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bstract

Cerebrospinal fluid (CSF) and structural magnetic resonance imaging (MRI) show patterns of change in Alzheimer’s disease (AD) that
recede dementia. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) studied normal controls (NC), subjects with mild cognitive
mpairment (MCI), and subjects with AD to identify patterns of biomarkers to aid in early diagnosis and effective treatment of AD. Two
undred twenty-two NC underwent baseline MRI and clinical examination at baseline and at least one follow-up. One hundred twelve also
rovided CSF at baseline. Unsupervised clustering based on initial CSF and MRI measures was used to identify clusters of participants with
imilar profiles. Repeated measures regression modeling assessed the relationship of individual measures, and of cluster membership, to
ognitive change over 3 years. Most individuals showed little cognitive change. Individual biomarkers had limited predictive value for
ognitive decline, but membership in the cluster with the most extreme profile was associated with more rapid decline in ADAS-cog.
ubtypes among NC based on multiple biomarkers may represent the earliest stages of subclinical cognitive decline and AD.

2010 Elsevier Inc. All rights reserved.
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Alzheimer’s disease (AD) is a neurocognitive disorder
urrently estimated to affect some five million people in the
SA and more than 25 million worldwide (Brookmeyer et
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E-mail address: labeckett@ucdavis.edu (L. Beckett).
† Data used in the preparation of this article were obtained from the

lzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.
cla.edu/ADNI). As such, the investigators within the ADNI contributed to
he design and implementation of ADNI and/or provided data but did not
articipate in analysis or writing of this report. A complete listing of ADNI
nvestigators is available at www.loni.ucla.edu/ADNI\Collaboration\ADNI_
danuscript_Citations.pdf.

197-4580/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.neurobiolaging.2010.04.025
l., 2007; Evans et al., 1990; Harvey et al., 2003; Hebert et
l., 2003). Mild cognitive impairment (MCI) has gained
ecognition as an intermediate clinical category between
ormal cognitive function and AD, with a greatly increased
isk of onset of AD (Bennett et al., 2002; Petersen et al.,
009). AD is characterized not only by cognitive decline,
ut also by underlying neurobiological changes that likely
recede the diagnosis of AD by a considerable period,
uring MCI and possibly even earlier, before measurable
linical impairment. The process is hypothesized to begin
ith amyloid deposition, followed by cortical atrophy and

ecreased metabolism, with effects only gradually becom-

mailto:labeckett@ucdavis.edu
http://www.loni.ucla.edu
http://www.loni.ucla.edu
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ng apparent in decreased cognitive performance and func-
ion (Jack et al., 2010). Identification of early markers of
isease would be of great interest to facilitate early diagno-
is, improved clinical trials for prevention by targeting in-
ividuals at greatest risk, and, ultimately, effective treat-
ent before widespread irreversible neurodegeneration

Clark et al., 2008).
A large number of potential markers have been proposed,

ncluding volumetric measures based on magnetic reso-
ance imaging (MRI), cerebrospinal fluid (CSF) biomark-
rs, FDG PET and others (Hampel et al., 2007; Shaw et al.,
007). Cortical atrophy, for example, is evident on struc-
ural MRI not only in AD but also to some extent in people
ith MCI (Morra et al., 2009; Nestor et al., 2008) and in
ormal elderly before the onset of MCI (Carlson et al.,
008). Between-person differences in CSF protein levels
ave also been reported to be associated with AD and MCI
Clark et al., 2008; Maddalena et al., 2003; Shaw et al.,
009). White matter hyperintensity (WMH) has been re-
orted to be increased in patients with AD, suggesting that
ascular lesions may also play a role in the neurodegenera-
ive process (Barber et al., 1999). Alternatively, WMH may
e a vascular pathology contributing to cognitive impair-
ent in an additive or even multiplicative manner. Homo-

ysteine, a risk factor for vascular damage, has also been
ypothesized as a possible risk factor for dementia (Smith,
008). Most studies of markers have focused on AD and
CI, as the clinical decline is most evident in these groups

nd association of candidate markers with clinical bench-
arks is more readily established. An earlier biomarker

orizon, however, would be of great scientific interest and
ave substantial clinical relevance.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI),
ointly funded by NIH, pharmaceutical partners, and the
lzheimer’s Association, is a multisite research initiative
hose aim is to identify biomarkers that would allow the
athological changes of AD to be diagnosed earlier, well
efore the clinical criteria for dementia are met, and to be
racked more precisely. The goal is to provide earlier diag-
osis and better assessment of disease progression and re-
ponse to therapy. The ADNI participants included normal
ontrols (NC) with detailed standardized assessment of
any potential candidate biomarkers and longitudinal fol-

ow-up of cognitive outcomes for up to 3 years. We exam-
ned a set of imaging and cerebrospinal fluid measures
reviously proposed in the literature as candidate markers
or early diagnosis, and assessed their distribution in normal
ontrols and their relationship to cognitive outcomes over
he follow-up period. Our hypothesis was that despite cog-
itive homogeneity at baseline in the NC subjects, there
ould be underlying biological heterogeneity in candidate
arkers, reflecting the earliest detectable changes in the

rain. These biological differences would be correlated with
ach other in a structured way, leading to the ability to

onstruct subgroups based on markers alone, and such sub- S
roups would subsequently have different cognitive trajec-
ories.

