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Abstract

Cerebrospinal fluid (CSF) and structural magnetic resonance imaging (MRI) show patterns of change in Alzheimer’s disease (AD) that
precede dementia. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) studied normal controls (NC), subjects with mild cognitive
impairment (MCI), and subjects with AD to identify patterns of biomarkers to aid in early diagnosis and effective treatment of AD. Two
hundred twenty-two NC underwent baseline MRI and clinical examination at baseline and at least one follow-up. One hundred twelve also
provided CSF at baseline. Unsupervised clustering based on initial CSF and MRI measures was used to identify clusters of participants with
similar profiles. Repeated measures regression modeling assessed the relationship of individual measures, and of cluster membership, to
cognitive change over 3 years. Most individuals showed little cognitive change. Individual biomarkers had limited predictive value for
cognitive decline, but membership in the cluster with the most extreme profile was associated with more rapid decline in ADAS-cog.

Subtypes among NC based on multiple biomarkers may represent the earliest stages of subclinical cognitive decline and AD.

© 2010 Elsevier Inc. All rights reserved.
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Alzheimer’s disease (AD) is a neurocognitive disorder
currently estimated to affect some five million people in the
USA and more than 25 million worldwide (Brookmeyer et

* Corresponding author at. Tel.: (530) 754-7161; fax: (530) 752-3239.

E-mail address: labeckett@ucdavis.edu (L. Beckett).

" Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.
ucla.edu/ADNI). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete listing of ADNI
investigators is available at www.loni.ucla.edu/ADNI\Collaboration\ADNI_
Manuscript_Citations.pdf.

0197-4580/$ — see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.neurobiolaging.2010.04.025

al., 2007; Evans et al., 1990; Harvey et al., 2003; Hebert et
al., 2003). Mild cognitive impairment (MCI) has gained
recognition as an intermediate clinical category between
normal cognitive function and AD, with a greatly increased
risk of onset of AD (Bennett et al., 2002; Petersen et al.,
2009). AD is characterized not only by cognitive decline,
but also by underlying neurobiological changes that likely
precede the diagnosis of AD by a considerable period,
during MCI and possibly even earlier, before measurable
clinical impairment. The process is hypothesized to begin
with amyloid deposition, followed by cortical atrophy and
decreased metabolism, with effects only gradually becom-
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ing apparent in decreased cognitive performance and func-
tion (Jack et al., 2010). Identification of early markers of
disease would be of great interest to facilitate early diagno-
sis, improved clinical trials for prevention by targeting in-
dividuals at greatest risk, and, ultimately, effective treat-
ment before widespread irreversible neurodegeneration
(Clark et al., 2008).

A large number of potential markers have been proposed,
including volumetric measures based on magnetic reso-
nance imaging (MRI), cerebrospinal fluid (CSF) biomark-
ers, FDG PET and others (Hampel et al., 2007; Shaw et al.,
2007). Cortical atrophy, for example, is evident on struc-
tural MRI not only in AD but also to some extent in people
with MCI (Morra et al., 2009; Nestor et al., 2008) and in
normal elderly before the onset of MCI (Carlson et al.,
2008). Between-person differences in CSF protein levels
have also been reported to be associated with AD and MCI
(Clark et al., 2008; Maddalena et al., 2003; Shaw et al.,
2009). White matter hyperintensity (WMH) has been re-
ported to be increased in patients with AD, suggesting that
vascular lesions may also play a role in the neurodegenera-
tive process (Barber et al., 1999). Alternatively, WMH may
be a vascular pathology contributing to cognitive impair-
ment in an additive or even multiplicative manner. Homo-
cysteine, a risk factor for vascular damage, has also been
hypothesized as a possible risk factor for dementia (Smith,
2008). Most studies of markers have focused on AD and
MCI, as the clinical decline is most evident in these groups
and association of candidate markers with clinical bench-
marks is more readily established. An earlier biomarker
horizon, however, would be of great scientific interest and
have substantial clinical relevance.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI),
jointly funded by NIH, pharmaceutical partners, and the
Alzheimer’s Association, is a multisite research initiative
whose aim is to identify biomarkers that would allow the
pathological changes of AD to be diagnosed earlier, well
before the clinical criteria for dementia are met, and to be
tracked more precisely. The goal is to provide earlier diag-
nosis and better assessment of disease progression and re-
sponse to therapy. The ADNI participants included normal
controls (NC) with detailed standardized assessment of
many potential candidate biomarkers and longitudinal fol-
low-up of cognitive outcomes for up to 3 years. We exam-
ined a set of imaging and cerebrospinal fluid measures
previously proposed in the literature as candidate markers
for early diagnosis, and assessed their distribution in normal
controls and their relationship to cognitive outcomes over
the follow-up period. Our hypothesis was that despite cog-
nitive homogeneity at baseline in the NC subjects, there
would be underlying biological heterogeneity in candidate
markers, reflecting the earliest detectable changes in the
brain. These biological differences would be correlated with
each other in a structured way, leading to the ability to
construct subgroups based on markers alone, and such sub-

groups would subsequently have different cognitive trajec-
tories.

