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Fractional Anisotropy Derived From the Diffusion Tensor
Distribution Function Boosts Power to Detect Alzheimer’s
Disease Deficits

Talia M. Nir,1 Neda Jahanshad,1 Julio E. Villalon-Reina,1 Dmitry Isaev,1

Artemis Zavaliangos-Petropulu,1 Liang Zhan,2 Alex D. Leow,3 Clifford R. Jack, Jr.,4

Michael W. Weiner,5 and Paul M. Thompson,1* for the Alzheimer’s Disease

Neuroimaging Initiative (ADNI)

Purpose: In diffusion MRI (dMRI), fractional anisotropy derived
from the single-tensor model (FADTI) is the most widely used
metric to characterize white matter (WM) microarchitecture,

despite known limitations in regions with crossing fibers. Due to
time constraints when scanning patients in clinical settings, high

angular resolution diffusion imaging acquisition protocols, often
used to overcome these limitations, are still rare in clinical popula-
tion studies. However, the tensor distribution function (TDF) may

be used to model multiple underlying fibers by representing the dif-
fusion profile as a probabilistic mixture of tensors.
Methods: We compared the ability of standard FADTI and

TDF-derived FA (FATDF), calculated from a range of dMRI
angular resolutions (41, 30, 15, and 7 gradient directions), to

profile WM deficits in 251 individuals from the Alzheimer’s Dis-
ease Neuroimaging Initiative and to detect associations with 1)
Alzheimer’s disease diagnosis, 2) Clinical Dementia Rating

scores, and 3) average hippocampal volume.
Results: Across angular resolutions and statistical tests, FATDF

showed larger effect sizes than FADTI, particularly in regions
preferentially affected by Alzheimer’s disease, and was less
susceptible to crossing fiber anomalies.

Conclusion: The TDF “corrected” form of FA may be a more
sensitive and accurate alternative to the commonly used FADTI,

even in clinical quality dMRI data. Magn Reson Med
78:2322–2333, 2017. VC 2017 International Society for Mag-
netic Resonance in Medicine.
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INTRODUCTION

Diffusion-weighted MRI (dMRI) is a variant of standard
MRI that can measure the diffusion of water molecules
in biological tissues, such as the brain. By characterizing
the diffusion process at the voxel level, we can make
tentative inferences about the underlying white matter
(WM) microstructure and factors that affect it (1). Since
dMRI was developed, acquisition protocols have
improved to increase angular, spatial, and spectral reso-
lution. Multiple mathematical models have been devel-
oped to describe the diffusion process. One of the first—
and still most popular—methods of summarizing diffu-
sion properties in a specific voxel is the single tensor
model (2), commonly referred to as diffusion tensor
imaging (DTI) (3). This model is limited because it
assumes diffusion is purely Gaussian; it can only model
a single fiber population, with a single dominant orienta-
tion, at every voxel. It cannot resolve complex WM
architecture, such as dispersing, crossing, or kissing
fibers. Yet, at the current resolution of dMRI, between
one third and two thirds of WM voxels contain fiber
crossings (4,5). dMRI can also be used to evaluate
disease-related gray matter (GM) abnormalities, where
the microarchitecture is even more complex (6). Never-
theless, the tensor-derived fractional anisotropy (FADTI)
metric is still the most widely used scalar measure to
characterize tissue microarchitecture. It is widely used
in research studies of schizophrenia, depression, autism,
HIV/AIDS, and other developmental, psychiatric, and
neurodegenerative disorders, including Alzheimer’s dis-
ease (AD) (7,8).

In recent years, many new models have been proposed
to overcome limitations of the tensor model, including q-
ball imaging and diffusion orientation distribution func-
tions (ODFs) (9), constrained spherical deconvolution
(10), diffusion spectrum MRI (11), multicompartment
models such as the ô“ball and stick”ô model (4), and
neurite orientation dispersion and density imaging
(NODDI) (12). Due to the numerous types of biological,
neuropsychiatric, and imaging data often acquired for
clinical populations, time constraints are often placed on
imaging protocols to reduce patient attrition or motion
and ensure adequate sample sizes. This currently pre-
cludes state of the art models such as NODDI and those
derived from diffusion spectrum MRI, which require
extremely dense or multishell acquisitions, and may
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prevent the reliable reconstruction of many other higher-
order diffusion models. However, the tensor distribution
function (TDF), as proposed by Leow et al (13), may still
be feasible. The TDF is a probabilistic extension of a
multitensor model that describes crossing fibers mathe-
matically as an ensemble of Gaussian tensors. However,
unlike other multicompartment models (4,12,14–16) in
which one needs to specify in advance the total number
of compartments in the tissue, the authors propose a
continuous distribution of tensors, with a profile of
“weights” or relative contributions estimated for tensors
with a continuously varying range of shapes and sizes in
the tensor space.