. Methods

.1. The Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained
rom the ADNI database (www.loni.ucla.edu/ADNI). The
DNI was launched in 2003 by the National Institute on
ging (NIA), the National Institute of Biomedical Imaging

nd Bioengineering (NIBIB), the Food and Drug Adminis-
ration (FDA), private pharmaceutical companies, and non-
rofit organizations, as a US$60 million, 5-year public-
rivate partnership. The research plan called for recruiting
00 adults, ages 55 to 90: approximately 200 healthy elderly
ontrols, 400 subjects with MCI, and 200 subjects with mild
ut probable AD. Subjects are followed longitudinally for
p to 3 years, with MRI scans, complete cognitive testing,
nd blood/urine samples collected at 6-month intervals,
epending on baseline diagnosis. In addition, subsets of the
ubjects undergo FDG-PET scans and CSF collection and
esting (Mueller, 2005a; Mueller, 2005b).

.2. Subjects

The individuals studied were recruited between 17 Au-
ust 2005 and 4 September 2007 as ADNI participants and
ere identified at baseline clinical evaluation as cognitively
ormal. NC, MCI and AD participants were frequency-
atched by age-group to a common target age profile. NC

articipants underwent cognitive testing and clinical exam-
nation by a physician at baseline and every 6 months for the
rst year and then annually for the next 2 years. MRI scans
1.5 Tesla) were performed in each subject (www.loni.
cla.edu/ADNI/Research/Cores/index.shtml) at baseline, re-
eated at 6, 12, 24, and 36 months. Approximately half the
articipants also provided CSF at the baseline and m12
isits. Additional details are given in Petersen et al. (Pe-
ersen et al., 2010). This study was approved by the Insti-
utional Review Boards of all the participating institutions.
nformed written consent was obtained from all participants
t each site. A detailed description of the study design and
nclusion criteria is available at clinicaltrials.gov/show/
CT00106899. Data used in this analysis were downloaded

rom the ADNI database (www.loni.ucla.edu/ADNI) on 27
eptember 2009. Analysis focused on NC but the MCI and
D group were described at baseline for comparison pur-
oses.

.3. Measures

Biomarker summary measures for cluster analysis were
elected using a list initially specified by researchers from
he ADNI Imaging and Biomarker Cores at the time of grant
ubmission, for core hypothesis tests. MRI summary mea-
ures were calculated by the Anders Dale Laboratory at UC

an Diego and normalized by their measure of intracranial

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml
http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml
http://www.clinicaltrials.gov
http://www.loni.ucla.edu/ADNI
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olume (ICV) (Fennema-Notestine et al., 2009). Summary
easures used were cerebral volume, hippocampal volume,

ntorhinal cortex thickness, and ventricle volume. WMH
ere detected by Charles DeCarli and the Imaging of De-
entia and Aging laboratory at UC Davis based on coreg-

stered T1-, T2-, and PD-weighted images using an auto-
ated protocol described previously (Schwarz et al., 2009).
otal WMH volume was used as the primary summary; it
as also standardized by ICV. CSF samples were obtained
y the individual centers, then banked and batch-processed
sing a standardized protocol, under the direction of Drs
eslie Shaw and John Trojanowski of the ADNI Biomarker
ore at the University of Pennsylvania School of Medicine

Shaw, 2008). CSF measures at baseline included A�1-42,
otal tau protein (t-tau), tau protein phosphorylated at the
81 threonine position (P-tau181), and the ratios t-tau/A�1-42

nd P-tau181/A�1-42 as previously described (Shaw et al.,
009). Apolipoprotein E genotype was determined and se-
um homocysteine assayed using a validated enzyme im-
unoassay methodology by the ADNI Biomarker Core.
wo cognitive performance tests were considered for mea-
urement of longitudinal change: the Rey Auditory-Verbal
earning Test (RAVLT) total of five trials, and the Alzhei-
er’s disease Assessment Scale-cognitive subsection (ADAS-

og), selected because some NC showed modest changes in
hese scales. Higher values of RAVLT and lower values of
DAS-cog correspond to better performance.

