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Abstract

Purpose In the image processing community total variation

(TV) is widely acknowledged as a popular and state-of-the-

art technique for noise reduction because of its edge-

preserving property. This attractive feature of TV is dependent

on optimal selection of regularization parameter. Contributions

in literature on TV focus on applications, properties and the

different numerical solution methods. Few contributions

which address the problem of regularization parameter

selection are based on regression methods which pre-exist

introduction of TV. They are generic and elegantly formulated,

and their operation is in series with TV framework. For these

reasons they render TV computationally inefficient and there

is significant manual tuning when they are deployed in

specific applications.

Methods This paper describes a non-regression approach for

selection of regularization parameter. It is based on a new

concept, the Variational-Bayesian (VB) cycle. Within the

context of VB cycle we derive two important results. First,

we confirm the notion held for a long time by researchers,

within image processing and computer vision community,

that variational and Bayesian techniques are equivalent.

Second, the value of regularization parameter is equal to

noise variance, and is determined, at no computational cost

to TV denoising algorithm, from a mathematical model that

describes relationship between Markov random field energy

and noise level in magnetic resonance images (MRI) of

brain. The second result is similar to one reported in [1] in

which the authors, for special choice of regularization

operator in different regression methods, derive value of

regularization parameter as equal to noise variance.

Results Our proposal was evaluated on brain MRI images

with different acquisition protocols from two clinical trials

study management centers. It was based on visual quality,

computation time, convergence and optimality.

Conclusions The result shows that our proposal is suitable in

applications where high level of automation is demanded

from image processing software.

Keywords Magnetic resonance imaging (MRI), Total

variation (TV), Regularization parameter, Markov random

field, Noise level

INTRODUCTION

Brain MRI images in clinical trials

Magnetic resonance images (MRI) of human brain exhibit

unique characteristics. They can be generally described as

piecewise smooth and statistically simple [2]. Three structures

namely white matter, gray matter and ventricular system

dominate slices from brain MRI images of a single subject.

There is also geometric similarity among different subjects

across age, gender and race [3]. Brain MRI images are highly

efficient for study and examination of brain anatomy as well

as detection of signatures of neurodegenerative diseases such
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as multiple sclerosis and Alzheimer [4, 5]. Daily, several

thousands of brain MRI slice images are delivered from

clinical trial sites around the globe to clinical research

organizations that manage clinical trials of new drugs for

pharmaceutical organizations. Efficient management of this

large amount of data demands high level of automation from

image processing and image analysis software at study

management centers. The performance of image analysis

system is strongly dependent on quality of MRI image. The

quality of an MRI image reflects performance of noise

reduction unit within image processing system. The noise

reduction unit contribution to quality of acquired MRI image

is preservation of sharp edges that defines boundaries of

anatomical structures and disease signatures for efficient

image analysis.

Problem statement

An MRI slice image Id, in its original form of acquisition, is

a complex valued data having both real and imaginary

components degraded by noise n. The noise can be modeled

by a Gaussian distribution of mean zero. The degradation

processes in the two components of the complex plane are

identical linear model:

Id = HIc + n (1)

where Ic is the clean data and H is the point spread function

of the imaging system. Combination of the real and imaginary

components of the MRI data produces magnitude MRI

image resulting in nonlinear transformation of the Gaussian

distribution of the pixels in the complex plane into Rician

distribution [6].

In 1992 Rudin, Osher and Fatemi (ROF) introduced total

variation (TV) technique to the image processing community

[7]. The trio observed that any image such as a MRI image

Id derived from degradation process in Eq. (1) is characterized

by excessive details resulting in high total variation:

(2)

where M × N is the dimension of the image and ∇Id is the

gradient of the image at pixel location (i, j). They reasoned

that noise signatures expressed by excessive details can be

suppressed if total variation of the image is subject to

closeness in value to underlying image Ic. They formulate

problem of noise reduction as unconstrained minimization of

total variation:

(3)

where ,  and  are the denoised

image, fidelity term and regularization parameter respectively.