1. Methods
1.1. The Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained
from the ADNI database (www.loni.ucla.edu/ADNI). The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies, and non-
profit organizations, as a US$60 million, 5-year public-
private partnership. The research plan called for recruiting
800 adults, ages 55 to 90: approximately 200 healthy elderly
controls, 400 subjects with MCI, and 200 subjects with mild
but probable AD. Subjects are followed longitudinally for
up to 3 years, with MRI scans, complete cognitive testing,
and blood/urine samples collected at 6-month intervals,
depending on baseline diagnosis. In addition, subsets of the
subjects undergo FDG-PET scans and CSF collection and
testing (Mueller, 2005a; Mueller, 2005b).

1.2. Subjects

The individuals studied were recruited between 17 Au-
gust 2005 and 4 September 2007 as ADNI participants and
were identified at baseline clinical evaluation as cognitively
normal. NC, MCI and AD participants were frequency-
matched by age-group to a common target age profile. NC
participants underwent cognitive testing and clinical exam-
ination by a physician at baseline and every 6 months for the
first year and then annually for the next 2 years. MRI scans
(1.5 Tesla) were performed in each subject (www.loni.
ucla.edu/ADNI/Research/Cores/index.shtml) at baseline, re-
peated at 6, 12, 24, and 36 months. Approximately half the
participants also provided CSF at the baseline and m12
visits. Additional details are given in Petersen et al. (Pe-
tersen et al., 2010). This study was approved by the Insti-
tutional Review Boards of all the participating institutions.
Informed written consent was obtained from all participants
at each site. A detailed description of the study design and
inclusion criteria is available at clinicaltrials.gov/show/
NCTO00106899. Data used in this analysis were downloaded
from the ADNI database (www.loni.ucla.edu/ADNI) on 27
September 2009. Analysis focused on NC but the MCI and
AD group were described at baseline for comparison pur-
poses.

1.3. Measures

Biomarker summary measures for cluster analysis were
selected using a list initially specified by researchers from
the ADNI Imaging and Biomarker Cores at the time of grant
submission, for core hypothesis tests. MRI summary mea-
sures were calculated by the Anders Dale Laboratory at UC
San Diego and normalized by their measure of intracranial
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volume (ICV) (Fennema-Notestine et al., 2009). Summary
measures used were cerebral volume, hippocampal volume,
entorhinal cortex thickness, and ventricle volume. WMH
were detected by Charles DeCarli and the Imaging of De-
mentia and Aging laboratory at UC Davis based on coreg-
istered T1-, T2-, and PD-weighted images using an auto-
mated protocol described previously (Schwarz et al., 2009).
Total WMH volume was used as the primary summarys; it
was also standardized by ICV. CSF samples were obtained
by the individual centers, then banked and batch-processed
using a standardized protocol, under the direction of Drs
Leslie Shaw and John Trojanowski of the ADNI Biomarker
Core at the University of Pennsylvania School of Medicine
(Shaw, 2008). CSF measures at baseline included AB 4,
total tau protein (t-tau), tau protein phosphorylated at the
181 threonine position (P-tau,g,), and the ratios t-tau/Af3, 4,
and P-tau,q,/AB,_4, as previously described (Shaw et al.,
2009). Apolipoprotein E genotype was determined and se-
rum homocysteine assayed using a validated enzyme im-
munoassay methodology by the ADNI Biomarker Core.
Two cognitive performance tests were considered for mea-
surement of longitudinal change: the Rey Auditory-Verbal
Learning Test (RAVLT) total of five trials, and the Alzhei-
mer’s disease Assessment Scale-cognitive subsection (ADAS-
cog), selected because some NC showed modest changes in
these scales. Higher values of RAVLT and lower values of
ADAS-cog correspond to better performance.

1.4. Statistical analysis

All demographic, clinical and marker data were first
summarized descriptively (means, standard deviations,
graphical summaries). Quantitative marker data (Imaging,
CSF and serum) were standardized by subtracting the NC
mean and dividing by the standard deviation (SD) before
inclusion in regression models and clustering, to facilitate
comparisons across markers and analyses. As a comparison
for the utility of clusters as predictors, univariate and mul-
tivariate mixed models for longitudinal data were used to
model changes in RAVLT and ADAS-cog over time using
candidate biomarkers as predictors (Laird and Ware, 1982).
The annualized rate of change was the model-estimated
slope, in units of cognitive test score change per year. Main
effects of each predictor estimated the difference in cogni-
tive score at baseline, and interaction terms between pre-
dictor and time estimated the effect of a 1 SD increase in
predictor on the annualized rate of change in cognitive test
score. Random effects were included for slope and inter-
cept, and an unstructured correlation matrix was specified
for errors. All models also controlled for education effects
on cognitive test score and change. Variables in multivariate
models were removed step-wise based on the p-value of the
variable’s slope component. Univariate p values were re-
ported without adjustment for multiple comparisons, be-
cause the goal was not variable selection, but a reference

comparison for the utility of any specific, individual bi-
omarker compared with cluster membership.