.4. Statistical analysis

All demographic, clinical and marker data were first
ummarized descriptively (means, standard deviations,
raphical summaries). Quantitative marker data (Imaging,
SF and serum) were standardized by subtracting the NC
ean and dividing by the standard deviation (SD) before

nclusion in regression models and clustering, to facilitate
omparisons across markers and analyses. As a comparison
or the utility of clusters as predictors, univariate and mul-
ivariate mixed models for longitudinal data were used to
odel changes in RAVLT and ADAS-cog over time using

andidate biomarkers as predictors (Laird and Ware, 1982).
he annualized rate of change was the model-estimated
lope, in units of cognitive test score change per year. Main
ffects of each predictor estimated the difference in cogni-
ive score at baseline, and interaction terms between pre-
ictor and time estimated the effect of a 1 SD increase in
redictor on the annualized rate of change in cognitive test
core. Random effects were included for slope and inter-
ept, and an unstructured correlation matrix was specified
or errors. All models also controlled for education effects
n cognitive test score and change. Variables in multivariate
odels were removed step-wise based on the p-value of the

ariable’s slope component. Univariate p values were re-
orted without adjustment for multiple comparisons, be-

ause the goal was not variable selection, but a reference S
omparison for the utility of any specific, individual bi-
marker compared with cluster membership.

Risk groups (clusters) based on baseline levels of CSF
nd serum biomarkers and MRI summaries were created by
nsupervised hierarchical clustering, without reference to
aseline cognitive test scores or to longitudinal trajectories
sing the function hclust in R. In this agglomerative ap-
roach, each individual begins as a cluster of one person.
lusters are then iteratively combined based on dissimilar-

ty. The calculation of dissimilarity relies on maximizing or
inimizing an objective function and a metric for distance

etween individuals. Many options exist for objective func-
ions and distance metrics; we explored seven different
bjective function methods (Ward’s method, single linkage,
omplete linkage, average, Mcquitty’s method, median and
entroid) and six different distance metrics (Euclidean, su-
remum norm, Manhattan, Canberra, binary, and
inkowski). Some combinations of these have a tendency

o produce clusters containing a very small number of in-
ividuals, essentially isolating individual outliers. These
ethods are not useful in this context because the resulting

ample sizes are too small to allow for further exploration.
e restricted consideration to methods that had at least five

ndividuals per cluster. Our primary approach used Ward’s
ethod, which is defined as minimal increase in the error

um of squares after combining clusters (Ward, 1963). Error
um of squares was calculated as the sum of the squared
uclidean distances of each cluster member to the cluster
enter. Similarity across clustering methods was assessed
y Rand’s statistic, a measure of agreement between two
artitions, with 1 representing perfect agreement and 0 cor-
esponding to equal amounts of concordance and discor-
ance (Rand, 1971). We also examined descriptively the
egree of agreement between methods on individuals be-
onging to the group with “unusual” profiles compared with
he typical NC. The choice of the number of clusters (k) was
ased on a combination of observed visual separation, plots
f the log within-cluster dissimilarity against k, and restric-
ions due to sample size. We chose k � 3 based on these
onsiderations. Although we are forming subgroups, we
ypothesize that these subgroups represent a categorization
f an unobserved continuum. Thus, for a larger sample size,
reasonable choice for k may be well beyond 3. Secondary

nalyses examined whether the effect of cluster membership
ould be accounted for by ApoE genotype or by age. Pre-
iminary analyses examined conversions from NC to MCI
ut found too few conversions to allow formal statistical
nalysis. Both regression models and clustering algorithms
sed a complete-case approach for biomarkers, excluding
ny individual missing one or more of the biomarkers in that
nalysis, and regression models treated missing cognitive
cores at scheduled visits as missing at random. Statistical
nalyses were carried out using the R package (R 2009) and

AS/STAT® software (SAS Institute, 2004).
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. Results

.1. Normal control participant characteristics

Baseline MRI were available for 222 NC and CSF bi-
marker data for 112 NC. However, not all image summary
easures were available for all images (range: 192–222). In

omparison with ADNI MCI and AD participants, the NC
ere similar in age but had higher education, fewer males,

nd fewer participants with one or more ApoE4 alleles
Table 1). As expected, given ADNIs design to yield three
learly differentiated groups, the NC had substantially
igher RAVLT scores and lower (better) ADAS-cog scores
t baseline; only about 5% of the NC group had scores as
ad as the average MCI participant at baseline. Imaging and
SF biomarkers, however, showed substantial overlap be-

ween groups; the 25% of the NC group with the worst
aseline measurement for almost all biomarkers was at or
eyond the baseline median of the MCI group (Petersen et
l., 2010). Means on summaries of MRI showed smaller
egional and global volumes, thinner entorhinal cortex, and
arger ventricles for AD than MCI, and for MCI than NC.
owever, the MCI mean was typically just one standard
eviation worse than the NC mean. CSF biomarker mean
evels for participants who had baseline lumbar puncture
ere consistent with previously reported patterns with

able 1
emographic, clinical, imaging and biomarker characteristics of ADNI pa
articipants with baseline data were included, but not all participants had

ariables NC

emographic mean (SD)
Na 222
Age 76.0 (5.0)
Percent male 52%
Education (years) 16.1 (2.9)
Percent ApoE4� 27%

linical
RAVLT score 43.5 (8.9)
ADAS-cog score 6.2 (2.9)

maging
Cerebral volumeb 0.685 (0.025)
Ventricle volumeb 0.026 (0.012)
Hippocampal volumeb 0.0050 (0.0005)
Entorhinal cortex thickness 6.50 (0.60)
White matter hyperintensity 2.65 (2.48)

erum biomarker
Homocysteinec 9.93 (2.88)