The blurring function is an identity matrix H = I and the

fidelity term is a measure of closeness of observed image to

underlying image. The regularization parameter weighs how

the total variation and fidelity term is reflected in the

denoised image. Values for λ that are too high, too low and

equal to zero results in denoised images  with corresponding

three different properties:

λ (4)

If the value of λ tends to be too high the algorithm is

constrained to place more emphasize on noise removal but

the denoised image is over-smooth because there is less

emphasis on impacting piecewise smooth property of the

underlying image on the denoised image. On the other hand,

value of λ that tends to be too low results in denoised image

that possesses the piecewise smooth property of the

underlying image but retains noise. A special case is when

λ = 0, in which the denoised image is same as the noisy

image. Thus, optimal performance of TV technique is strongly

dependent on optimal selection of λ [1]. Regularization

parameter higher than optimal value will remove more noise,

and this tends to destroy image details. On the other hand

regularization parameter lower than optimal will preserve

image detail but tends to allow noise to prevail.

Applications of total variation technique

Total variation technique is widely acknowledged as a

popular and state-of-the-art technique. Its main attractive

feature is ability to preserve edges. Today, the application of

TV is beyond denoising. It is applied in super-resolution [8],

computed tomography (CT) images analysis [9, 10], MRI

images analysis [11], remote sensing [12], video restoration

[13], blind deconvolution [14], and image inpainting [15,

16].

Detailed report on theory behind formulation of TV

denoising, its operational characteristics and edge-preserving

property can be found in [17]. Some researchers such as [18,

19] and [20] investigated the relationship between local

image pixel intensities, image scale and regularization

parameter and how global image restoration relates with

image scale, frequency distribution of image pixel intensities

and geometric features.

Numerical solutions to TV have attracted the attention of

researchers. Partial differential equation technique similar to

the original proposal by ROF was proposed by [21] and [22].

Primal-dual method proposed by [23] was an improvement

in terms of speed and convergence over earlier work by [24].

There is the generalized accelerated proximal gradient
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technique proposed by [25], which was reported to converge

faster than the classical accelerated proximal gradient [26]

and the alternating minimization technique [27], a variant of

variable splitting technique [28].

Review of TV regularization parameter selection techniques

Fifteen years after the introduction of TV technique [29] and

[30] were most likely the earliest contributions on selection

of regularization parameter focused on TV image restoration.

In [29] the image, regularization parameter and parameter

associated with the prior image were jointly estimated using

variational distribution within Bayesian framework. The

generalized cross validation (GCV) method [31] was exploited

to propose an automatic regularization parameter selection

scheme in [30]. GCV is regarded as a weighted version of

the classical cross validation method [32] for predicting the

accuracy of a model in statistics. The observed data is

partitioned into arbitrary number of independent sets. Each

of the single observation is adopted, one at a time, as a test

set and the remaining independent observations are regarded

as training sets with which to predict the model. The

reasoning here is that optimal choice is the observed

regularization parameter that gives the best prediction.

The discrepancy rule-based method to automatically

choose the regularization parameter was proposed in [33]

and [34]. The discrepancy principle [35] recommends that, if

there is a fair knowledge of the error  between

observed and underlying image, the regularization parameter

should be chosen when residual error of the regularized

solution is less than or equal to βε for sone user defined

constant β >1.

Motivated by the performance of unbiased predictive risk

estimator (UPRE) in Tikhonov regularization technique the

authors of [36] propose UPRE to select regularization

parameter in TV. Mallows [37] was the first to propose

UPRE. The method relies on linear relationship between the

regularized solution and data. Knowledge of noise variance

is required to compute the prediction error Pλ, a function of

the regularization parameter. Pλ is the difference between the

computed solution and the ground truth solution. The

optimal parameter is the minimizer of Pλ.

The authors in [38] and [39] reasoned that λ in the original

formulation of ROF is a global parameter and does not

satisfy local piecewise smoothness constraints in all regions

within the image. They formulate a variant of TV model and

propose multiple spatially dependent regularization parameters

satisfying local constraints. The spatial dependency of λ was

combined with the knowledge that images are comprised of

multiple objects at different scales, and a spatially dependent

multi scale total variation model was proposed by [40].