Risk groups (clusters) based on baseline levels of CSF
and serum biomarkers and MRI summaries were created by
unsupervised hierarchical clustering, without reference to
baseline cognitive test scores or to longitudinal trajectories
using the function hclust in R. In this agglomerative ap-
proach, each individual begins as a cluster of one person.
Clusters are then iteratively combined based on dissimilar-
ity. The calculation of dissimilarity relies on maximizing or
minimizing an objective function and a metric for distance
between individuals. Many options exist for objective func-
tions and distance metrics; we explored seven different
objective function methods (Ward’s method, single linkage,
complete linkage, average, Mcquitty’s method, median and
centroid) and six different distance metrics (Euclidean, su-
premum norm, Manhattan, Canberra, binary, and
Minkowski). Some combinations of these have a tendency
to produce clusters containing a very small number of in-
dividuals, essentially isolating individual outliers. These
methods are not useful in this context because the resulting
sample sizes are too small to allow for further exploration.
We restricted consideration to methods that had at least five
individuals per cluster. Our primary approach used Ward’s
method, which is defined as minimal increase in the error
sum of squares after combining clusters (Ward, 1963). Error
sum of squares was calculated as the sum of the squared
Euclidean distances of each cluster member to the cluster
center. Similarity across clustering methods was assessed
by Rand’s statistic, a measure of agreement between two
partitions, with 1 representing perfect agreement and 0 cor-
responding to equal amounts of concordance and discor-
dance (Rand, 1971). We also examined descriptively the
degree of agreement between methods on individuals be-
longing to the group with “unusual” profiles compared with
the typical NC. The choice of the number of clusters (k) was
based on a combination of observed visual separation, plots
of the log within-cluster dissimilarity against k, and restric-
tions due to sample size. We chose k = 3 based on these
considerations. Although we are forming subgroups, we
hypothesize that these subgroups represent a categorization
of an unobserved continuum. Thus, for a larger sample size,
a reasonable choice for k may be well beyond 3. Secondary
analyses examined whether the effect of cluster membership
could be accounted for by ApoE genotype or by age. Pre-
liminary analyses examined conversions from NC to MCI
but found too few conversions to allow formal statistical
analysis. Both regression models and clustering algorithms
used a complete-case approach for biomarkers, excluding
any individual missing one or more of the biomarkers in that
analysis, and regression models treated missing cognitive
scores at scheduled visits as missing at random. Statistical
analyses were carried out using the R package (R 2009) and
SAS/STAT® software (SAS Institute, 2004).
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Table 1

Demographic, clinical, imaging and biomarker characteristics of ADNI participants at baseline, comparing NC, MCI, and AD participants. All
participants with baseline data were included, but not all participants had data on each measure

Variables NC MCI AD p value
Demographic mean (SD) mean (SD) mean (SD)

N# 222 382 181

Age 76.0 (5.0) 74.8 (7.4) 75.1 (7.6) 0.12

Percent male 52% 64% 53% 0.005

Education (years) 16.1 (2.9) 15.6 (3.1) 14.8 (3.1) < 0.001

Percent ApoE4+ 27% 54% 67% < 0.001
Clinical

RAVLT score 43.5(8.9) 30.8 (9.1) 23.3(7.5) < 0.001

ADAS-cog score 6.2 (2.9) 11.6 (4.5) 18.5 (6.4) < 0.001
Imaging

Cerebral volume® 0.685 (0.025) 0.671 (0.027) 0.659 (0.026) < 0.001

Ventricle volume® 0.026 (0.012) 0.031 (0.014) 0.036 (0.016) < 0.001

Hippocampal volume® 0.0050 (0.0005) 0.0044 (0.0007) 0.0040 (0.0007) < 0.001

Entorhinal cortex thickness 6.50 (0.60) 5.85(0.93) 5.14 (0.88) < 0.001

White matter hyperintensity 2.65 (2.48) 2.63 (2.47) 3.92 (7.32) < 0.001
Serum biomarker

Homocysteine® 9.93 (2.88) 10.6 (2.90) 10.6 (3.16) 0.02
CSF biomarkers

CSF sample size 112 189 98

AB, " 206 (55) 164 (55) 143 (41) < 0.001

t-tau® 69 (28) 102 (54) 119 (56) < 0.001

P-tau g, ¢ 25 (14) 35(17) 41 (19) < 0.001

t-tau/AB; 4 0.4 (0.25) 0.7 (0.56) 0.9 (0.48) < 0.001

P-tau,g,/AB, 4o 0.1 (0.12) 0.3 (0.17) 0.3 (0.18) < 0.001

# Sample sizes are based on subjects with at least one clinical follow-up assessment. Means and standard deviations are based on participants with data
at baseline, so calculations for imaging and serum biomarker measures may be based on fewer subjects.

