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Exploring Multifractal-Based Features for Mild
Alzheimer’s Disease Classification
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Purpose: Multifractal applications to resting state functional

MRI (rs-fMRI) time series for diagnosing Alzheimer’s disease
(AD) are still limited. We aim to address two issues: (I) if and

what multifractal features are sufficiently discriminative to
detect AD from the healthy; (II) if AD classification could be
further improved by combining multifractal features with tradi-

tional features in this field.
Methods: Rs-fMRI data of 25 AD patients and 38 normal con-
trols were analyzed. A set of multifractal features were system-

atically investigated. Traditional features in monofractal, linear,
and network-based categories were also extracted for com-

parison and combination. Both support vector machines and
multiple kernel learning (MKL) were used to perform classifica-
tion with individual and combined features.

Results: We identified a multifractal feature, Df , which has the
strongest discriminative power among all the features in our

study. Moreover, we found that the classification accuracy
could be significantly improved from 69% (by Df only) to up to
76%, when nonsparse MKL is used to combine Df with the

monofractal feature, Hurst. Finally, we showed that incorporat-
ing other multifractal features, að0Þ, Da and Pc, could also

improve traditional-feature-based AD classification.
Conclusion: Our work demonstrated the potential usefulness
of multifractal analysis for AD research, especially when com-

bining with the traditional rs-fMRI features. It contributes to
distinguishing AD from NC subjects. Magn Reson Med
000:000–000, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder, resulting in a gradual, irreversible loss of
memory and cognitive function and affecting millions of
people around the world (1). Early and accurate diagno-
sis of AD is not only challenging but also crucial from
the perspective of future treatments. Noninvasive neuroi-

maging techniques such as functional MRI (fMRI) are
commonly used to diagnose and monitor the progression

of the disease and the effect of the treatment. Moreover,
resting state fMRI (rs-fMRI) can reflect spontaneous neu-
ronal activities (2) and the endogenous neurophysiologi-
cal process of human brain (3). Because neither
stimulation nor response is required, the images can be
easily collected for subjects, especially patients. Hence,

rs-fMRI has received increasing interest in AD related
studies recently (4–6). Prevailing investigations on study-
ing AD with rs-fMRI data are mainly focused on linear
correlation analysis, such as regional homogeneity
(ReHo) (6), amplitude of low frequency fluctuations

(ALFF) (7), and fractional ALFF (fALFF) (8), as well as
functional connectivity analysis (9). Through univariate
statistical tests, significant group differences can be iden-
tified from spatially normalized brain images. These
analyses assume that rs-fMRI time series were temporally
stationary, while recent studies have demonstrated that

rs-fMRI time series show complex and locally variable
autocorrelation structures (10). Moreover, the disease-
induced alterations, particularly at the early stage of AD,
may be subtle and thus difficult to be captured by the
traditional linear approaches. Hence, nonlinear methods

should be considered in this case. Since Zarahn et al
(11) and Shimizu et al (12) demonstrated that the power
spectrum of rs-fMRI can be well characterized by the 1/f
function, a consensus has been reached that rs-fMRI time
series with long-term autocorrelation and self-similarity
can be described by fractal measures in both spatial and

temporal domains (10,13–16).
Fractals can be classified as monofractal and multifrac-

tals depending on the number of indexes needed to char-
acterize their scaling properties. Only a single scaling
exponent is used in monofractal analysis to describe the
behavior in the whole time series. However, the behav-

iors of the brain system are too complex to be adequately
modeled by one exponent. Comparatively, multifractals,
which can be deemed as a superposition of homogene-
ous monofractal structures (17), are more appropriate for
analyzing such a process. The multifractal formalism
was primarily established to account for the statistical

scaling properties of singular measures arising in physics
and medicine (18). A measure is called singular if it can-
not be expressed by either a density function or a sum of
Dirac distributions (12). The essence of multifractal anal-
ysis is to model the singularities of a fractal signal by

their degree of effect on the global structure (12) and to
produce the distribution of indices of regularity, which
constitutes the multifractal spectrum (MFS). Evidence
for the presence of multifractality in both resting state
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and task related fMRI signals has been demonstrated in
almost the whole brain. For example, Shimizu et al (12)
found multifractal structures in white and gray matter,
and the significant differences in the singularity spectra
between the activated and the nonactivated brain
regions. Wink et al (15) conducted multifractal analysis
on rs-fMRI time series in the right inferior frontal cortex
and revealed that the faster responding participants had
wider MFS. Ciuciu et al (16) applied multifractal analy-
sis to both resting state network (RSN) and non-RSN
structures, and found that rs-fMRI signals appear multi-
fractal in almost all brain regions except the noncortical
ones.