The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) is a large, longitudinal, multisite study of healthy
elderly controls, individuals with mild cognitive impair-
ment, and AD. The goal is to identify sensitive imaging
biomarkers that can be used to track or predict changes
in the brain, which is vital for drug trials to identify can-
didates for treatment and monitor effectiveness. In addi-
tion to the battery of cognitive tests, cerebrospinal fluid
and blood tests, the ADNI collects several functional and
structural MRI modalities, including T1- and T2-
weighted anatomical MRI, positron emission tomogra-
phy, arterial spin labeling, resting state functional MRI,
and dMRI. In such longitudinal studies, there is a real
concern about patient attrition, especially in elderly
individuals who may not be able to tolerate being con-
fined to a scanner for long periods. In an effort to collect
such a wide range of data types and maintain patient
enrollment, time constraints are placed on possible
dMRI protocols, including debates as to whether or not
to continue acquiring dMRI in the next phase of the
ADNI. Clearly it is of great interest to maximize the pow-
er of the available scans and show that even clinical
quality diffusion scans can be powerful tools for uncov-
ering disease-related abnormalities in tissue microstruc-
ture and WM neurocircuitry.

The goal of this study was to determine whether FA
metrics derived using the TDF model (FATDF) may be
more sensitive to disease-related differences than the
corresponding FADTI measure that is now widely used.
Building on preliminary findings reported by Nir et al
(17), our goal was to understand how the imaging pro-
tocol may influence the sensitivity of the FA metrics,
and further compared performance for each metric
computed from subsamples of the full ADNI dMRI 41
gradient direction angular resolution, including subsets
of 30, 15, and 7 gradient directions. Voxel-wise associ-
ation tests were used to compare FATDF and FADTI

metrics computed from a range of angular resolutions
and their ability to detect microstructural differences
between AD patients and healthy elderly controls. We
also evaluated associations between the two FA met-
rics and common AD biomarkers—hippocampal volume
and Clinical Dementia Rating (CDR) scores. Finally, we
evaluated the test/retest reliability of each model’s fit
and the resulting scalar FA maps. In comparing mod-
els, there is interest in detecting clinical associations
with maximal sensitivity and power, ideally using
improved metrics, which measure standard properties
more accurately.

METHODS

Subjects and Image Acquisition

Standard MRI, dMRI, and clinical data were downloaded
from the publicly available ADNI database (www.loni.
usc.edu/ADNI). We analyzed baseline data from 251 par-
ticipants: 53 healthy controls (mean age, 72.6 6 6.1 y;
men, n¼24; women, n¼ 29), 28 with significant memory
concern (mean age, 72.4 6 4.5 y; men, n¼ 10; women,
n¼ 18), 121 with mild cognitive impairment (mean age,
72.6 6 7.3 y; men, n¼75; women, n¼ 46) and 49 with
AD (mean age, 75.0 6 8.6 y; men, n¼29; women, n¼ 20).
Of the 53 control participants, 33 returned for follow-up
evaluations after 3 months, and their scans were used for
test/retest analyses (mean age, 72.8 6 6.5 y; men, n¼ 16;
women, n¼ 17). All procedures were reviewed and
approved by institutional review boards. All participants
gave written informed consent.

All subjects underwent whole brain MRI scanning on
3T GE Medical Systems scanners at 17 acquisition sites
across North America. Anatomical T1-weighted spoiled
gradient echo sequences (matrix¼ 256� 256; voxel
size¼ 1.2� 1.0� 1.0 mm3; TI¼400 ms; TR¼ 6.98 ms;
TE¼ 2.85 ms; flip angle¼ 11�) and dMRI
(matrix¼128�128; voxel size¼ 2.7� 2.7� 2.7 mm3;
TR¼ 9000 ms; dMRI scan time¼ 9 min) were collected. A
total of 46 separate images were acquired for each dMRI
scan: 5 T2-weighted images with no diffusion sensitiza-
tion (b0 images) and 41 diffusion-weighted images (DWI;
b¼ 1000 s/mm2).

Baseline hippocampal volume summary metrics, proc-
essed using the FreeSurfer package (http://surfer.nmr.
mgh.harvard.edu), were downloaded from the ADNI
database (n¼243 available), as was the sum-of-boxes
Clinical Dementia Rating score (CDR-sob; n¼ 238) (18).

Image Preprocessing

Raw images were preprocessed as described by Nir et al.
(7). Extracerebral tissue was removed, raw DWI images
were corrected for motion and eddy current distortions,
and T1-weighted images underwent inhomogeneity nor-
malization. Each T1-weighted image was linearly aligned
to a standard brain template. The diffusion images were
linearly and then elastically registered (19) to their
respective T1-weighted scans to correct for echo planar
imaging–induced susceptibility artifacts. Gradient tables
were corrected for DWI linear registrations.

