%, 79%)

94.1%,
81.6%(91.8%,
81.6%)

92.9,
62.4%(89.4%,
57%)

Monitoring Sens.,
Spec. (DALOO)

BMP6 BMP6 BMP6
B2M Eselectin Eselectin
CLU MMP10 MMP10
MMP10 NrCAM NrCAM
NrCAM Leptin
PLGF PLGF
TFF3 TFF3
Thrombospondin1 VCAM
100%, 100%
(94.1%, 75.5%)

100%, 100%
(91.8%, 93.9%)

92.9%, 69.4%
(92.9%, 91.8%)

1st Logistic regression on 148 proteins.
2nd Logistic regression on proteins that showed significant difference between groups (18
in cross sectional and 64 in longitudinal analysis). (No MRI data used.)
3rd Logistic regression on proteins identified from running PICA on the result of 2nd
logistic regression and between group comparisons of VBM (9 in cross sectional and 8 in
longitudinal).
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proBNP in CSF could discriminatemildly demented subjects from cogni-
tively normal controls (Craig-Schapiro et al., 2011). Our findings indi-
cate that BNP may not be a specific marker for AD (Soares et al.,
2012), but it might indicate a vascular component for AD development
(Zlokovic, 2011).

Thyroxine-binding globulin is produced by the liver and binds thy-
roxine in blood. TBG level change may be associated with thyroid dys-
function that is common in the elderly. Low and high tertile of serum
thyrotropin concentration has been shown to increase risk of Alzheimer
disease in women (Tan et al., 2008).

Our study showed that pancreatic peptides and Eotaxin-3 signifi-
cantly change in AD patients. This is consistent with previous reports
(Craig-Schapiro et al., 2011; Koide et al., 1995; Soares et al., 2012;
Westin et al., 2012). However, we found no evidence to support specific
contribution of pancreatic peptides and Eotaxin-3 in thalamic pathology
in AD (as showed in our study). Reduction of pancreatic peptides bind-
ing sites have been reported in the temporal cortex and hippocampus of
AD subjects (Martel et al., 1990), though there are reports against pan-
creatic peptide changes in AD (Wikkelso et al., 1991). Recently, it was
shown that increased CSF concentration of Eotaxin-3 was associated
with conversion of MCI to AD (Westin et al., 2012). Eotaxin-3, along
with other CSF biomarkers, could enhance power of tau/Aβ42 ratio to
discriminate between subjects with CDR = 0 and CDR N 0 (Craig-
Schapiro et al., 2011). Others showed correlation of CSF Aβ42 levels,
and t-tau/Aβ42 ratios with the number of apoE4 alleles, plasma levels
of B-type natriuretic peptide and pancreatic polypeptide have been
demonstrated (Hu et al., 2012). Our study partly confirmed the result
of the latter study; however, there are differences in the methodology.
For example, we only identified proteins that are significantly asso-
ciated with brain structural changes therefore reducing the chance of
epiphenomena in our result.

Taking together, current available evidence is not sufficient to sug-
gest that these peptideswould be useful potential biomarkers for detec-
tion of AD.

Protein interval changes

We found that plasma level of 64 proteins changed within 1 year in
ADmore than that seen in controls. However, only changes of eight pro-
teins were associated with regional brain atrophy including the right
and left fusiform cortices, cingulate gyrus and amygdala. These proteins
were BMP6,MMP-9,NCAM, FGF4,MMP-10, SOD-1, vWF, and E-selectin.
Previous reports showed that BMP6, MMP-9, FGF4, NCAM and SOD-1
were linked to regulation of adult neurogenesis (Boutin et al., 2009;
Crews et al., 2010; Faiz et al., 2006; Ingraham et al., 2011; Kosaka
et al., 2006), a neural replenishment mechanism that is believed to be
impaired in AD (Lazarov et al., 2010). Moreover, it has been shown
that MMP-9 and SOD-1 have anti-Aβ amyloid properties (Murakami
et al., 2011; Yan et al., 2006). Several previous studies found no sig-
nificant difference in plasma MMP-9 level between healthy controls
and AD patients at baseline (Lim et al., 2011; Lorenzl et al., 2003;
Martin-Aragon et al., 2009), whereas one study reported significantly
decreased MMP-9 in AD (Horstmann et al., 2010), and another showed
that MMP-9/biliverdin reductase ratio could predictMCI to AD progres-
sion (Mueller et al., 2010). It has been demonstrated that CSF concentra-
tions of MMP-10 in association with that of Eotaxin-3 could enhance
differentiation of demented patients from non-demented healthy con-
trols (Craig-Schapiro et al., 2011).

We showed that Von Willebrand factor (vWF) changes over time
showed negative correlation with left fusiform atrophy and positive
correlation with cingulate gyri atrophy. vWF is a marker of endothelial
dysfunction (Vischer, 2006) which, in a recent meta-analysis, showed
to be associated with all types of dementias particularly of vascular
type (Quinn et al., 2011) supporting the notion implicating disturbance
of endothelial activation in AD (Grammas, 2011; Zlokovic, 2011).

Potential proteomic biomarkers for diagnosis of AD

We showed that combination of plasmaproteins levels of IL-16, TBG,
BNP, PYY, and ApoE can discriminate AD patients from healthy individ-
uals with sensitivity of 89% and specificity of 57%. However, changes of
BMP6, Eselectin, MMP10 andNrCAMover a year can provide amore ac-
curate model for AD diagnosis with 93% sensitivity and 92% specificity.
This is superior to any other diagnostic test thus far, for example,
when compared with CSF Aβ42 (sensitivity 80%, specificity 82%), CSF
Tau protein (sensitivity 80%, specificity 83%), MRI (sensitivity 83%, spec-
ificity 89%), FDG-PET (sensitivity 90%, specificity 89%), and SPECT (sen-
sitivity 80%, specificity 85%).

Potential proteomic biomarkers for predicting MCI conversion to AD

We found that combination of plasma proteins levels of IL-16, TBG,
BNP, PYY, and ApoE can predict MCI converters with 62.5% accuracy.
This is not better than currently available measures such as brain MRI,
which has 73% sensitivity and 81% specificity. However changes in
BMP6, Eselectin, MMP10 and NrCAM can predict 93.5% of MCI con-
verters, which is superior to any marker currently available for this
purpose.

These findings show a real potential for use of these proteins for
early diagnosis and monitoring AD as well as predict MCI conversion
to AD. Clearly blood tests are more convenient and probably cheaper
than imaging for diagnosis and disease monitoring.



664 A. Nazeri et al. / NeuroImage 102 (2014) 657–665
Conclusion

This report is the most comprehensive linkage study between pro-
teomics and structural brain atrophy in Alzheimer's disease.We showed
that combination of selected plasma protein levels and MRI may be a
useful method in identifying potential biomarker for diagnosis and
monitoring of AD, as well as for predicting MCI conversion to AD. Fur-
ther study is required to evaluate suitability of these proteins as bio-
markers in differentiating AD from other types of dementia.
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