Although some progresses of multifractal analysis in
rs-fMRI time series have been made, multifractal applica-
tions to rs-fMRI time series for AD research have not
been well studied. Meanwhile, the dominant mass uni-
variate methods are of limited utility at a group level
(19). Machine learning methods have been applied to
this field to facilitate multivariate analysis for individu-
als and achieved many successful results. Therefore, it is
sensible and of great significance to integrate multifractal
analysis and machine learning methods for AD research.
Furthermore, in addition to single classifiers, such as
support vector machines (SVM) (20), pseudo-fisher linear
discriminative analysis (21), and random forests (22),
multiple kernel learning (MKL), which is a popular fea-
ture fusion and/or modality fusion tool, has recently
been used to integrate the complementary information
for effective AD detection (23,24). We hereby use MKL
algorithms to fuse various feature categories to improve
the performance of AD diagnosis.

Extracting representative and discriminative features
can significantly improve the performance in AD classifi-
cation. Meanwhile, the classification performances for
the patients or clinicians can be improved by removing
the redundant and irrelevant features during the feature
selection process. As we will show, many multifractal
features can be extracted from MFS. Do they have suffi-
cient discriminative power for AD diagnosis? Can their
discriminative power be further improved when they are
combined with other more traditional features, i.e.,
monofractal, linear, and/or network-based ones? To the
best of our knowledge, there is no sufficient research on
this topic yet. We hereby conducted a systematic study
on multifractal features for AD classification and devoted
to addressing two issues: (Issue-I) if and what multifrac-
tal features are sufficiently discriminative in detecting
AD from the healthy on rs-fMRI data; (Issue-II) if the dis-
criminative performance could be further enhanced by
combining multifractal features with traditional features
used in this field.

The rest of the article is organized as follows: the
Methods section provides the information on partici-
pants and data preprocessing. It is followed by an intro-
duction to multifractal feature extraction. Afterward,
how discriminative features are selected and fused by
means of the MKL technique is described. The aforemen-
tioned Issue-I and Issue-II are investigated in the Results
section. Interesting findings are then presented and dis-
cussed extensively in the Discussion section. The Con-
clusions section concludes this article.

METHODS

An overview of our study is shown in Figure 1 and
described as follows.

I. For each subject, the rs-fMRI time series from each of
the regions of interest (ROI) were preprocessed (see
the Data Preprocessing section) to extract various fea-
ture categories.

II. Based on the preprocessed rs-fMRI images, a set of
features was extracted from four feature categories,
namely the multifractal, the monofractal, the linear,
and the network-based categories. Each category was
further comprised of multiple features. In particular,
four multifractal features were proposed in the Fea-
ture Extraction from MFS section, to characterize
MFS for AD detection.

III. Discriminative ROIs were identified by a feature
selection process applied to individual feature types
(the Discriminative Feature Selection section).

IV. After feature selection, two kinds of classifiers were
used for AD classification: SVM on each individual
feature type, and MKL on the combined feature
types.

Participants

Rs-fMRI data used in this study were downloaded from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. The introductions of ADNI can be found in
part A of the Supporting Information, which is available
online.

Fifty-nine subjects including 25 patients with AD and
38 normal controls (NC) were analyzed in this study.
Although not all the subjects were recorded with Mini-
Mental State Examination scores, all of them had a diag-
nosed label. The data were acquired on a 3.0 Tesla (T)
MRI scanner (Philips) with repetition time/echo time
(TR/TE) as 3000/30 ms and flip angle (FA) of 80�. Each
series had 140 volumes, and each volume consisted of
48 image slices with dimensions 64 � 64 and voxel size
3.31 � 3.31 � 3.31 mm3. Sagittal structural images with
a resolution of 1 � 1 � 1.2 mm3 were acquired using a
magnetization prepared rapid gradient echo (MPRAGE)
three-dimensional T1-weighted sequence (repetition time
[TR]¼ 6.8 ms; echo time [TE]¼ 3.16 ms; FA¼ 9�). The
demographic information about the participants was
summarized in Table 1.

Data Preprocessing

All functional imaging data preprocessing was performed
using Data Processing Assistant for Resting-State fMRI
Advanced Edition (25), which is based on Statistical
Parametric Mapping (SPM8) (26). The first 10 volumes
were discarded to remove possible T1 stabilization
effects. After slice timing, images were realigned for
head motion and distortion corrections. The functional
brain images were then normalized to the Montreal Neu-
rological Institute space using unified segmentation on
their respective anatomical data and spatially smoothed
with a 4 mm full-width at half-maximum isotropic
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Gaussian kernel. Afterward, regressions of nuisance sig-

nals including white matter, cerebrospinal fluid signals

and six head-motions were performed on functional

images. Because de-trending and filtering are often dis-

missed in multifractal fMRI analysis (12,15,16) but used

for linear and network features (6,7,9), to better align

with these literatures, de-trending linear drift and tempo-

ral filter (0.01–0.08 Hz) were then only performed for

ReHo, ALFF, and ROI-wise functional connectivity cal-

culation. Finally, the preprocessed images were parcel-

lated into 90 cerebral ROIs in the Automated Anatomical

Labeling (AAL) atlas (27) and the regional mean time

series of each ROI was extracted for fractal analysis. To

be noted, ReHo values were calculated without spatial

smoothing.