Diffusion Gradient Subsampling

To gain a better understanding of the dMRI parameters
necessary to employ the TDF model, we used the frame-
work presented by Zhan et al. (20) to “downsample” the
angular resolution from 41 gradient directions to include
only a subset of either 30, 15, or 7 gradient images. Gra-
dient subsets were selected by optimizing the spherical
angular distribution energy. Briefly, the angular distribu-
tion energy, Eij, of a pair of points, i and j, on the unit
sphere may be defined as the inverse of the sum of the
squares of (1) the least spherical distance between point
i and point j, and (2) the least spherical distance between
point i and point j’s antipodal, symmetric point J. As in
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previous work, we acknowledge that protocols with few-

er gradients would be independently optimized for angu-

lar distribution rather than subsample directions from an

existing protocol, but the subsampling we use is

designed to lead to the most equally distributed sam-

pling on the sphere possible. It also helps us to assess

effects of gradient count while keeping other factors of

the patient’s scan constant (e.g., motion, artifacts).

dMRI Reconstruction Models and Scalar Maps

For each angular resolution (41, 30, 15, or 7 gradient

directions), three different dMRI reconstruction models

were used to generate scalar FA maps. First, a single dif-

fusion tensor (3)—equivalent to a 3D ellipsoid capturing

a single fiber orientation—was modeled at each voxel in

the brain from the corrected DWI scans. This model

assumes that the diffusion is a 3D Gaussian process, fit-

ted using just six independent parameters of a tensor (3

eigenvalues describing its shape, and 3 Euler angles

describing its orientation). Scalar fractional anisotropy

(FADTI) maps were obtained from the resulting diffusion

tensor eigenvalues (l1, l2, l3):

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1 � l2Þ2 þ ðl1 � l3Þ2 þ ðl2 � l3Þ2

2½l2
1 þ l2

2 þ l2
3�

s

In contrast to the single tensor model, the tensor distri-

bution function (TDF) represents the diffusion profile

as a probabilistic mixture of tensors that optimally

explain the observed DWI data, allowing for the recon-

struction of multiple underlying fibers per voxel,

together with a distribution of weights or probabilities.

We applied the framework proposed by Leow et al. (13)

and Zhan et al. (21) to the angular diffusion signal to

compute the voxel-wise optimal TDF, P*(D(h, k))—the

probability distribution function of all feasible Gaussian

tensors D(h, k) that best describes the observed signal.

As described by Leow et al., to reduce the solution

space, each tensor D(h, k) at spherical angle u was

assumed to be cylindrical such that l¼ (l1, l2¼ l3) and

l1�l2. However, unlike the gradient descent approach

used by Leow et al. to solve for this optimal TDF, we

used a quadratic programming approach (see Appendix

for details). The tensor orientation distribution function

(TOD) was then calculated by computing the marginal

density function of the TDF with the eigenvalues

l¼ (l1, l2) integrated out.

TODðuÞ ¼
Z

l

P
�

Dðu;lÞ
�

dl

For each u, the eigenvalues are calculated by comput-

ing the expected value of each eigenvalue along u,

from which a corresponding scalar FA metric is

calculated:

l0iðuÞ ¼

R
P
�

Dðu; lÞ
�

lidlR
P
�

Dðu;lÞ
�

dl

FAðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl01ðuÞ � l02ðuÞÞ

2 þ ðl01ðuÞ � l03ðuÞÞ
2 þ ðl02ðuÞ � l03ðuÞÞ

2

2½l01ðuÞ
2 þ l02ðuÞ

2 þ l03ðuÞ
2�

s

At each voxel, the final scalar FATDF metric across all u

is then calculated as the sum of all FA(h) weighted by

the probability that u is the principal fiber direction,

TOD(h).

FATDF ¼
Z

TODðuÞ � FAðuÞdu

A healthy control subject’s FADTI and FATDF maps, cal-

culated from various angular resolutions, are shown in

Figure 1a and 1b for visual comparison. A voxel-wise,

two-tailed, paired t test was performed to quantitatively

compare TDF and DTI FA values in the healthy control

group. All resulting statistical maps were corrected for

multiple comparisons using the standard false discovery

rate (FDR) method at q¼ 0.05 (22) and thresholded at the

FDR critical P value.
For comparison to an established high angular resolu-

tion diffusion imaging technique also designed to recon-

struct multiple fiber orientations in a given voxel, we

fitted ODFs at each voxel, with a nonparametric q-ball

reconstruction technique, using the normalized and

dimensionless constant solid angle (CSA) method (9,23).

The generalized FA (GFAODF) was then calculated from

the CSA-ODF. GFAODF is analogous to FADTI, but calcu-

lated at each diffusion direction of the ODF (9) and is

defined as:

GFA ¼ stdðCÞ
rmsðCÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1

�
CðuiÞ �C

�2

ðn� 1Þ
Pn

i¼1CðuiÞ2

vuuut

Here, C(u) is the ODF, i is each diffusion direction, and

C ¼ 1
n

Pn
i¼1CðuiÞ is the mean of the ODF.