The use of Stein’s Unbiased Risk Estimate (SURE) and

GCV for optimal removal of speckle and Rician noise in

synthetic aperture radar (SAR) and MRI images was

reported in [41] and [42], respectively. Given a deterministic

underlying image Ic and its estimate h(Id) computed in a

denoising process, SURE, proposed by [43], is an unbiased

estimator of variance-based expectation of the mean square

error. For recent developments in numerical method solutions

and applications of total variation we refer our readers to

[44].

Limitations of current algorithms

The different techniques for selection of regularization

parameter are based on classical parameter selection

methods that were in existence before the introduction of TV

technique. The algorithms are presented elegantly and their

performances were evaluated using standard test images. In

most cases their operation is a minimization process within

another minimization process, the computationally intensive

TV minimization algorithm. This results in increased

computational cost of the entire denoising process [42]. In

specific applications the need to understand the application

environment for optimal performance calls for manual

tuning of the parameter until the best peak signal-to-noise

ratio (PSNR) of the image is attained [25, 27, 45]. The

design and operation of the algorithms incorporate heuristics.

For example, in generalized cross validation the minimum

number of observations required for optimal performance

has to be heuristically determined from experiment by the

user. Noise will prevail in the regularized solution if a

reasonable number of data points is not chosen as input into

the algorithm. Moreover, the algorithm does not have universal

application as there are reports of failure in some model

parameter selection problems [46]. The performance of

discrepancy principle, UPRE and SURE relies on a good

estimate of the error level, otherwise there is risk of over-

smoothing or retaining noise [1]. Most of current TV

regularization parameter selection techniques will be

computationally inefficient and useless in MRI-based clinical

trials management centers where the daily routine include

processing and analysis of several thousands of brain MRI

images. Efficient operation in such application environment

demands high level of automation from the image processing

and image analysis software and little tolerance for manual

task.

Our contribution

In this paper we introduce a new concept called the

Variational-Bayesian (VB) cycle. Based on this concept we

demonstrate that TV and Bayesian techniques are equivalent.

Furthermore we describe how and why the noise variance of

an image is the optimal regularization parameter. Our

proposed method of computing regularization parameter is

applied to MRI-based clinical trials where several thousands
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of MRI brain images are processed daily. To satisfy the

requirement of low computational cost the regularization

parameter is computed by a third party algorithm before

commencement of the TV denoising process. The equality of

regularization parameter and noise variance which we

derived from the VB concept was also derived in [47] and

[1] using classical approach. The authors analyzed different

classical methods for selection of regularization parameters.

The methods are cross validation (CV), mean square error

(MSE), predicted mean square error (PMSE), equivalent

degrees of freedom (EDF), maximum likelihood (ML) and

set theory (ST). The analysis shows that for a special choice

of the regularization operator all the aforementioned methods

yield the same value of λ equal to the noise variance σ 2:

(5)

The special choice is expressing the regularization functional

Q as periodogram-based estimate of autocorrelation function

RId
 of the observed image Id:

(6)

The periodogram-based estimate is the equivalence of

Fourier transform of spatial domain autocorrelation function

of the observed image. For this special choice the denoised

or estimate of the underlying image  is the linear minimum

mean square error (LMMSE) solution of Wiener filter.

Outline of paper

This paper is organized as follows. The next section describes

theory and methodology of our proposal. This is followed by

experiments and display of experimental results. The results

are discussed before conclusion of this paper.

THEORY AND METHOD

This section begins with the concept of VB cycle. It explains

the equivalence of TV technique and the technique of

Markov random field (MRF) model within Bayesian

framework. Furthermore it describes how to navigate from

TV technique to MRF-Bayesian technique and vice-versa.

The concept was used to derive value of regularization

parameter. Thereafter, we describe how the regularization

parameter is computed.