Multifractal Analysis and Feature Extraction

The simplest type of multifractal analysis is to use the

classical box counting based multifractal analysis

(BCMA) to estimate MFS through the concept of singu-

larity. Despite its conceptual simplicity and popularity,

BCMA may find multifractality even on a monofractal

process, while this could be better handled by wavelet

transform based approaches (28–30). These approaches

FIG. 1. Overview of the proposed

approach.

Table 1
Demographic Information of the Subjects Involved in This Study

NC AD

No. subjects (n) 34 25
Age (years) 76.5 6 6.4 73.7 6 7.6

Gender(male/female) 11/23 11/14
No. of subjects with MMSE 24 11
Baseline MMSE 29.3 6 0.9 21.3 6 3.8

NC¼normal controls; AD¼Alzheimer’s disease; MMSE¼Mini-
Mental State Examination; plus-minus values are mean 6 SD.
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mainly focus on the wavelet transform modulus maxima

method and the wavelet leaders based multifractal analy-

sis (WLMA). Previous studies have demonstrated that

the wavelet leader can better capture the multifractal

behaviors in multi-resolution quantity than the wavelet

coefficient in wavelet domain, and hence WLMA is rec-

ommended (28,31). However, it is observed in our study

that WLMA does not work well on short time series (see

the supporting information part H). Reasonable MFS can-

not be obtained with WLMA in certain ROIs for some

subjects by using short time series. Comparatively,

BCMA seems to be more robust in such a situation. In

light of this, we use both WLMA and BCMA to verify

the multifractality in rs-fMRI to avoid potential mis-

judgements, but use BCMA to extract MFS-based features

for our analysis. The fundamentals of BCMA and

WLMA are introduced in supporting information part B

and part C.

Feature Extraction from MFS

Although various features can be extracted from MFS by

using BCMA, we mainly focus on four canonical fea-

tures, namely, að0Þ, Da, Df and Pc. These features are

illustrated in Figure 2a.
The feature að0Þ represents the most common singular-

ity index found within a time series, which can describe

the MFS mode. It is a measure of the overall relative per-

sistence of the time series. When the moment variate

q ¼ 0, the corresponding singularity value að0Þ can be

determined through the apex of the spectrum f ð0Þ. The

higher the að0Þ value is, the relatively more persistent

the time series becomes, and vice-versa.
The feature Da ¼ amax � amin represents the width of

the MFS, which can detect the degree of multifractality

of the time series. In BCMA (32,33), the probability in the

i-th box can be measured by Pi / Lai , where L (usually

0 < L � 1) is the box size and ai is the singularity
strength of the probability subset. Also, amax is related to
the minimum probability measure by means of
Pmin / Lamax , whereas amin is related to the maximum
probability measure by means of Pmax / Lamin . The Da can
thus be used to describe the range of the probability
measures through Pmax=Pmin / ð1=LÞDa. The greater the
Da value is, the broader the probability distribution, the
richer the structure and the stronger the degree of multi-
fractality in the time series.

The feature Df ¼ f ðþ1Þ � f ð�1Þ represents the differ-
ence of fractal dimension. In BCMA (32,33), f ðþ1Þ
reflects the fractal dimension of the subset of the maxi-
mum probability with NPmax

¼ Namin
/ L�f ðþ1Þ, where

NPmax
and Namin

are the number of boxes of the size L
(0 < L � 1) with the same maximum probability. f ð�1Þ
reflects the fractal dimension of the minimum probabil-
ity such that NPmin

¼ Namax
/ L�f ð�1Þ, where NPmin

and
Namax

are the number of boxes of the size L (0 < L � 1)
with the same minimum probability. Hence, the Df value
can describe the ratio between the most concentrated
and the most rarified regions of the probability measure:
NPmax

=NPmin
/ ð1=LÞDf . Thus, Df > 0 signifies that there

are more concentrated regions than rarified sites,
whereas Df < 0 signifies the contrary and Df ¼ 0 indi-
cates the equiprobability for both concentrated and rari-
fied regions. In addition, Df can also be used to measure
the shape of the MFS to a great extent. Specifically, Df
> 0 corresponds to the MFS with left skewness (as
shown in Figure 2a), whereas Df < 0 corresponds to the
right skewed MFS shape, and Df ¼ 0 corresponds to a
symmetrical bell-jar shape.

The feature Pc, as a compound measure, is introduced
to allow a better separation of different time series
characteristics. It can be calculated by að0Þ, f ð0Þ and
the full-width-at-half-maximum (fwhm) value from MFS

as Pc ¼ að0Þ
f ð0Þ � fwhm. It will give low values for simple

FIG. 2. a: Illustration of the features extracted from a multifractal spectrum using BCMA. b: Illustration of verifying multifractal character-
istics in BCMA. The square, diamond, and dot symbols correspond to the cases of q¼1, q¼2, and q¼3, respectively. In each case,

linear fitting is performed and shown with the solid line, and its slope value is given in the legends. No ambiguity in the determination of
the three different slopes suggests the multifractal characteristics in the rs-fMRI series.
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white Gaussian noise time series, and high value for the

time series containing more complex properties (12).