Template Creation and Spatial Normalization

To avoid bias in the diffusion-based registrations, we cre-

ated a multichannel, study-specific minimal deformation

template with the ANTs registration software (24), equal-

ly weighting FADTI, FATDF, GFAODF and T1-weighted

maps. Similarly, to spatially normalize each subject’s

three FA maps, we performed a three-channel linear

then nonlinear registration to the minimal deformation

template. In this way, all FA maps were used to drive

the registration, and they were all normalized to the

same space. To avoid differences in registration accura-

cy, the deformations from the full angular resolution reg-

istration were applied to the FA maps calculated from

the various DWI gradient subsets for each individual.
Test/retest FADTI and FATDF maps generated from

baseline and 3-month follow-up dMRI scans were each

linearly aligned to an intermediate space halfway

between each subject’s two time points (25). Baseline

and follow-up maps were each spatially normalized to

the baseline minimal deformation template with two-

channel linear then nonlinear registrations. The deforma-

tions from the full angular resolution registration were
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applied to the various test/retest DWI gradient subsets as

well as the respective FA maps.

Clinical Associations and Effect Sizes

To test for statistical effects of AD diagnosis on measures

of white matter microstructure–FADTI, FATDF, and

GFAODF maps calculated at various angular resolutions–

we ran voxel-wise, random-effects linear regressions,

covarying for age and sex, and using the acquisition site

as the random grouping variable. In an effort to try and

tease apart microstructural associations from those driv-

en by atrophy and registration, for each voxel, we also

covaried for the log Jacobian determinant derived from

the nonlinear spatial normalization of each map to the

template. In addition to AD diagnosis, we also tested for

voxel-wise associations between FA and CDR-sob scores

as well as average bilateral hippocampal volume (after

covarying for intracranial volume) across the entire study

sample. All statistical tests were limited to voxels pre-

sent in all subject scans, as some scans had a slightly

cropped field of view. As such, we did not consider the

inferior parts of the cerebellum and brain stem. All

resulting statistical maps were corrected for multiple

comparisons using the standard FDR method at q¼ 0.05

(22), and thresholded at the FDR critical P value. We

show regression coefficients (b values) only in regions

where the false discovery rate was controlled.
We computed cumulative distribution function (CDF)

plots to visualize and rank effect sizes across voxel-wise

tests. The sorted observed voxel P values from each

regression were plotted against the P values from the

expected null distribution. If the CDF curve initially

rises at a rate steeper than 20 times the null CDF

(y¼ 20x), then the corresponding maps have supra-

threshold or FDR significant voxels at q¼0.05. Curves

that rise at a steeper rate than that line represent signifi-

cant voxels and larger deviations represent larger effect

sizes.
Effect sizes for detecting AD versus control group dif-

ferences were also compared using Cohen’s d calculated

as (mAD�mCN)/spooled, where spooled ¼ �½ðs2
CN þ s2

ADÞ=2�
(26). This metric has been widely used in studies of dis-

ease effects on imaging measures (27–29). For each FA

FIG. 1. Diffusion FA maps, (a) FATDF and (b) FADTI, are shown for a single subject calculated from 41, 30, 15, and 7 gradient direction

sets. The FATDF maps show more sharply defined WM boundaries, with much less signal dropout in regions near the cortex that tend to
have less coherent WM, compared with FADTI maps. (c) t test maps in regions where FADTI and FATDF maps are significantly different

reveal lower FADTI values (negative association) throughout the tissue regardless of angular resolution (FDR critical P value for 41
gradients¼0.047, 30 gradients¼0.047, 15 gradients¼0.047, and 7 gradients¼0.046).
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metric and angular resolution, we used the average FA

from the respective statistical test’s significant cluster.

To avoid overfitting, a 10-fold cross-validation approach

was used. In each fold, 80% of the data were used for

voxel-wise regressions to estimate the significant clusters

(training data), and the remaining test data were used to

compute the Cohen’s d effect sizes.

Test/Retest Reliability and Model Fit

We used the framework defined by Rokem et al. (30) and

Pestilli et al. (31) to evaluate the goodness of the fit of

each dMRI model in healthy controls. We first compared

the voxel-wise root mean squared error (RMSE) between

the observed signal (A) and expected signal (B) from

each model in each voxel:

RMSEðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðAi � BiÞ2

N

s
;

where N is the number of gradient directions or DWIs

and Ai, Bi are the observed and expected signal intensi-

ties in the given voxel in the i-th DWI. Additionally,

baseline and 3-month follow-up test/retest data were

used to cross-validate each model’s fit—the model
parameters were first estimated on baseline control sub-
jects’ DWI scans, and then used to predict the signal in
the 3-month follow-up DWI scan. As proposed by Rokem
et al., we defined the test/retest relative RMSE (rRMSE)
in each voxel as

rRMSE ¼

�
RMSEðM1;D2Þ þ RMSEðM2;D1Þ

�
2RMSEðD1;D2Þ :

Here, RMSE(M1,D2) is the RMSE between the data
observed in the follow-up scan and predicted from the
first scan, RMSE(M2,D1) is the RMSE between the
observed data in the first scan and that predicted from
the follow-up scan, and RMSE(D1,D2) is the RMSE
between the observed data from both scans. A model
that predicts the repeated measurement more accurately
than the original will result in an rRMSE< 1 (30). To
compute RMSE (M1,D2), we used parameters learned
from the first scan, and the bvecs (scanner gradient
directions) and b0 from the follow-up scan, and vice
versa for RMSE(M2,D1). A voxel-wise two-tailed paired t
test was performed to compare TDF and DTI baseline
RMSE and rRMSE values in the healthy control group.