SF biomarkers
CSF sample size 112
A�1-42

d 206 (55)
t-taud 69 (28)
P-tau181

d 25 (14)
t-tau/A�1-42 0.4 (0.25)
P-tau181/A�1-42 0.1 (0.12)

a Sample sizes are based on subjects with at least one clinical follow-up
at baseline, so calculations for imaging and serum biomarker measure

b Presented as fraction of ICV.
c Presented as �mol/L.
d Presented in pg/mL.
igher tau protein and lower amyloid beta associated with e
reater cognitive impairment as captured by clinical diag-
osis. Considerable variability within the diagnostic groups
ed to substantial overlap across the groups.

The NC showed little change in clinical status during the
rst 36 months of follow-up. Only 10 converted to MCI
uring this period, and 1 of these 10 subsequently to AD.
hese NC had a mean of 4.4 (SD � 0.7) observations per
erson of ADAS-cog and a mean of 4.3 (0.8) observations
f RAVLT. For most participants, there was little change
ither in ADAS-cog score (Figure 1) or in RAVLT perfor-
ance (Figure 2), as would be expected in normal controls.
andom effects models for RAVLT and ADAS-cog showed

ignificant between-person variance in initial cognitive test
cores (random intercept) and rate of change (random
lope), indicating unexplained heterogeneity in trajectories
nd supporting exploration of baseline imaging summaries
nd fluid biomarkers as possible predictors of early cogni-
ive decline.

.2. Imaging and cerebrospinal fluid measures as
redictors of cognitive decline

We fitted mixed models for possible predictors of cog-
itive decline, separately with RAVLT and ADAS-cog tra-
ectories as the outcome. Each imaging or fluid biomarker
redictor, standardized as described above was first consid-

ts at baseline, comparing NC, MCI, and AD participants. All
each measure

CI AD p value

ean (SD) mean (SD)
82 181

74.8 (7.4) 75.1 (7.6) 0.12
64% 53% 0.005

15.6 (3.1) 14.8 (3.1) � 0.001
54% 67% � 0.001

30.8 (9.1) 23.3 (7.5) � 0.001
11.6 (4.5) 18.5 (6.4) � 0.001

0.671 (0.027) 0.659 (0.026) � 0.001
0.031 (0.014) 0.036 (0.016) � 0.001
.0044 (0.0007) 0.0040 (0.0007) � 0.001
5.85 (0.93) 5.14 (0.88) � 0.001
2.63 (2.47) 3.92 (7.32) � 0.001

10.6 (2.90) 10.6 (3.16) 0.02

89 98
164 (55) 143 (41) � 0.001
102 (54) 119 (56) � 0.001
35 (17) 41 (19) � 0.001
0.7 (0.56) 0.9 (0.48) � 0.001
0.3 (0.17) 0.3 (0.18) � 0.001

ment. Means and standard deviations are based on participants with data
e based on fewer subjects.
rticipan
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ssociation of a one SD higher level of the biomarker at
aseline with cognitive score at baseline and with annual-
zed rate of change in cognitive score was estimated using
odels with random effects for intercept and slope (Table

). Baseline test scores were significantly correlated in uni-
ariate models with baseline levels of many MRI and CSF

ig. 1. Longitudinal trajectories of ADAS-cog scores for a random sample
f 50 ADNI normal controls. The average longitudinal trajectory for each
f the three clusters is also presented.

ig. 2. Longitudinal trajectories of RAVLT scores for a random sample of
0 ADNI normal controls. The average longitudinal trajectory for each of
0he three clusters is also presented.
arkers. Higher (worse) initial ADAS-cog scores were as-
ociated with lower cortical volume at baseline as measured
y hippocampal volume (0.41 points better for each SD
arger, p � 0.02), entorhinal cortex (0.71 points better for
very SD thicker, p � 0.001), and ventricular volume (0.52
oints worse for every SD larger, p � 0.003). CSF biomar-
er differences at baseline were also associated with worse
nitial performance on the ADAS-cog; a one SD lower CSF
�1-42 (p � 0.017) predicted about a half-point worse
DAS-cog, as did a one SD higher P-tau181/A�1-42 ratio

p � 0.027). Higher (better) initial RAVLT scores were
ssociated with larger cortical volume, whether measured
y a one SD increase in cerebral volume (1.34 point higher
core, p � 0.026), hippocampal volume (1.62 point better,
� 0.007), or entorhinal thickness (2.20 points better, p �

.001). A one SD increase in ventricular volume was asso-
iated with initial RAVLT scores almost two points worse
p � 0.001). Higher homocysteine levels at baseline were
lso associated with significantly worse initial RAVLT
core (1.85 points worse for a one SD higher level, p �

able 2
nivariate estimates from mixed models (random slope and intercept) of

ssociation of one-standard deviation higher level in baseline imaging,
erum, or CSF marker with cognitive test outcome at baseline and with
nnualized rate of change in cognitive test score. All imaging summaries
ere normalized by total intracranial volume before standardizing by
aseline mean and standard deviation of normal controls. Predictors
ignificant at 0.05 level are indicated with bold face

redictor Outcome: ADAS-cog
score

Outcome: RAVLT
score

Estimate SE p-value Estimate SE p-value

ffects on baseline score
ale �1.01 0.35 0.004 5.92 1.15 < 0.001
poE4� 0.60 0.38 0.11 1.01 1.32 0.44
omocysteine 0.28 0.17 0.10 �1.85 0.58 0.001
erebral vol �0.31 0.17 0.07 1.34 0.60 0.026
ipp vol �0.41 0.17 0.02 1.62 0.60 0.007
ent vol 0.52 0.17 0.003 �1.96 0.59 0.001
ntorhin thick �0.71 0.17 < 0.001 2.20 0.60 < 0.001
hite matter 0.09 0.18 0.63 �0.06 0.65 0.93

-tau 0.20 0.22 0.36 �0.27 �0.77 0.73
-tau181 0.30 0.22 0.18 �1.21 0.77 0.11
�1-42 �0.52 0.22 0.017 0.60 0.76 0.43

-tau/A�1-42 0.36 0.22 0.10 �0.73 0.76 0.33
-tau181/A�1-42 0.49 0.22 0.027 �1.57 0.76 0.041
ffects on annual change
ale 0.05 0.16 0.76 0.47 0.39 0.23
poE4� 0.29 0.18 0.10 0.21 0.44 0.63
omocysteine 0.16 0.08 0.047 0.10 0.20 0.64
erebral vol �0.09 0.08 0.28 0.14 0.20 0.50
ipp vol �0.16 0.08 0.046 0.17 0.20 0.38
ent vol 0.08 0.08 0.31 0.01 0.20 0.97
ntorhin thick �0.05 0.08 0.55 �0.06 0.20 0.76
hite matter �0.01 0.08 0.90 �0.20 0.19 0.29

-tau 0.02 0.11 0.90 0.05 0.25 0.83
-tau181 0.21 0.11 0.048 0.08 0.24 0.73
�1-42 �0.09 0.11 0.42 �0.27 0.25 0.29

-tau/A�1-42 0.08 0.12 0.50 0.26 0.27 0.33
-tau181/A�1-42 0.23 0.11 0.036 0.16 0.24 0.52
.001.) A one SD higher P-tau181/A�1-42 ratio was also
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ssociated with a 1.57 point lower baseline RAVLT score
p � 0.041).

Baseline imaging and biomarker scores, though, had
ittle predictive impact on ADAS-cog or RAVLT change,
ssuming cognitive test score changes are linear over the
eriod of observation. A one SD higher homocysteine level
as associated with a 0.16 point per year faster worsening

n ADAS-cog performance (p � 0.047), while a one SD
maller hippocampus was associated with about the same
agnitude of difference in rate of ADAS-cog decline (p �

.046). A one SD higher P-tau181 or P-tau181/A�1-42 ratio
as associated with about a 0.2 point faster annual wors-

ning of ADAS-cog. These effects are modest; it would take
bout 5 years at this rate to account for a single additional
oint worse on the ADAS-cog. Adjusting p-values in Table
for multiple comparisons, as would be done for selection

f best predictors, would further reduce the evidence for
tility of individual biomarkers as predictors of cognitive
aseline or decline.

In multivariate models adjusted for education, no indi-
idual baseline measure of cortical volume or CSF re-
ained a significant predictor of cognitive decline, either

or the ADAS-cog or the RAVLT.
These analyses found little evidence of associations be-

ween either the individual standardized imaging and bi-
marker measures of this study or weighted sums of the

ig. 3. Three-dimensional representation of cluster assignments for 96
DNI normal controls, based on unsupervised clustering using 11 baseline
RI and CSF markers and serum homocysteine, without use of clinical

ata to define clusters. This representation is shown on three axes of the
riginal 11-dimensional data space, chosen to maximize separation of
luster centers for clearest visualization on paper of the cluster locations.
easures and subsequent cognitive decline in NC, over a P
eriod of up to 3 years. These results served as a comparison
or analyses which focused on an effort to identify individ-
als with a distinctive profile of biomarkers that separated
hem out from typical NC, without reference to their cog-
itive outcomes, and then to assess the behavior of cognitive
rajectories for these subgroups.