MKL for Feature Fusion

MKL approach is used to combine the multifractal char-

acteristics and other classical features with appropriate
weighting. MKL defines a set of base kernels and learns

the optimal combination weights for these base kernels.
MKL allows to use different types of kernels or features

concurrently in a single classifier. It has recently been

applied to AD study and achieved successful results
(24,34,35). Specifically, in our case, the commonly used

kernels with different parameters are used as the base
kernels. Let Xi ¼ fxif jf ¼ 1; � � � ;Fg be the feature set of

the i-th subject, where xif represents the f -th feature vec-
tor extracted from the 90 ROIs, and F the total number of

the types of features. Assigning each feature type with M
base kernels, we can represent MKL as:

KðXi;XjÞ ¼
XF

f¼1

XM

m¼1

dfmKfmðxif ; xjf Þ;

where dfm is a weight coefficient of the m-th base kernel

for the f -th feature, and Kfmðxif ; xjf Þ is a base kernel func-

tion. The weight coefficient can naturally reflect the

importance of each base kernel when they are appropri-
ately normalized to become comparable to each other. In

existing neuroimaging applications, ‘1-MKL is usually
used, which can be efficiently solved by simpleMKL

(36). It imposes the constraint f
PF

f¼1

PM
m¼1 dfm ¼ 1;dfm

� 0;8f ;mg to make the optimal solution dfm sparse. Sev-

eral kernel combination weights in the optimal solution

will be zeros, indicating that the corresponding base ker-
nels are essentially not used, and ‘1-MKL can thus be

used to select the important kernels for a given task.
However, ‘1-MKL is not always beneficial in practice

and sometimes may become even less effective when the
base kernels carry complementary information (37). In

such a situation, nonsparse MKL, called ‘p-MKL, is usu-

ally a better option (38). Compared with ‘1-MKL, ‘p-MKL

(p � 2) imposes a constraint fjjdjjp � 1;df ;m � 0g. It has

been demonstrated in Kloft et al (39) that ‘1-MKL is bet-
ter when the base kernels contain a large amount

of redundant information, and ‘p-MKL is preferred

otherwise.

Discriminative Feature Selection

For a certain feature type (e.g., Da), we can calculate its
value on each of the 90 cerebral ROIs in AAL atlas and

thus a 90-dimensional feature vector can be obtained for

each subject to perform classification. However, the 90
ROI features are not equally discriminative for AD classi-

fication. Including less discriminative ROIs may not only
waste computation resources, but also deteriorate the

classification accuracy due to the presence of redundant
and irrelevant features. Therefore, feature selection tech-

niques have been widely used to select discriminative
ones from a pool of features to improve the classification

performance for a given task.

Considering the interactions between the ROIs, the
commonly used sequential backward selection (SBS)
algorithm is adopted in this study. It aims to select an
optimal subset of features that can optimize the perform-
ance of SVM classifier. The working of SBS is intro-
duced in part E of the supporting information. In our
work, SBS feature selection is embedded into the com-
monly used leave-one-out (LOO) classification scheme to
make a full use of the limited number of subjects in our
dataset. The LOO scheme works as follows. Each of the
N subjects in our study will be reserved as the (only)
test sample in turn, while the remaining N-1 subjects are
used as the training samples correspondingly. In this
way, this scheme leads to N classification tasks in total.
In each of these tasks, ROIs are selected by carrying out
the SBS feature selection. The feature values extracted
from the selected ROIs are then concatenated to form fea-
ture vectors for classification.

Because different training data are used in each task in
LOO, SBS may select different ROIs each time. The more
frequently an ROI is selected over the N classification
tasks, the more important it is regarded for classification.
The selection frequency is measured by W -score, calcu-
lated as WðiÞ ¼

PN
n¼1

PF
f¼1 Bnf ðiÞ=ðN � FÞ, where i is the

index of ROI, and N F have been previously defined.
The binary indicator Bnf ðiÞ indicates the selection status
(1 for “selected” and 0 for “not selected”) of the i-th ROI
in the n-th task with the f -th feature type. Ranking the
discriminative power of ROIs with W -score identifies
disease-related brain regions with respect to the used
feature types. Also, it could provide the comparison
with the documented reports for sanity check or new
discovery.

Test on Individual and Combined Features

Based on the four canonical multifractal features
extracted from MFS by BCMA, i.e., að0Þ, Da, Df and Pc,
the SVM classifier with a Gaussian radial basis function
(GRBF) kernel was applied to investigate if and what
multifractal features are sufficiently discriminative in
detecting AD from the healthy on rs-fMRI time series.
Classification accuracy, sensitivity, and specificity were
adopted to evaluate the diagnostic power for individual
feature types.