FIG. 2. (a) b maps show regions where lower FADTI, FATDF, and GFAODF is significantly associated with AD diagnosis, higher CDR-sob
cognitive deficits, and lower average bilateral hippocampal volume. Across tests, FATDF maps (middle row) consistently show larger

effect sizes in temporal lobe and hippocampal regions. This is denoted by greater b value magnitudes and more pervasive significant
associations. The patterns are also more in line with the expected topography of the disease effects. (b) CDF plots show effect sizes for
FADTI, FATDF, and GFAODF statistical associations. FATDF maps (green lines) are consistently the most sensitive metric (denoted by the

higher critical P values controlling the FDR [i.e., the highest nonzero x-coordinate where the CDF crosses the y¼20x line]). (c) The abso-
lute number and percentage of total significant voxels surviving FDR correction, showing an association direction opposite to that tradi-
tionally accepted as showing impairment (dark blue voxels highlighted by boxes in panel a). FADTI and GFAODF associations show �8%-

15%, whereas FATDF tests show<0.5%, suggesting that FATDF may be handling computations better in areas with crossing fibers.
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All resulting statistical maps were corrected for multiple
comparisons using the standard FDR method at q¼ 0.05
(22); resulting maps were thresholded at the FDR critical
P value.

We also evaluated the test/retest reliability for FADTI

and FATDF maps calculated from each angular resolution
by computing the voxel-wise intraclass correlation (ICC)
between baseline and 3-month follow-up healthy control
FA maps, with the R PSYCH package (personality-projec-
t.org/r/html/ICC.html). Again, the FDR method was used
to correct for multiple comparisons.

RESULTS

Both a visual comparison of FADTI and FATDF maps (Fig.
1a and 1b) and t test between maps (Fig. 1c) reveal that
FATDF maps have higher FA values not only in the core,
coherent WM structures but throughout the tissue,
including near GM/WM boundaries. The standard FADTI

measure tends to show loss of signal near cortical bound-
aries and in regions with known fiber crossings and com-
plex gray matter architecture.

Clinical Associations and Effect Sizes

As expected, across all of the FA metrics, AD diagnosis,
greater cognitive impairment (higher CDR-sob score),
and lower average hippocampal volume were associated
with significant WM deficits (lower FA) after correction
for multiple comparisons (Fig. 2a). However, across sta-
tistical tests, larger effect sizes, as denoted by greater b
value magnitude and more widespread differences,
were detected with FATDF voxel maps compared with
FADTI and GFAODF. Moreover, FATDF findings are highly
localized to the temporal lobe and hippocampal regions
most vulnerable to early changes in AD. CDF plots further
reflect the increased sensitivity of FATDF for differentiating
disease groups, and for detecting clinical associations
(Fig. 2b).

Across maps, some very small regions exhibited signif-
icant associations with FA in a direction contrary to
what would traditionally be accepted as showing impair-
ment (i.e., higher FA with impairment; Fig. 2a, boxed
regions). These regions were largely found at the junc-
tion of the corpus callosum commissural fibers and the
corona radiata, a region notorious for fiber crossings that
may reduce the FA, as computed from the tensor model
(32). However, across analyses, FATDF showed fewer
associations that were contrary to the hypothesized
effects of the disease (Fig. 2c). Relative to the total num-
ber of significant voxels, FADTI showed between �13%
and 15% of these voxels, GFAODF showed between
�8% and 10%, and FATDF showed< 0.5% across tests,
suggesting that FATDF may be handling computations
better for crossing fibers.

A comparison of the same three clinical associations
with FADTI and FATDF computed from a subset of 30, 15,
and 7 gradient directions revealed that even at 7 gradient
directions, FATDF was consistently the most sensitive
metric across statistical tests (Table 1, Fig. 3). In fact,
FATDF calculated from 7 gradient directions had larger
effect sizes than FADTI calculated at the full angular reso-
lution. Across statistical tests performed at each angularTa
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resolution, FATDF consistently showed less than 0.5% of

significant voxels with a direction of association oppo-

site to that hypothesized, compared with FADTI which

showed between �5% and 15% (Table 1). Finally, the

mean Cohen’s d effect sizes for picking up AD versus

control group differences—which were calculated using

test data from the 10-fold cross-validation—once again

confirmed that across all angular resolutions, FATDF

showed larger effect sizes (Table 2).