° Presented as fraction of ICV.
¢ Presented as wmol/L.
4 Presented in pg/mL.

2. Results
2.1. Normal control participant characteristics

Baseline MRI were available for 222 NC and CSF bi-
omarker data for 112 NC. However, not all image summary
measures were available for all images (range: 192-222). In
comparison with ADNI MCI and AD participants, the NC
were similar in age but had higher education, fewer males,
and fewer participants with one or more ApoE4 alleles
(Table 1). As expected, given ADNIs design to yield three
clearly differentiated groups, the NC had substantially
higher RAVLT scores and lower (better) ADAS-cog scores
at baseline; only about 5% of the NC group had scores as
bad as the average MCI participant at baseline. Imaging and
CSF biomarkers, however, showed substantial overlap be-
tween groups; the 25% of the NC group with the worst
baseline measurement for almost all biomarkers was at or
beyond the baseline median of the MCI group (Petersen et
al., 2010). Means on summaries of MRI showed smaller
regional and global volumes, thinner entorhinal cortex, and
larger ventricles for AD than MCI, and for MCI than NC.
However, the MCI mean was typically just one standard
deviation worse than the NC mean. CSF biomarker mean
levels for participants who had baseline lumbar puncture
were consistent with previously reported patterns with
higher tau protein and lower amyloid beta associated with

greater cognitive impairment as captured by clinical diag-
nosis. Considerable variability within the diagnostic groups
led to substantial overlap across the groups.

The NC showed little change in clinical status during the
first 36 months of follow-up. Only 10 converted to MCI
during this period, and 1 of these 10 subsequently to AD.
These NC had a mean of 4.4 (SD = 0.7) observations per
person of ADAS-cog and a mean of 4.3 (0.8) observations
of RAVLT. For most participants, there was little change
either in ADAS-cog score (Figure 1) or in RAVLT perfor-
mance (Figure 2), as would be expected in normal controls.
Random effects models for RAVLT and ADAS-cog showed
significant between-person variance in initial cognitive test
scores (random intercept) and rate of change (random
slope), indicating unexplained heterogeneity in trajectories
and supporting exploration of baseline imaging summaries
and fluid biomarkers as possible predictors of early cogni-
tive decline.

2.2. Imaging and cerebrospinal fluid measures as
predictors of cognitive decline

We fitted mixed models for possible predictors of cog-
nitive decline, separately with RAVLT and ADAS-cog tra-
jectories as the outcome. Each imaging or fluid biomarker
predictor, standardized as described above was first consid-
ered individually in a model adjusted for education, and the
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ADAS-cog scores in NC Subjects
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Fig. 1. Longitudinal trajectories of ADAS-cog scores for a random sample
of 50 ADNI normal controls. The average longitudinal trajectory for each
of the three clusters is also presented.

association of a one SD higher level of the biomarker at
baseline with cognitive score at baseline and with annual-
ized rate of change in cognitive score was estimated using
models with random effects for intercept and slope (Table
2). Baseline test scores were significantly correlated in uni-
variate models with baseline levels of many MRI and CSF

RAVLT scores in NC Subjects

o
@
| Better — Cluster 3
- Cluster 2
o —- Cluster 1
~
f=4
©w
o
w
. 7777_.,——'—i7i
= 5 NP, — S,
| - -
. s ST
=l AN —-m
o ¥ e
o
f=1
o~
-1 Worse
1 T T 1 T T T
0.0 05 1.0 15 20 25 30

Follow-up (Years)

Fig. 2. Longitudinal trajectories of RAVLT scores for a random sample of
50 ADNI normal controls. The average longitudinal trajectory for each of
the three clusters is also presented.

Table 2

Univariate estimates from mixed models (random slope and intercept) of
association of one-standard deviation higher level in baseline imaging,
serum, or CSF marker with cognitive test outcome at baseline and with
annualized rate of change in cognitive test score. All imaging summaries
were normalized by total intracranial volume before standardizing by
baseline mean and standard deviation of normal controls. Predictors
significant at 0.05 level are indicated with bold face

Predictor Outcome: ADAS-cog

score

Outcome: RAVLT

score

Estimate SE  p-value Estimate SE p-value
Effects on baseline score
Male -1.01 0.35 0.004  5.92 1.15 < 0.001
ApoE4+ 0.60 0.38 0.11 1.01 1.32 0.44
Homocysteine 0.28 0.17 0.10 -1.85 0.58 0.001
Cerebral vol —0.31 0.17 0.07 1.34 0.60 0.026
Hipp vol —0.41 0.17 0.02 1.62 0.60 0.007
Vent vol 0.52 0.17 0.003 -1.96 0.59 0.001