To test (i) whether complementary information exists
between multifractal features and the traditional ones,
and (ii) whether the classification accuracy could be fur-
ther improved, MKL technique was used to combine the
features together. All the four multifractal features, að0Þ,
Da, Df and Pc, were combined with the traditional fea-
tures, Hurst, ReHo, ALFF, fALFF, and wLCC. Classifica-
tion accuracy, sensitivity, and specificity are also used to
evaluate the combined features.

RESULTS

To address the Issue I and Issue II in the Introduction
section, we conducted the following experiments: (i) For
comparison and combination, we calculated the mono-
fractal feature, Hurst exponent (40); three representative
linear indices, ReHo (6), ALFF (7), and fALFF (8); and
functional connectivity (9) based feature wLCC (41). The

Exploring Multifractal-Based Features for AD Classification 5



extraction of these features can be found in part D in the

supporting information. (ii) We verified the multifractal-

ity in rs-fMRI time series using both BCMA and WLMA.

(iii) We applied the SVM classifier to individual feature

classification. (iv) We used both ‘1-MKL and ‘p-MKL

(p¼ 2,3) to test the discriminative performance on com-

bined features.
More details of the experimental settings can be found

in part G of the supporting information.

Multifractal Characteristics Verification

Based on the processed rs-fMRI time series, we verified

their multifractal characteristics by BCMA first. We plot-

ted three fitted lines of
P

milnmi versus lnL with

q ¼ 1;2;3, as illustrated in Figure 2b, where the symbols

mi is the normalized q-th moment of the probability and

L is the segmented box size. The significant differences

among the three fitting slopes suggest the presence of
multifractal characteristics in rs-fMRI time series. In
addition, to avoid the potential mis-judgements of
BCMA, the multifractality is further verified by using
WLMA. An illustration is shown in Figure 3 and the
symbols are defined in the supporting information Part
C. Using bootstrap technique with the number of resam-
ple being 49, the scaling function zðqÞ of the statistical
order q and the log-cumulant coefficient cL

2 can be esti-
mated by WLMA. It is obvious that zðqÞ is not a linear
function of q and the confidence interval for cL

2 excludes
the zero value, which is in line with the multifractal
characteristic. Therefore, the multifractality in the rs-
fMRI time series is verified by using both BCMA and
WLMA. Also, as a side note, WLMA may not work well
on short time series (see part H of the supporting infor-
mation) and reasonable MFS could not always be
obtained in our experiment, which is not this case for

FIG. 3. a: Illustration of the scaling function obtained by WLMA. b: Illustration of the estimation of c2 by WLMA for an rs-fMRI time
series. Both subfigures are based on the bootstrap technology with the resample number being 49. The departure of zðqÞ from a linear

behavior in q and also the coefficient c2 6¼ 0 suggest the multifractal characteristics in the rs-fMRI series.

FIG. 4. a: Illustration of MFS obtained by BCMA. b: Illustration of MFS obtained by WLMA on the same ROI for the same subject. This
figure is shown to illustrate that a reasonable MFS could not always be obtained with WLMA in certain ROIs for some subjects in our

experiment.
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BCMA. An illustration of MFS obtained by BCMA and

WLMA on the same ROI for the same subject is shown

in Figure 4. Because BCMA was found empirically more

robust than WLMA on the short rs-fMRI time series, we,

therefore, extracted features on the MFS produced by

BCMA for the subsequent analysis.

Test on Individual Features (Issue-I)

As can be observed in Table 2, Df appears to be the most

discriminative individual feature and significantly out-

performs the others with an accuracy of 69.49%, a sensi-

tivity of 64.00% and a specificity of 73.53%. In addition,

the monofractal, linear, and network-based features were

also used for classification. From Table 2, Hurst expo-

nent presents as the second best feature, while fALFF

and wLCC also show relatively good accuracy higher

than 60.00%. Generally, Df , as the representative of mul-

tifractal feature category, outperforms those from the

other three feature categories.

Test on Combined Features (Issue-II)

As shown in Table 3, applying MKL to feature fusion
can enhance the classification performance in general
and we have the following observations. (i) All multifrac-
tal features can help improve the performances of the
other five traditional features, except that að0ÞþfALFF,
DaþfALFF, and DaþwLCC show degraded performance
and that DaþHurst maintains the previous performance.
When choosing the best combination based on classifica-
tion accuracy, we end up with the fusion between Df
and Hurst. It reaches the highest accuracy of 76.27%
with the sensitivity of 72.00% and the specificity of
79.41%. At the same time, it is worth noting that the fol-
lowing four fusion settings, PcþwLCC, að0ÞþReHo,
PcþHurst, and að0ÞþHurst, are equally good as DfþHurst
in the statistical sense. (ii) Compared with the other
three multifractal features, Pc can significantly enhance
the performance of the traditional features, as observed
in PcþHurst, PcþReHo, PcþALFF, PcþfALFF, and
PcþwLCC. These combined features boost the accuracies
by 6.78%, 11.86%, 15.26%, 1.69%, and 8.47%, respec-
tively, better than any individual conventional features.
(iii) Most of the best classification results are obtained
by using GRBFþPoly kernel. (iv) Better performance is
usually achieved by ‘p-MKL rather than ‘1-MKL.