Test/Retest Reliability and Model Fit

Mean maps of the RMSE calculated from the DTI and TDF

model fit in the subset of 53 healthy control subjects are

shown in Figure 4a and 4b. A voxel-wise t test revealed

significantly lower error in the TDF fit throughout the tis-

sue regardless of angular resolution (Fig. 5a; FDR critical P

value for 41 gradients¼ 0.041, 30 gradients¼ 0.041, 15

gradients¼ 0.042, and 7 gradients¼0.043). The mean

rRMSE maps from DTI and TDF models from 33 healthy

control individuals at two time points are shown in Figure

4c and 4d. While the rRMSE was high in both the TDF

and DTI models in the superior cortical gray matter (mean

rRMSE> 1), the fit was stable (<1) in WM and overall

temporal lobe regions where most of the AD-related effects

were detected. A t test between the DTI and TDF rRMSE

maps (Fig. 5b) revealed significantly lower rRMSE for the

TDF fit, in not only the temporal lobes, but in the region of

the superior WM where commissural fibers and the coro-

na radiata intersect, often leading to depleted FADTI.

The TDF model showed higher error only in cerebrospinal

fluid. TDF rRMSE was progressively more similar to

DTI (i.e., less area of significant differences) with lower

angular resolution (FDR critical P value for 41 gradients¼
0.024, 30 gradients¼ 0.021, 15 gradients¼ 0.017, and

7 gradients¼0.001).
In terms of test/retest reliability of the scalar FA maps,

we found that across resolutions there was an overall sta-

ble and strong ICC between baseline and follow-up

FATDF maps (mean ICC �0.8; Fig. 5c), whereas, as might

be expected, there was a degradation in FADTI ICC at the

lowest angular resolutions (Fig. 5d).

DISCUSSION

FA metrics derived from the tensor distribution function
(TDF) may be more sensitive to disease-related micro-
structural abnormalities than corresponding single
tensor-derived FA metrics that are now widely used to
assess clinical data. FA is highly affected by numerous
factors, including the number of dominant fiber direc-
tions and orientation coherence as well as partial volume
effects from neighboring GM. By using the TDF
approach, we can still employ an extension of the tensor
model, adapted to identify contributions to FA from sep-
arate crossing fiber compartments in tissue with more
complex microarchitecture and in voxels on tissue
boundaries that are susceptible to partial voluming.

AD is characterized by cortical and hippocampal neu-
ronal loss and widespread GM atrophy driven in part by
cortical amyloid plaque, neurofibrillary tangle deposits,
and vascular changes. Structural and diffusion MRI stud-
ies show WM injury, perhaps due to myelin degenera-
tion, and neuronal loss leading to progressive
disconnection of cortical and subcortical regions
(7,33–36). Standard anatomical MRI is still the imaging
technique most often used in AD studies and clinical tri-
als, but dMRI is sensitive to microscopic changes in WM
integrity not always detectable with standard anatomical
MRI (37,38). In addition to WM, dMRI is an emerging
tool for the evaluation of disease-related GM abnormali-
ties as well (6,39–43). A growing number of studies are
assessing cortical and subcortical GM diffusivity changes
in AD that may reflect GM cellular microstructure break-
down (6). Several studies report microscopic changes in

FIG. 3. CDF plots of statistical associations between (a) AD diagnosis, (b) average bilateral hippocampal volume, and (c) CDR-sob and
FADTI or FATDF maps computed from 41, 30, 15, and 7 gradient direction sets. FATDF maps (green lines) are consistently the most sensi-

tive metric (denoted by the higher critical P values controlling the FDR [i.e., the highest nonzero x-coordinate where the CDF crosses
the y¼20x line]) across all gradient subsets. Curves correspond to values listed in Table 1.

Table 2
Mean Cohen’s d Effect Sizes Across 10 Folds for Picking Up FADTI

and FATDF Group Differences Between AD Patients and Healthy
Controls Across Angular Resolutions

Gradients FADTI FATDF

41 1.64 (0.11) 1.90 (0.06)
30 1.63 (0.14) 1.88 (0.06)
15 1.64 (0.15) 1.87 (0.07)

7 1.77 (0.39) 1.95 (0.08)

All data are presented as the mean (standard deviation).
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the hippocampi that may be detectable prior to volumet-
ric changes (43,44). Because dMRI changes may be
detectable before (and therefore predict) gross volume
loss (45,46), it is important to maximize the power to
detect such changes.