.3. Cluster analysis of normal controls using baseline
maging and biomarker measures

Cluster analysis of the NC using the 11 imaging and
iomarker measures (96 complete cases) identified three
istinct clusters, of size 32, 54, and 10. The first cluster was
elatively compact, while the third cluster was well sepa-
ated in multidimensional space even when individual mea-
urements might fall in the normal range (Figure 3, projec-
ion from 11 dimensions to 3, projection chosen to separate
luster centers for best visualization of cluster locations).
he second cluster was intermediate, but closer to the first,
healthier” cluster. We calculated the center (11-dimen-
ional point representing the average across all people in the
luster for each marker) for each of the three clusters and for
he MCI and AD groups (Table 3). Note that the MCI and
D data were not used to develop the clusters among the
C, but are included for comparison. Because all the mark-

rs were standardized using the NC mean and standard
eviation, components of the centers are in units of NC SD.
he center for Cluster 3, the atypical group, is 1.5–2.5 SD
way from the normal mean for all the baseline CSF bi-
markers. The average person in this cluster has a smaller
ortical volume than the compact, “healthier” Cluster 1 but
ot as small as a typical individual in Cluster 2. Overall,
luster 3 looks very close to the AD group for CSF and
loser to MCI than to normal for the MRI variables (Figure
). We also calculated Euclidean distances for the centers of
ach of the three clusters to the MCI and AD groups. Cluster
, the “atypical” cluster, was closer to the MCI and AD than
o either of the other two NC clusters (2.6 and 2.8 SD v. 4.8
nd 5.6 SD). Cluster 2 was equidistant from Cluster 1, the

able 3
arker values at center of NC clusters, compared with center of MCI

nd AD groups. All values are in SD units away from the overall NC
ean

ariable name Location of center of group, in SD from NC mean

NC
cluster 1

NC
cluster 2

NC
cluster 3

MCI AD

erebral vol 1.08 �0.57 0.00 �0.54 �1.05
ippo vol 0.84 �0.38 �0.19 �1.11 �1.79
ent vol �0.86 0.45 0.00 0.46 0.88
ntor thick 0.62 �0.24 �0.60 �0.83 �1.50
MH �0.24 0.12 �0.27 �0.02 0.50
omocysteine �0.44 0.23 0.10 0.23 0.23

-tau �0.26 �0.09 1.56 1.17 1.80
b1-42 0.22 0.03 �1.44 �0.77 �1.15
-tau181 �0.39 �0.12 2.19 0.79 1.22

-tau/Ab1-42 �0.32 �0.13 2.15 1.43 2.10

-tau181/Ab1-42 �0.37 �0.17 2.45 0.92 1.42
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typical” normal group, and MCI (2.7SD). Cluster 1 was
urthest from AD (6.1 SD). The MCI and AD groups were
loser together than any other two groups (1.7 SD).

Alternative clustering techniques generally led to similar
luster assignments, particularly with regard to the atypical cluster
Cluster 3). Among methods that did not result in clusters with
oo few individuals, the results were fairly consistent with
he results from Ward’s method, as measured by Rand’s
tatistic (average 0.64, range � [0.45, 1]) and by the ten-
ency to locate the same atypical cluster (over half kept at
east 9 of the 10 members of the atypical cluster together,
ost of these locating exactly the same cluster of 10). Using

ust MRI summary measures and omitting CSF biomarkers
pproximately doubled the available sample size but led to
ess clear separation between clusters, consistent with hy-
otheses that changes in amyloid levels precede volumetric
hange (Jack et al., 2010; Petersen et al., 2009).

We fitted mixed effects models to assess the predictive
alue of cluster membership at baseline on subsequent cog-
itive change (Table 4). Members of Cluster 3, the profile
arthest from a typical NC, had baseline scores 2 points
orse on average than the typical individuals in Cluster 1

or the ADAS-cog (p � 0.021) and 9 points worse on
verage for the RAVLT (p � 0.002). The atypical baseline
arker profile of Cluster 3 was also accompanied by a faster

ate of worsening on the ADAS-cog (1.25 points worse per
ear, p � 0.001). The rate of decline for RAVLT, while of
imilar magnitude, was not statistically significant (p �
.17). A permutation test was performed to determine the
ikelihood of a different clustering with groups of these
izes resulting in an equal or smaller p-value for the cluster

ig. 4. Difference for each biomarker of cluster means from the mean fo
ompared with distances for ADNI MCI and AD groups. Sign of standardiz
o that high values (top of figure) represent worse biomarker measuremen
ariable indicating decline in ADAS-cog (p � 0.0025). Out C
f 5,000 random clusterings, only 21 (less than 1%) resulted
n a p-value � 0.0025.