Discriminative ROIs

Using the feature selection method, we identified the
most discriminative ROIs for both individual and com-
bined features. For illustration, we presented results for
the best individual feature type Df (Table 4) and the best
feature combination DfþHurst (Table 5).

The top 15 ROIs are listed in descending order of their
W -score values. For both Df and DfþHurst, the shared
top discriminative ROIs include the left amygdala

Table 2
SVM with a GRBF Kernel Classification Performance (in Percent-

age) on Each Individual Feature

Feature

categories Features Accuracy Sensitivity Specificity

Multifractal að0Þ 52.54 42.11 57.50

Da 52.54 42.11 57.50
Df 69.49 64.00 73.53
Pc 59.32 51.85 65.63

Monofractal Hurst 64.41 58.33 68.57
Linear ReHo 57.63 50.00 61.54

ALFF 49.15 27.27 54.17
fALFF 61.02 54.55 64.86

Network-based wLCC 61.02 57.14 62.22

Table 3
Best Classification Performance (in Percentage) on Combined Features Using MKL with Different Combination Types of Base Kernels

Feature combination ACC SEN SPE CombType Norm

Df1Hurst 76.27 72.00 79.41 C2 L2, L3
DfþReHo 62.71 56.52 66.67 C1, C2, C3, C4 L2, L3
DfþALFF 61.02 55.00 64.10 C2 L2

DfþfALFF 66.10 61.90 68.42 C1 L3
DfþwLCC 67.80 65.00 69.23 C2 L2
Pc1Hurst 71.19 65.38 75.76 C3, C4 L2, L3
Pc1ReHo 69.49 68.42 70.00 C2 L2
Pc1ALFF 64.41 64.29 64.44 C3 L1, L2, L3
Pc1fALFF 62.71 57.89 65.00 C2 L3
Pc1wLCC 69.49 66.67 71.05 C1 L1
að0Þ1Hurst 71.19 66.67 74.29 C2 L3
að0Þ1ReHo 72.88 90.91 68.75 C1 L3
að0ÞþALFF 50.85 0 54.55 C2, C3, C4 L2, L3

að0ÞþfALFF 57.63 50.00 58.49 C2 L3
að0Þ1wLCC 62.71 71.43 61.54 C2 L3
DaþHurst 64.41 59.09 67.57 C1, C2, C3, C4 L1

Da1ReHo 61.02 62.50 60.78 C4 L2, L3
Da1ALFF 54.24 37.50 56.86 C2 L2
DaþfALFF 57.63 50.00 58.82 C4 L2, L3
DaþwLCC 57.63 50.00 58.18 C1, C2 L1

ACC¼ accuracy; SEN¼ sensitivity; SPE¼ specificity; CombTypes¼ combination types; C1¼GRBF kernel; C2¼GRBFþPoly kernel;

C3¼GRBFþLapþInvsþInvd kernel; C4¼GRBFþPolyþLapþInvsþInvd kernel; L1¼Sparse ‘1-MKL; L2, L3¼Non-sparse ‘p-MKL
(p ¼ 2;3). It is highlighted in bold for the better performances of combined features than those of individual ones in Table 3.
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(AMYG), the bilateral middle temporal gyrus (MTG), the
right inferior occipital gyrus (IOG), the left superior tem-
poral gyrus of temporal pole (TPOsup), the bilateral mid-
dle temporal gyrus of temporal pole (TPOmid), the
bilateral inferior temporal gyrus (ITG), the right putamen
of lenticular nucleus (PUT), and the right thalamus
(THA). In addition, for Df , the selected regions also
include the bilateral orbital part of superior frontal gyrus
(ORBsup), the left middle frontal gyrus (MFG) and the
left anterior cingulate and paracingulate gyri (ACG). For
DfþHurst, the right paracentral lobule (PCL), the left
superior temporal gyrus (STG), the right heschl gyrus
(HES) and the right angular gyrus are also selected.

In addition, in Figure 5, the corresponding selected
discriminative ROIs for both Df and DfþHurst features
were visualized against the cortical surface. It can be
found that most of the selected discriminative ROIs for
these two types of features are overlapped and show sim-
ilar pattern in many regions.

DISCUSSION

In the present study, we investigated how to apply mul-
tifractal analysis on AD study with rs-fMRI data. To ver-
ify the multifractality in rs-fMRI time series, both BCMA
and WLMA were used. BCMA is a classical multifractal
tool which has been widely used, e.g., Perrier et al, Cue-
vas, and Wang et al (42–44), while WLMA is a recently
proposed technique and is becoming popular in recent
years (16,45,46). As shown in Figures 2b and 3, the exis-
tence of multifractal characteristics in cerebral ROIs had
been validated by both methods. In Shimizu et al, Wink
et al, and Ciuciu et al (12,15,16), multifractal properties
were found in different brain regions of the healthy sub-
jects. Our investigation is consistent with these previous
studies and also extends to the AD subjects.