In this study, we found that compared with both
GFAODF and FADTI, FATDF showed increased power to
detect subtle or diffuse disease effects, especially in hip-
pocampal and temporal lobe regions. AD pathology tar-
gets GM regions, especially in the temporal lobe and
hippocampus. In these regions, FADTI might be subopti-
mal, as it is best suited to detect differences in cohesive
WM fiber bundles (e.g., the corpus callosum). We also
found more significant FATDF associations in voxels at
GM or cerebrospinal fluid boundaries that may otherwise

be susceptible to partial volume effects with FADTI. Com-
pared with FADTI, larger FATDF effect sizes were pre-
served even when the dMRI angular resolution was
subsampled from 41 gradient directions to 30, 15, or
even 7 gradient directions. Perhaps surprisingly, FATDF

calculated from 7 gradient directions had larger effect
sizes than FADTI calculated at the full angular resolution.
Whereas some higher-order models require extremely
dense or multishell acquisitions, TDF may better extract
the information typically available in clinical settings,
where time constraints limit scan times. It may also be
helpful for studies of valuable but lower-resolution lega-
cy data. The TDF as proposed by Leow et al. (13) makes
no assumptions about the number of compartments per
voxel and, unlike the tensor distribution function

FIG. 4. The left two columns show the root mean squared error (RMSE) maps from the (a) DTI and (b) TDF model fit, averaged across
53 healthy control subjects. The right two columns show the rRMSE maps from the (c) TDF and (d) TDF model fit, trained on baseline

scans and tested on 3-month follow-up scans in each of 33 control subjects individually, and averaged across the group.
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previously proposed by Jian et al. (47), does not impose
the same anisotropy profile on all fiber compartments.
This may lead to better estimates if there are higher lev-
els of uncertainty in the data, such as may arise with
low resolution data.

Furthermore, FATDF may also help to interpret appar-
ent increases in FADTI found in disease. In many

contexts, lower FA is hypothesized to reflect impair-
ment. However, relative increases in FA have been
reported in FADTI studies of AD, which may reflect a
selective sparing or selective degeneration of one of the
pathways in a region with crossing fibers (48). However,
without histologic data, we cannot be certain whether
selective degeneration or increased integrity—or some

FIG. 5. Statistical differences in reliability between TDF and DTI models. (a) t maps in regions where the RMSE maps of the TDF and

DTI model fit in 53 healthy controls are significantly different reveal higher error for DTI (positive association) throughout the tissue (red)
regardless of angular resolution (FDR critical P value for 41 gradients¼0.041, 30 gradients¼0.041, 15 gradients¼0.042, and 7
gradients¼0.043). (b) t maps in regions where the rRMSE maps of the TDF and DTI model fit, trained on 33 healthy controls’ baseline

scans and tested on 3-month follow-up scans, are significantly different reveal higher error for DTI (positive association) in the tissue
(red), particularly in regions of known crossing fibers (FDR critical P value for 41 gradients¼0.024, 30 gradients¼0.021, 15

gradients¼0.017, and 7 gradients¼0.001); the TDF model shows higher error only in cerebrospinal fluid. (c,d) ICC maps in regions with
a significant ICC between baseline and 3-month follow-up (c) FATDF maps (FDR critical P value for 41 gradients¼0.049, 30
gradients¼0.049, 15 gradients¼0.049, and 7 gradients¼0.049) and (d) FADTI maps (FDR critical P value for 41 gradients¼0.050, 30

gradients¼0.050, 15 gradients¼0.049, and 7 gradients¼0.047). The mean ICC and standard deviation (SD) of the ICC across all vox-
els are reported below each mapped coronal slice.
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combination of both—is driving higher FADTI values in a

neuroimaging study. FATDF, on the other hand, takes

into account crossing fiber compartments. A relatively

higher FA may more consistently reflect healthier tissue,

whereas lower FA more consistently reflects deficits,

making the direction of associations easier to interpret.

Across analyses, we found that FATDF showed fewer

“contrary to hypothesis” regions (i.e., higher FA associat-

ed with greater deficits). Across all statistical tests and

angular resolutions, compared with FATDF, FADTI

showed both a higher absolute number of these types of

significant voxels and a higher percentage relative to the

total number of significant voxels (�5%–15% of voxels

versus< 0.5% with FATDF), suggesting that FATDF may

in fact be resolving crossing fibers.
Analyses of test/retest reliability and model fit

showed that the TDF was quite reliable and robust in

regions that showed disease effects in this analysis.

Some instability in test/retest reliability is to be

expected when using the ADNI dataset; the scans were

performed 3 months apart, and the healthy control par-

ticipants were elderly (mean age, 72.8 6 6.5 y). Further-

more, these individuals may have exhibited some

biological aging and WM deterioration, even over the 3-

month interscan interval. All registrations were visually

evaluated, but age-related changes and minor geometric

miscalibration of the scanner may have also contributed

to minor discrepancies in alignment between two scans

from the same subject, further contributing to both the

final test/retest ICC and rRMSE measures in both the

DTI and TDF models.
A previous study also showed that FATDF was a more

stable metric with decreasing spatial resolution, whereas

FADTI values decreased more rapidly due to more fiber

incoherence and greater partial voluming in larger voxels

(49). However, further analyses of FATDF limitations on a

wider range of diffusion protocols and comparisons of

performance to numerous other proposed scalar metrics

are necessary. In addition to FA, there is also a growing

interest in assessing complementary diffusivity metrics,

including mean diffusivity, axial diffusivity, and radial

diffusivity. Because FA is an inherently normalized mea-

sure and diffusivity metrics are not, future work is neces-

sary to define analogous measures within the TDF

framework.
Multishell and other diffusion spectrum MRI or q-

space techniques may ultimately outperform tensor mod-

el metrics, but they are often less feasible given the time

constraints on dMRI protocols in clinical settings, as

well as for recovering information from valuable legacy

data. The TDF model may ultimately allow us to take

advantage of such available clinical quality diffusion

data with more sensitivity and fewer limitations than the

classic DTI model.