Further characterization of the three clusters found that
0% of the members of Cluster 3 had at least one ApoE4
llele, while 25% and 22% of the members of Clusters 1 and
were E4�.However, the association of cluster member-

hip with worse baseline performance and more rapid de-
erioration of ADAS-cog performance was not accounted
or by ApoE genotype or by participant age; results were not
aterially changed by including in the model the effects of

hese factors on baseline cognition and rate of change.
luster size and composition were sensitive at the margins

o choice of measures included and algorithms used but
ere overall quite robust.
Among the 96 people assigned to clusters, only 7 people

onverted to MCI, 2 in Cluster 3 (20%), 4 in Cluster 2 (8%)
nd 1 in Cluster 1 (3%). These numbers, while too small for

NI normal controls, standardized by normal control standard deviation,
rences was reversed for all variables except A�1-42 and ventricular volume

able 4
ixed-model estimates of effects of cluster membership based on

aseline imaging and biomarker measures on cognitive test outcome at
aseline and on annualized rate of change. Predictors significant at 0.05
evel are indicated with bold face. Cluster 3 is the most atypical and
luster 2 closer to the “typical” Normal Control

ariable ADAS-cog RAVLT

Estimate SE p-value Estimate SE p-value

ffects at baseline
luster 3 1.96 0.85 0.021 �9.08 2.84 0.002
luster 2 0.85 0.52 0.10 �3.45 1.73 0.048
ffects on annual change
luster 3 1.25 0.37 <0.001 1.18 0.87 0.17
luster 2 0.03 0.22 0.88 0.32 0.51 0.54
r all AD
ed diffe
ompeting interests. None reported for JN, JB, LB, DH.
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tatistical analysis, indicate the importance of additional
ollow-up of the NC.

. Discussion

Our analyses in a large, well-characterized cohort of
ormal controls found heterogeneity in imaging summary
easures and fluid biomarker summaries, indicating that the

iomarker profile could not be encompassed by a single,
ompact, well-defined set of boundaries. Instead, the pat-
erns were suggestive of several distinct clusters of individ-
als, even though these individuals were cognitively intact
t baseline and showed very little clinical progression over

years of follow-up. Regression models suggested that
aseline levels of some measures of brain size and CSF
iomarkers are associated with cross-sectional differences
n cognitive performance, and that increased P-tau181 and
he P-tau181/A�1-42 ratio may foreshadow slightly more
apid declines in ADAS-cog. The effects, however, were
odest, and not improved in multivariate regression analy-

is. Cluster analysis identified three distinct groups of indi-
iduals, based solely on their baseline imaging and biomar-
er measures without reference to cognitive status or
hange. One group in particular, comprising about 10% of
he NC group, was well separated from the bulk of the NC
nd lay closer to the centers of the MCI and AD groups,
ven when some individual marker measurements might be
loser to the center for typical NC. This subgroup had
trikingly lower baseline scores on the RAVLT, signifi-
antly worse scores on the ADAS-cog, and a significantly
ore rapid deterioration on the ADAS-cog than the typical
C. Membership in this cluster was associated with annual

ognitive decline approximately 5 times as rapid as that
redicted for a person one standard deviation worse than
verage on the strongest individual marker. A second group,
entered between the atypical group and the more typical
C group, showed structural MRI profiles closer to the MCI
roup and had somewhat worse baseline performance but
howed little difference in cognitive trajectory compared
ith typical NC. The division into distinct clusters was

obust across several clustering algorithms, with the same
eople consistently identified as a distinct group whose
enter placed them closer to the profile of MCI and AD. As
complementary approach, unsupervised regression trees
ere used to generate a proximity matrix which was then
lotted on multidimensional scaling axes and colored by
luster membership. The plot showed almost no mixing of
lusters, supporting the clusters identified with agglomera-
ive clustering despite the fact that methodologies have
lmost nothing in common. This suggests that the clusters
re not simply an artifact of the clustering process and may
nstead represent meaningful structure in the data.

Our findings are consistent with previous work suggest-
ng P-tau181, A�1-42, and their ratio as among the measures

ost closely reflecting early preclinical neurobiological g
hanges (Shaw et al., 2009; Stomrud et al., 2007). We also
ound evidence for correlation between brain atrophy mea-
ures and cross-sectional measures of cognitive perfor-
ance, even in this very high-functioning cohort. None of

hese measures, however, had substantial predictive power
or future cognitive decline, either taken individually or as
inear combinations. Little previous work has explored the
ultidimensional structure of imaging and CSF biomarkers

n clinically normal older people. A recent study (Fagan et
l., 2009) assessed correlations between CSF measures and
ormalized whole brain volume in cognitively normal el-
erly subjects and found that A�1-42, but not Tau or P-
au181, correlated inversely with whole-brain volume in el-
erly control subjects, while Tau and P-tau181 correlated in
ery mild and mild AD. Such findings have suggested a
ypothetical model of the sequence of biomarker changes in
he neurobiological process leading to AD, with amyloid
hanges occurring very early, followed by tau pathology,
olumetric and metabolic decline, and with a very gradual
nset of measurable cognitive decline, reaching the diagno-
is of dementia only very late in the cascade (Jack et al.,
010). Our analyses offer additional support for this con-
eptual model. We identified a subgroup of normal controls,
ased solely on biomarker profiles, who were notable pri-
arily for amyloid-related CSF abnormalities. Not only
ere people in this group much closer to the AD group in

heir CSF profile, but they also had a striking pattern of
DAS-cog decline over 2–3 years, despite being clinically
ell within the normal range to start. Figure 4 suggests

trong similarity to the conceptual model proposed in Jack
t al., 2010. Clustering based just on MRI measures failed to
solate such a distinctive subgroup. Our findings are con-
istent with Cluster 3 representing a group of people who
ave already progressed so far in amyloid deposition that
hey are starting to experience the earliest signs of clinical
ecline, even though their scores remain, for the most part,
ithin the wider normal range and do not yet verge on
ementia.