Based on MFS generated by BCMA, four canonical fea-
tures, að0Þ, Da, Df and Pc, were extracted. Compared
with traditional features (i.e., Hurst exponent from
monofractal analysis, ReHo, ALFF, and fALFF from lin-

ear indices, and wLCC from functional connectivity), the

individual multifractal feature, Df , showed the best clas-

sification performance to discriminate AD patients from

healthy controls, with an accuracy of 69.49%, suggesting

it possibly be a good marker to diagnose AD.
As described, Df is a very important quantity, meas-

uring the ratio between the regions with the most con-

centrated and the most rarified probabilities (32,33). In

particular, the left skewed MFS with Df > 0 shows there

are more concentrated regions than rarified ones,

whereas the right skewed MFS with Df < 0 shows the

contrary. In our study, on average, MFS on 69 ROIs for

NC and 67 ROIs for AD had Df > 0, suggesting that MFS

was shaped as left skewness on over 74% ROIs, as illus-

trated in Figure 2a. It suggests that the signals are more

statistically irregular and singular in these regions.
In addition, the classification performance can be sub-

stantially further improved when combining the multi-

fractal features with other traditional features, especially

for DfþHurst that achieves the classification accuracy up

to 76.27% (see Tables 2 and 3). It is worth mentioning

that although some multifractal features (e.g., að0Þ and

Pc) do not show strong discriminative power individu-

ally, they can still significantly improve the classifica-

tion performance when combined with the monofractal,

the linear or the network features (e.g. Hurst, ReHo, or

wLCC). For example, although the accuracies of að0Þ and

ReHo as individual features are only around 55% in

Table 2, the accuracy of að0ÞþReHo, with appropriate

combination weights obtained by MKL, can be boosted

more than 15%, achieving 72% in Table 3. This may

indicate that, there does exist complementary informa-

tion between the multifractal features and the other

ones, and the classification performance can benefit from

such combinations.
As indicated in Yan et al (37), it might be less effective

for ‘1-MKL when the combined kernels carry comple-

mentary but less overlapped information. This may

explain the relatively inferior performance of ‘1-MKL to

Table 4
Top 15 ROIs Showing the Most Discriminative Power for Classifi-

cation by Df Featurea

No. Regions W-score

1 Left amygdala 0.8983

2 Right middle temporal gyrus 0.8644
3 Right inferior occipital gyrus 0.7966
4 Left temporal pole: superior temporal gyrus 0.7797

5 Right temporal pole: middle temporal gyrus 0.7288
6 Left superior frontal gyrus, orbital part 0.5593

7 Right inferior temporal gyrus 0.5424
8 Right superior frontal gyrus, orbital part 0.4237
9 Left middle frontal gyrus 0.4237

10 Left anterior cingulate and paracingulate gyri 0.4237
11 Left middle temporal gyrus 0.4237
12 Left inferior temporal gyrus 0.4237

13 Left temporal pole: middle temporal gyrus 0.3898
14 Right lenticular nucleus, putamen 0.3559

15 Right thalamus 0.3559

aThe top 15 regions were selected just for illustration according to

their W-score values. To be noted, more than 15 ROIs were used
in our classification.

Table 5
Top 15 ROIs Showing the Most Discriminative Power for Classifi-

cation by DfþHurst Featurea

No. Regions W-score

1 Right temporal pole: middle temporal gyrus 0.6695

2 Right inferior temporal gyrus 0.6017
3 Left amygdale 0.5932

4 Right middle temporal gyrus 0.5763
5 Left inferior temporal gyrus 0.5593
6 Left temporal pole: superior temporal gyrus 0.5169

7 Left temporal pole: middle temporal gyrus 0.5169
8 Right lenticular nucleus, putamen 0.5085

9 Right thalamus 0.5085
10 Right inferior occipital gyrus 0.4068
11 Right paracentral lobule 0.3898

12 Left middle temporal gyrus 0.3814
13 Left superior temporal gyrus 0.3729

14 Right angular gyrus 0.3220
15 Right heschl gyrus 0.3220

aThe top 15 regions were selected just for illustration according to

their W-score values. To be noted, more than 15 ROIs were used
in our classification.
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other nonsparse MKL formulations, observed in our
experiments. Moreover, most of the best classification
performances on combined features were obtained by ‘2-
MKL and ‘3-MKL, indicating the necessity of considering
nonsparse ‘p-MKL in such kinds of study rather than
merely focusing on sparse ‘1-MKL only.

Because it is not straightforward to find the appropri-
ate kernel for classification, many researchers turned to
using multiple kernel types instead of a single one and
tried to find the optimal combination of them (34). The
used kernels could correspond to different similarity
measures or different feature sources. In our experiment,
five different kernels and four different combination con-
figurations were explored. In Table 3, most of the best
classification results are obtained by using GRBFþPoly,
suggesting the robustness of this kernel combination for
discriminating AD from NC.