Entorhin thick —0.71 0.17 <0.001  2.20 0.60 < 0.001
White matter 0.09 0.18 0.63 —0.06 0.65 0.93

t-tau 020 022 036 —027 —077  0.73
P-tau, g, 030 022 018 —121 077 0.1
ABys —052 022 0017 060 076 043
t-taw/AB, 4 036 022 010 —0.73 076 033

P-tau5,/AB, 4,  0.49 0.22 0.027 -1.57 0.76 0.041
Effects on annual change

Male 0.05 0.16 0.76 0.47 0.39 0.23
ApoE4+ 0.29 0.18 0.10 0.21 0.44 0.63
Homocysteine 0.16 0.08 0.047 0.10 0.20 0.64
Cerebral vol —0.09 0.08 0.28 0.14 0.20 0.50
Hipp vol —0.16 0.08 0.046  0.17 0.20 0.38
Vent vol 0.08 0.08 0.31 0.01 0.20 0.97

Entorhin thick —0.05 0.08 055 —0.06 0.20 0.76
White matter —0.01 0.08 090 —-0.20 0.19 0.29

t-tau 002 011 090 005 025 083
P-tau g, 021 011  0.048 008 024 073
ABip -009 011 042 —027 025 029
t-taw/AB, 008 012 050 026 027 033

P-tau,g /AB,,, 023 011 0036 0.16 024 052

markers. Higher (worse) initial ADAS-cog scores were as-
sociated with lower cortical volume at baseline as measured
by hippocampal volume (0.41 points better for each SD
larger, p = 0.02), entorhinal cortex (0.71 points better for
every SD thicker, p < 0.001), and ventricular volume (0.52
points worse for every SD larger, p = 0.003). CSF biomar-
ker differences at baseline were also associated with worse
initial performance on the ADAS-cog; a one SD lower CSF
AB,.4, (p = 0.017) predicted about a half-point worse
ADAS-cog, as did a one SD higher P-tau,¢,/Af,_4, ratio
(»p = 0.027). Higher (better) initial RAVLT scores were
associated with larger cortical volume, whether measured
by a one SD increase in cerebral volume (1.34 point higher
score, p = 0.026), hippocampal volume (1.62 point better,
p = 0.007), or entorhinal thickness (2.20 points better, p <
0.001). A one SD increase in ventricular volume was asso-
ciated with initial RAVLT scores almost two points worse
(» = 0.001). Higher homocysteine levels at baseline were
also associated with significantly worse initial RAVLT
score (1.85 points worse for a one SD higher level, p =
0.001.) A one SD higher P-tau,g,/AB; 4, ratio was also
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Cluster Assignments on 3 Biomarker Axes
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Fig. 3. Three-dimensional representation of cluster assignments for 96
ADNI normal controls, based on unsupervised clustering using 11 baseline
MRI and CSF markers and serum homocysteine, without use of clinical
data to define clusters. This representation is shown on three axes of the
original 11-dimensional data space, chosen to maximize separation of
cluster centers for clearest visualization on paper of the cluster locations.

associated with a 1.57 point lower baseline RAVLT score
(p = 0.041).

Baseline imaging and biomarker scores, though, had
little predictive impact on ADAS-cog or RAVLT change,
assuming cognitive test score changes are linear over the
period of observation. A one SD higher homocysteine level
was associated with a 0.16 point per year faster worsening
in ADAS-cog performance (p = 0.047), while a one SD
smaller hippocampus was associated with about the same
magnitude of difference in rate of ADAS-cog decline (p =
0.046). A one SD higher P-tau,s, or P-tau,q,/Af,_ 4, ratio
was associated with about a 0.2 point faster annual wors-
ening of ADAS-cog. These effects are modest; it would take
about 5 years at this rate to account for a single additional
point worse on the ADAS-cog. Adjusting p-values in Table
2 for multiple comparisons, as would be done for selection
of best predictors, would further reduce the evidence for
utility of individual biomarkers as predictors of cognitive
baseline or decline.

In multivariate models adjusted for education, no indi-
vidual baseline measure of cortical volume or CSF re-
mained a significant predictor of cognitive decline, either
for the ADAS-cog or the RAVLT.

These analyses found little evidence of associations be-
tween either the individual standardized imaging and bi-
omarker measures of this study or weighted sums of the
measures and subsequent cognitive decline in NC, over a

period of up to 3 years. These results served as a comparison
for analyses which focused on an effort to identify individ-
uals with a distinctive profile of biomarkers that separated
them out from typical NC, without reference to their cog-
nitive outcomes, and then to assess the behavior of cognitive
trajectories for these subgroups.