Methods looking at best classification strategies to pre-
ict conversion among NC are not yet applicable in ADNI,
s there are so few conversions. We are not aware of any
ork with data mining or other dimension-reduction strat-

gies based on rate of cognitive change as an outcome. Our
tudy represents a first attempt to seek structure based
trictly on the imaging and fluid biomarker measures, and to
ap the observed heterogeneity to distinct subgroups.
One limitation of our approach is that the CSF markers

ere available only for half the participants, thus reducing
he sample size available for clustering. This, in turn, led to
fairly small though stable “atypical” cluster of about 10%
f the NC with CSF. The remaining participants split with
very clustering algorithm we examined, with some uncer-
ainty in locating the border between a compact, “typical”
roup and a second group leaning toward the “atypical”

roup. A larger sample size might have allowed better
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efinition of the margins, as well as the variables most
mportant for identifying the “atypical” cluster. A second
imitation is that length of follow-up and the generally
ealthy nature of this cohort led to only a few conversions
o MCI, precluding our assessment of the predictive value of
he cluster for change in clinical status. A third limitation is
hat we used only a fraction of the many potential biomar-
ers, especially from the imaging summaries, and we in-
luded five participants with some imaging quality control
roblems whose effect on our findings appeared minimal in
he primary analysis. Our selection was based on previous
iterature, but may have omitted variables with better prog-
ostic power in the ADNI cohort. A fourth limitation is the
pproach to standardization of the imaging variables. Di-
iding by ICV may diminish differences between individ-
als or groups, although the cluster definitions were more
ependent on the CSF biomarkers. Finally, we have not
sed ADNI’s FDG PET or PiB imaging data because the
umber of participants with complete data on the MRI, CSF
nd PET imaging data would be too small for analysis.

Our approach has several notable strengths. First, the
DNI data offer one of the largest, uniformly ascertained
atabases available, with standardized protocols not only
or data collection but also for image processing and bi-
marker specimen assays. Second, our approach makes use
f 36 months of follow-up with standardized cognitive test-
ng. Third, our clustering strategy was “unsupervised”, that
s, based on the imaging and biomarker data without refer-
nce to cognitive endpoints or diagnostic categories, so that
e address directly the question of whether a strikingly
nusual profile on these measures may foreshadow clinical
ecline, without letting the outcome define the profile of
nterest. Notably, a recent study on ADNI CSF biomarkers
sed another unsupervised learning approach that identified
early the same CSF A� cut point as Shaw et al. (2009)
herein this cut point was established in subjects with

utopsy confirmed diagnoses of AD thereby demonstrating
he power of unsupervised analytical approaches (de Meyer
t al., 2010). Supervised techniques such as regression trees
r discriminant analysis offer a complementary approach,
ocused on identifying subgroups of clinical interest based
n their outcome, but would require cross-validation, po-
entially problematic in our sample of under 100 NC with
ittle clinical change as yet. In comparison with univariate or
ultivariate regression models, our approach takes advan-

age of the correlated relationship among the biomarkers,
ather than being limited by this interrelationship. This
trength of the clustering approach may account for the
mprovement in our ability to detect associations with future
ognitive change, compared with the more traditional uni-
ariate and multivariate regression models.

Our findings indicate that not just individual abnormal-
ties, but a distinctive pattern of imaging and biomarker
eviations from typical healthy older adults may be an early

arning sign of neurobiological pathology. Additional fol- D
ow-up would help to establish the prognostic value for
onger-term cognitive decline and conversion to MCI and
ventually to AD. A larger sample, with CSF on all partic-
pants, would help to confirm the cluster pattern for our
atypical” group and better define the boundary between the
ther two clusters. In addition, the recruitment of early MCI
articipants, as currently under way in the recently funded
DNI-GO grant, will offer an opportunity to test whether
ur atypical group have a profile similar to the earliest
tages of clinically identified impairment. Longitudinal
nalysis of the imaging and biomarker measures can also
ddress whether the distance of the atypical cluster relative
o the center for typical NC is increasing over time, and
hether the location of the intermediate cluster shifts to-
ard the atypical cluster’s baseline location over time.

. Conclusions

A pattern of imaging and biomarker deviations can iden-
ify a subgroup of normal controls distinct from typical
ognitively normal older participants. This subgroup, de-
ned based strictly on imaging and biomarkers, had sub-
tantially worse cognitive performance at baseline and a
ore rapid rate of deterioration on the ADAS-cog than the

ypical NC. Additional follow-up and analysis is warranted
o investigate the long-term clinical implications and to
haracterize the imaging and biomarker trajectories of sub-
roups over time.
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