APPENDIX

As the probability distribution we fit to the tensors, P(D(h,
k)), is defined as a nonparametric distribution, we sampled

the tensor space to solve the optimization problem. As in

Leow et al. (13), we set l2¼ l3 and l1� l2, thus reducing the

search of tensors to 2 eigenvalues and a principal eigenvector
direction. The cost function could be rewritten (up to a con-
stant multipier S0) as

I ½P Dðu;lÞð Þ� ¼
P

i SobsðqiÞ �
PM
k¼1

PðDkÞexpð�qT
i DkqiÞ

� �2

¼ 1

2
xTð2FFTÞ x � xTð2FsÞ þ||s||2

[A1]

where x 2 RM is the vector of probabilities xi ¼ PðDiÞ;
i ¼ 1;M (where M is the number of elements in sampling);
s 2 RN is the vector of observed intensities of the DW mea-
sures (where N is the number of DW scans); and F 2 RM�N

is the matrix of elements Fij ¼ expð�qT
j DiqjÞ.

Clearly, we search for a vector x that minimizes the
cost function with two constraints:

xi > 0; i ¼ 1;M

XM
i¼1

xi ¼ 1
;

which lends itself to a classic quadratic programming
(QP) problem (50). By definition, the matrix H ¼ 2FFT is
positive semidefinite, which means that the problem is
convex. However, by construction, the rank of the matrix
H cannot exceed N (the number of observations). There-
fore, if the tensor space sampling has more than N
points, the problem has multiple optimal solutions. The
original gradient descent approach described by Leow
et al. (13) used the substitution PðDÞ ¼ exp

�
RðDÞ

�
to

meet the constraint PðDiÞ > 0. It also used a feasible-
direction gradient descent method, projecting the steep-
est descent direction onto the constraint

R
PðDÞdD ¼ 1.

Even so, as long as P is sought as a nonparametric distri-
bution based on a sampling at predefined grid points,
multiple optimal solutions still remain a problem.
Instead, we used the primal-dual predictor-corrector
interior-point method (51) to solve the optimization
problem. The method that we used is one of the interior-
point methods family, which converges to a unique solu-
tion from the feasible interior region to the optimum, fol-
lowing the central path (52). Generally, interior-point
methods solve the problem

minx cTx þ 1

2
xTHx � m

XM
j¼1

ln xj

" #

given (in our case) H ¼ 2FFT , c ¼ �2Fs, and the con-
straint eTx ¼ 1 and xi ¼ PðDiÞ > 0 as defined above
ðei ¼ 1; i ¼ 1;M Þ. Starting with large l, this functional is
being decreased on every step, enforcing the solution to be
close to the line x1 ¼ x2 ¼ . . . ¼ xM , which is a minimizer
for the ð�m

PM
j¼1ln xjÞ term. A QP solver implemented as

compiled Cþþ code (http://sigpromu.org/quadprog/) was
used for solving the minimization problem.

Numerical Implementation Details

The following sampling scheme was chosen for the ten-
sor space: l1¼ [0.2 0.4 . . . 2.0], l2¼ [0.2 0.4 . . . l1],
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resulting in 55 sampling points for the lambda combina-
tions. Principal eigenvectors were sampled at two resolu-
tion levels as centers of faces of half an icosahedron (to
represent the hemisphere), resulting in 10 directions at
the low-resolution level and 40 directions at the higher-
resolution level (by subdividing each icosahedral face
into four new ones). A freely available set of functions
(https://www.mathworks.com/matlabcentral/fileexchange/
37004-suite-of-functions-to-perform-uniform-sampling-of-a-
sphere) was used to build and subdivide an icosahedron.

The algorithm may be summarized as follows:

1. Pre-compute matrices F, H.
2. For each voxel:

a. Compute the vector c ¼ �2Fs (given s – vector
of DW observations in voxel).
b. Solve the QP problem (Eq. A1).
c. Compute the TOD as TODðuÞ ¼

R
l
P
�

Dðu; lÞ
�

dl.
d. For directions where the value of the TOD
exceeds the threshold (as implemented in Leow
et al. (13), but set here to 1/10¼ 0.1), upsample –
replace each low-resolution direction with four
corresponding higher-resolution directions to
fine-tune the tensor orientation probabilities.
e. Solve QP again only for the higher-resolution
directions.
f. Compute higher-resolution output metrics
(FATDF) as well as RMSE.
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