2.3. Cluster analysis of normal controls using baseline
imaging and biomarker measures

Cluster analysis of the NC using the 11 imaging and
biomarker measures (96 complete cases) identified three
distinct clusters, of size 32, 54, and 10. The first cluster was
relatively compact, while the third cluster was well sepa-
rated in multidimensional space even when individual mea-
surements might fall in the normal range (Figure 3, projec-
tion from 11 dimensions to 3, projection chosen to separate
cluster centers for best visualization of cluster locations).
The second cluster was intermediate, but closer to the first,
“healthier” cluster. We calculated the center (11-dimen-
sional point representing the average across all people in the
cluster for each marker) for each of the three clusters and for
the MCI and AD groups (Table 3). Note that the MCI and
AD data were not used to develop the clusters among the
NC, but are included for comparison. Because all the mark-
ers were standardized using the NC mean and standard
deviation, components of the centers are in units of NC SD.
The center for Cluster 3, the atypical group, is 1.5-2.5 SD
away from the normal mean for all the baseline CSF bi-
omarkers. The average person in this cluster has a smaller
cortical volume than the compact, “healthier” Cluster 1 but
not as small as a typical individual in Cluster 2. Overall,
Cluster 3 looks very close to the AD group for CSF and
closer to MCI than to normal for the MRI variables (Figure
4). We also calculated Euclidean distances for the centers of
each of the three clusters to the MCI and AD groups. Cluster
3, the “atypical” cluster, was closer to the MCI and AD than
to either of the other two NC clusters (2.6 and 2.8 SD v. 4.8
and 5.6 SD). Cluster 2 was equidistant from Cluster 1, the

Table 3

Marker values at center of NC clusters, compared with center of MCI
and AD groups. All values are in SD units away from the overall NC
mean

Variable name Location of center of group, in SD from NC mean

NC NC NC MCI AD

cluster 1 cluster 2 cluster 3
Cerebral vol 1.08 —0.57 0.00 —0.54 —1.05
Hippo vol 0.84 —0.38 —0.19 —1.11 —-1.79
Vent vol —0.86 0.45 0.00 0.46 0.88
Entor thick 0.62 -0.24 —0.60 -0.83 —1.50
WMH —0.24 0.12 -0.27 —0.02 0.50
Homocysteine —0.44 0.23 0.10 0.23 0.23
t-tau -0.26 -0.09 1.56 1.17 1.80
Ab, 4, 0.22 0.03 —1.44 -0.77 —1.15
P-tau, g, -0.39 -0.12 2.19 0.79 1.22
t-tau/Ab, 4, —0.32 —0.13 2.15 1.43 2.10
P-tau,q,/Ab, ,, —0.37 -0.17 245 0.92 1.42
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Fig. 4. Difference for each biomarker of cluster means from the mean for all ADNI normal controls, standardized by normal control standard deviation,
compared with distances for ADNI MCI and AD groups. Sign of standardized differences was reversed for all variables except Af3, 4, and ventricular volume

so that high values (top of figure) represent worse biomarker measurements.

“typical” normal group, and MCI (2.7SD). Cluster 1 was
furthest from AD (6.1 SD). The MCI and AD groups were
closer together than any other two groups (1.7 SD).

Alternative clustering techniques generally led to similar
cluster assignments, particularly with regard to the atypical cluster
(Cluster 3). Among methods that did not result in clusters with
too few individuals, the results were fairly consistent with
the results from Ward’s method, as measured by Rand’s
statistic (average 0.64, range = [0.45, 1]) and by the ten-
dency to locate the same atypical cluster (over half kept at
least 9 of the 10 members of the atypical cluster together,
most of these locating exactly the same cluster of 10). Using
just MRI summary measures and omitting CSF biomarkers
approximately doubled the available sample size but led to
less clear separation between clusters, consistent with hy-
potheses that changes in amyloid levels precede volumetric
change (Jack et al., 2010; Petersen et al., 2009).

We fitted mixed effects models to assess the predictive
value of cluster membership at baseline on subsequent cog-
nitive change (Table 4). Members of Cluster 3, the profile
farthest from a typical NC, had baseline scores 2 points
worse on average than the typical individuals in Cluster 1
for the ADAS-cog (p = 0.021) and 9 points worse on
average for the RAVLT (p = 0.002). The atypical baseline
marker profile of Cluster 3 was also accompanied by a faster
rate of worsening on the ADAS-cog (1.25 points worse per
year, p < 0.001). The rate of decline for RAVLT, while of
similar magnitude, was not statistically significant (p =
0.17). A permutation test was performed to determine the
likelihood of a different clustering with groups of these
sizes resulting in an equal or smaller p-value for the cluster
variable indicating decline in ADAS-cog (p = 0.0025). Out

of 5,000 random clusterings, only 21 (less than 1%) resulted
in a p-value = 0.0025.

Further characterization of the three clusters found that
50% of the members of Cluster 3 had at least one ApoE4
allele, while 25% and 22% of the members of Clusters 1 and
2 were E4+.However, the association of cluster member-
ship with worse baseline performance and more rapid de-
terioration of ADAS-cog performance was not accounted
for by ApoE genotype or by participant age; results were not
materially changed by including in the model the effects of
these factors on baseline cognition and rate of change.
Cluster size and composition were sensitive at the margins
to choice of measures included and algorithms used but
were overall quite robust.