Our investigation identified ROIs that are discrimina-
tive between AD and NC groups. These ROIs are from
both brain hemispheres and mainly cover part of the lim-
bic lobe, most of the temporal lobe, part of the frontal
lobe and part of the parietal lobe. They are consistent
with previous studies that used conventional univariate
statistical analysis for AD detection. For example, as
reported in Schafe et al (47), the AMYG is part of the
limbic system that AD mainly affects. Statistical analysis
in Poulin et al (48) showed that the magnitude of AMYG
atrophy is comparable to that of the hippocampus in the
earliest clinical stages of AD, and is related to global ill-
ness severity. In Binnewijzend et al (49), the increased
eigenvector centrality (EC) in the ACG was found in AD
patients by using rs-fMRI data, which is associated with
cognitive performance and AD pathology. Scheff et al
(50) found that the ITG plays an important role in verbal
fluency, a cognitive function affected early in the onset
of AD. More recently, the study in Sturm et al (51)
reported that higher emotional contagion in AD is associ-
ated with smaller volume in the right ITG, MTG, STG,
the right TPO, anterior hippocampus, parahippocampal
gyrus, and left MTG. Generally, these previous studies
support that our identified ROIs are closely related to
AD and reasonably discriminative for AD diagnosis.

Additionally, the integration of multiple modalities of

data, such as MRI, positron emission tomography, and

diffusion tensor imaging etc., has been recently studied

for AD classification. However, multiple complementary

features can also be extracted from a single modality to

improve the classification performance, as demonstrated

by our work. For example, the features from multifractal

analysis and those from connectivity analysis, can be

both extracted from rs-fMRI and integrated to improve

the disease classification accuracy, even without addi-

tional information from other modalities. Compared with

structural data, functional data has its own advantages

especially for the conditions that lack brain structural

abnormalities (52). Therefore, it is of great benefit to suf-

ficiently exploit the potential of fMRI data from multiple

perspectives. That is one of the purposes of exploring

different features on fMRI data in this study.
The current study is limited by the following factors.

First, the time point used for multifractal analysis in the

current study is relatively short, although this is a typi-

cal configuration in the widely used ADNI dataset. Fur-

ther investigations on longer rs-fMRI data will be our

future work. Meanwhile, a new wavelet-based method,

the maximal overlap discrete wavelet transform

(MODWT) (53) is also worthy of exploration. MODWT

removes the restriction that the series length has to be

the power of 2, and is insensitive to the beginning of the

time series, which thus has advantages over WLMA. We

will integrate MODWT into our multifractal analysis

framework and validate its performance in future. Sec-

ond, our current study is limited by the small number of

AD subjects, which may affect its generalization. There-

fore, a validation of our method on larger AD datasets

should be further conducted. Third, an appropriate brain

parcellation is critical to properly capture functional

regions in the brain. Therefore, our work may benefit

from a brain atlas obtained directly from functional

images rather than the AAL atlas rooted in anatomical

images. Finally, the integration of imaging modalities

other than rs-fMRI may further improve the classification

performance and will be explored in the future.

FIG. 5. The top 15 ROIs with the most discrimination power projected onto the cortical surface (a) for Df ; (b) for DfþHurst.
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CONCLUSIONS

In this article, we systematically investigated the dis-

criminative power of multifractal features on rs-fMRI

data with regard to AD, and compared them with the

monofractal, linear and network-based features. The mul-

tifractal feature, Df , outperforms other features when

used individually. Furthermore, we showed that the

classification accuracy can be dramatically improved

when combining these multifractal features with other

features by the MKL technique. Our work demonstrated

the potential usefulness of multifractal analysis for AD

research, especially when combining with the traditional

rs-fMRI features. It contributes to distinguishing AD from

NC subjects.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

SUP. FIG. S1. Illustration diagram of discriminative feature selection and
the leave-one-out (LOO) classification scheme. The pink arrows in the LOO
box indicate the process of identifying the discriminative ROI (see the Dis-
criminative Feature Selection section), and the black arrows in the LOO
box indicate the process of classification. The mark sROI in the LOO box
denotes as “selected ROI”, while ACC, SEN, and SPE denote as accuracy,
sensitivity, and specificity, respectively.

SUP. FIG. S2. Illustration of the performance of WLMA and BCMA with
respect to the length of binomial multiplicative simulation data for multifrac-
tal characteristics verification. a: Boxplots of c2 values for WLMA with the
resample number of 49. The horizontal axis corresponds to the series
length ranging from 26 to 215, while the vertical axis corresponds to the
estimate of c2 value. The solid dots represent the outliers observed for two
lengths. The dash-dot line at c2 ¼ 0 is plotted as a reference. Including c2

¼ 0 suggests denying the multifractal characteristics. b: Slopes of three
lines with q ¼ 1; 2; 3 for BCMA. The horizontal axis corresponds to the
series length, while the vertical axis corresponds to the slope values. The
presence of three different slope values demonstrates the existence of mul-
tifractal characteristics.
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