Among the 96 people assigned to clusters, only 7 people
converted to MCI, 2 in Cluster 3 (20%), 4 in Cluster 2 (8%)
and 1 in Cluster 1 (3%). These numbers, while too small for

Table 4

Mixed-model estimates of effects of cluster membership based on
baseline imaging and biomarker measures on cognitive test outcome at
baseline and on annualized rate of change. Predictors significant at 0.05
level are indicated with bold face. Cluster 3 is the most atypical and
Cluster 2 closer to the “typical” Normal Control

Variable ADAS-cog RAVLT

Estimate  SE p-value  Estimate  SE p-value
Effects at baseline
Cluster 3 1.96 0.85 0.021  —9.08 2.84  0.002
Cluster 2 0.85 0.52 0.10 —345 173 0.048
Effects on annual change
Cluster 3 1.25 037 <0.001 1.18 0.87 0.17
Cluster 2 0.03 0.22 0.88 0.32 051 054

Competing interests. None reported for JN, JB, LB, DH.
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statistical analysis, indicate the importance of additional
follow-up of the NC.

3. Discussion

Our analyses in a large, well-characterized cohort of
normal controls found heterogeneity in imaging summary
measures and fluid biomarker summaries, indicating that the
biomarker profile could not be encompassed by a single,
compact, well-defined set of boundaries. Instead, the pat-
terns were suggestive of several distinct clusters of individ-
uals, even though these individuals were cognitively intact
at baseline and showed very little clinical progression over
3 years of follow-up. Regression models suggested that
baseline levels of some measures of brain size and CSF
biomarkers are associated with cross-sectional differences
in cognitive performance, and that increased P-tau,g, and
the P-tau,q,/AB, 4, ratio may foreshadow slightly more
rapid declines in ADAS-cog. The effects, however, were
modest, and not improved in multivariate regression analy-
sis. Cluster analysis identified three distinct groups of indi-
viduals, based solely on their baseline imaging and biomar-
ker measures without reference to cognitive status or
change. One group in particular, comprising about 10% of
the NC group, was well separated from the bulk of the NC
and lay closer to the centers of the MCI and AD groups,
even when some individual marker measurements might be
closer to the center for typical NC. This subgroup had
strikingly lower baseline scores on the RAVLT, signifi-
cantly worse scores on the ADAS-cog, and a significantly
more rapid deterioration on the ADAS-cog than the typical
NC. Membership in this cluster was associated with annual
cognitive decline approximately 5 times as rapid as that
predicted for a person one standard deviation worse than
average on the strongest individual marker. A second group,
centered between the atypical group and the more typical
NC group, showed structural MRI profiles closer to the MCI
group and had somewhat worse baseline performance but
showed little difference in cognitive trajectory compared
with typical NC. The division into distinct clusters was
robust across several clustering algorithms, with the same
people consistently identified as a distinct group whose
center placed them closer to the profile of MCI and AD. As
a complementary approach, unsupervised regression trees
were used to generate a proximity matrix which was then
plotted on multidimensional scaling axes and colored by
cluster membership. The plot showed almost no mixing of
clusters, supporting the clusters identified with agglomera-
tive clustering despite the fact that methodologies have
almost nothing in common. This suggests that the clusters
are not simply an artifact of the clustering process and may
instead represent meaningful structure in the data.

Our findings are consistent with previous work suggest-
ing P-tau,g;, AB,_4», and their ratio as among the measures
most closely reflecting early preclinical neurobiological

changes (Shaw et al., 2009; Stomrud et al., 2007). We also
found evidence for correlation between brain atrophy mea-
sures and cross-sectional measures of cognitive perfor-
mance, even in this very high-functioning cohort. None of
these measures, however, had substantial predictive power
for future cognitive decline, either taken individually or as
linear combinations. Little previous work has explored the
multidimensional structure of imaging and CSF biomarkers
in clinically normal older people. A recent study (Fagan et
al., 2009) assessed correlations between CSF measures and
normalized whole brain volume in cognitively normal el-
derly subjects and found that A, ,,, but not Tau or P-
tau,g,, correlated inversely with whole-brain volume in el-
derly control subjects, while Tau and P-tau,g, correlated in
very mild and mild AD. Such findings have suggested a
hypothetical model of the sequence of biomarker changes in
the neurobiological process leading to AD, with amyloid
changes occurring very early, followed by tau pathology,
volumetric and metabolic decline, and with a very gradual
onset of measurable cognitive decline, reaching the diagno-
sis of dementia only very late in the cascade (Jack et al.,
2010). Our analyses offer additional support for this con-
ceptual model. We identified a subgroup of normal controls,
based solely on biomarker profiles, who were notable pri-
marily for amyloid-related CSF abnormalities. Not only
were people in this group much closer to the AD group in
their CSF profile, but they also had a striking pattern of
ADAS-cog decline over 2-3 years, despite being clinically
well within the normal range to start. Figure 4 suggests
strong similarity to the conceptual model proposed in Jack
et al., 2010. Clustering based just on MRI measures failed to
isolate such a distinctive subgroup. Our findings are con-
sistent with Cluster 3 representing a group of people who
have already progressed so far in amyloid deposition that
they are starting to experience the earliest signs of clinical
decline, even though their scores remain, for the most part,
within the wider normal range and do not yet verge on
dementia.

Methods looking at best classification strategies to pre-
dict conversion among NC are not yet applicable in ADNI,
as there are so few conversions. We are not aware of any
work with data mining or other dimension-reduction strat-
egies based on rate of cognitive change as an outcome. Our
study represents a first attempt to seek structure based
strictly on the imaging and fluid biomarker measures, and to
map the observed heterogeneity to distinct subgroups.

One limitation of our approach is that the CSF markers
were available only for half the participants, thus reducing
the sample size available for clustering. This, in turn, led to
a fairly small though stable “atypical” cluster of about 10%
of the NC with CSF. The remaining participants split with
every clustering algorithm we examined, with some uncer-
tainty in locating the border between a compact, “typical”
group and a second group leaning toward the “atypical”
group. A larger sample size might have allowed better
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definition of the margins, as well as the variables most
important for identifying the “atypical” cluster. A second
limitation is that length of follow-up and the generally
healthy nature of this cohort led to only a few conversions
to MCI, precluding our assessment of the predictive value of
the cluster for change in clinical status. A third limitation is
that we used only a fraction of the many potential biomar-
kers, especially from the imaging summaries, and we in-
cluded five participants with some imaging quality control
problems whose effect on our findings appeared minimal in
the primary analysis. Our selection was based on previous
literature, but may have omitted variables with better prog-
nostic power in the ADNI cohort. A fourth limitation is the
approach to standardization of the imaging variables. Di-
viding by ICV may diminish differences between individ-
uals or groups, although the cluster definitions were more
dependent on the CSF biomarkers. Finally, we have not
used ADNI’s FDG PET or PiB imaging data because the
number of participants with complete data on the MRI, CSF
and PET imaging data would be too small for analysis.

Our approach has several notable strengths. First, the
ADNI data offer one of the largest, uniformly ascertained
databases available, with standardized protocols not only
for data collection but also for image processing and bi-
omarker specimen assays. Second, our approach makes use
of 36 months of follow-up with standardized cognitive test-
ing. Third, our clustering strategy was “unsupervised”, that
is, based on the imaging and biomarker data without refer-
ence to cognitive endpoints or diagnostic categories, so that
we address directly the question of whether a strikingly
unusual profile on these measures may foreshadow clinical
decline, without letting the outcome define the profile of
interest. Notably, a recent study on ADNI CSF biomarkers
used another unsupervised learning approach that identified
nearly the same CSF A cut point as Shaw et al. (2009)
wherein this cut point was established in subjects with
autopsy confirmed diagnoses of AD thereby demonstrating
the power of unsupervised analytical approaches (de Meyer
et al., 2010). Supervised techniques such as regression trees
or discriminant analysis offer a complementary approach,
focused on identifying subgroups of clinical interest based
on their outcome, but would require cross-validation, po-
tentially problematic in our sample of under 100 NC with
little clinical change as yet. In comparison with univariate or
multivariate regression models, our approach takes advan-
tage of the correlated relationship among the biomarkers,
rather than being limited by this interrelationship. This
strength of the clustering approach may account for the
improvement in our ability to detect associations with future
cognitive change, compared with the more traditional uni-
variate and multivariate regression models.

Our findings indicate that not just individual abnormal-
ities, but a distinctive pattern of imaging and biomarker
deviations from typical healthy older adults may be an early
warning sign of neurobiological pathology. Additional fol-

low-up would help to establish the prognostic value for
longer-term cognitive decline and conversion to MCI and
eventually to AD. A larger sample, with CSF on all partic-
ipants, would help to confirm the cluster pattern for our
“atypical” group and better define the boundary between the
other two clusters. In addition, the recruitment of early MCI
participants, as currently under way in the recently funded
ADNI-GO grant, will offer an opportunity to test whether
our atypical group have a profile similar to the earliest
stages of clinically identified impairment. Longitudinal
analysis of the imaging and biomarker measures can also
address whether the distance of the atypical cluster relative
to the center for typical NC is increasing over time, and
whether the location of the intermediate cluster shifts to-
ward the atypical cluster’s baseline location over time.

4. Conclusions

A pattern of imaging and biomarker deviations can iden-
tify a subgroup of normal controls distinct from typical
cognitively normal older participants. This subgroup, de-
fined based strictly on imaging and biomarkers, had sub-
stantially worse cognitive performance at baseline and a
more rapid rate of deterioration on the ADAS-cog than the
typical NC. Additional follow-up and analysis is warranted
to investigate the long-term clinical implications and to
characterize the imaging and biomarker trajectories of sub-
groups over time.
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