The variational-bayesian cycle

The focus of researchers on the computational speed of TV

in different applications has led to generalizations and

variations of the original TV denoising problem formulated

by ROF [48]. In this paper we choose to adopt the original

TV problem formulation expressed as a convex functional in

[23] for our proposed method:

(7)

The notations have same meaning as in Eq. (3). Natural

logarithmic transformation on Eq. (7) maintains the equality

of the right hand side (RHS) and left hand side (LHS) terms

of the equation and also retains the convexity of the

functional:

(8)

Now we separate variables on RHS of Eq. (8) into product

of two exponential functions:

(9)

With reference to our previous work [49] the first term on

the RHS of Eq. (9) is the single layer Markov random field

energy U(f) expressed as a function of the image pixel

configuration f:

(10)

We insert this term into Eq. (9):

(11)

Expressing RHS and LHS terms of Eq. (11) as strictly

exponential functions maintains equality of both sides of the

equation but the functional changes from a convex functional

to a concave functional. Thus optimization criteria of the

functional changes from minimization to maximization:

(12)

In the classical Markov random field model [50] the Gibbs

distribution P(f), the probability distribution of each possible

configuration of the prior Ic is proportional to the first

exponential term on the RHS of Eq. (12):

(13)
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The Gaussian distribution PN, the probability distribution

assumed for the observed image Id given any realization of

Ic is proportional to the second exponential term on the RHS

of Eq. (12):

(14)

Thus we have:

(15)

where the mean µ of the Gaussian distribution is the

underlying image Ic, the observed image Id is the variable X

of the Gaussian distribution. We conclude that the

regularization parameter λ is equal to the noise variance σ 2

of the image:

(16)

If we insert the probability notations on the RHS of

Eq. (13) and Eq. (14) into RHS of Eq. (12) we obtain Bayes

posterior probability P(Ic|Id) formula [51]:

(17)

Each possible configuration , where F is a discrete

set of random variables, is independent and identically

distributed. Thus Eq. (17) can be expressed as

(18)

and we arrive at the Bayesian formulation of the classical

Markov random field model for image restoration introduced

by Geman and Geman [52]:

= arg

= arg

= arg

(19)

This formulation estimates the denoised image  from the

image configuration which maximizes P(Ic|Id) in what is

referred to as maximum a posteriori probability (MAP). The

probability distributions are functions of the image pixel

configurations. The configurations are determined by the

level of noise and the level of noise is a function of the

Markov random field energy.

MAP can be reformulated by adopting a two-step process.

The first step is to regard MAP as minimization of the

negative exponential terms in Eq. (19). The second step is

natural logarithm transformation of the resulting exponential

function:

= arg (20)

Replacing the image energy in the first term of Eq. (20)

with the term on the RHS of Eq. (10) and substituting the

expression for σ in Eq. (16) into the second term of Eq. (20):

= arg (21)

which is a return back to variational mode of denoising

expressed in Eq. (7), thus completing a full circular path

which we refer to as the VB. Graphical expression of VB is

shown in Fig. 1.

Method

Given a brain MRI image, its Markov random field energy

expressed by total clique potential energy E is computed.

The value of the energy is used to estimate variance of the

image from the mathematical model that describes

relationship between Markov random field energy and noise

variance for brain MRI images [49]:

(22)

where a, b, c are model parameters that have different values

ab, bb, cb and afg, bfg, cfg for MRI image having background
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Fig. 1. The Variational-Bayesian (VB) cycle. Logarithmic transformation
of the variational problem formulation followed by separation of
exponential variables results in Bayesian problem formulation. A
return to the variational problem formulation is by minimization
of the exponential variables in Bayesian problem formulation
followed by logarithmic transformation.
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and foreground pixels respectively. For brain MRI images

with background pixels ab = −1.67, bb = −0.6764, cb = 1.053.

Plot of the mathematical model is shown in Fig. 2. The

variance of the image is further used to estimate, at no cost,

the regularization parameter according to Eq. (16), before

commencement of the TV denoising process.

EXPERIMENTS AND RESULTS

Experiments design

Performance evaluation of our proposed algorithm was

carried out using two sets of real magnitude MRI data with

different MRI acquisition protocols. Sets labeled A and B

were obtained from two international clinical trial study

management centers, NeuroRx research and Alzheimer's

Disease Neuroimaging Initiative (ADNI). Data from both

sources were processed T2, T1, FLAIR and PD weighted

images formatted as 16 bit unsigned integer DICOM file.

The dimension of each slice is 256 × 256 and 256 × 228 for

NeuroRx and ADNI respectively. For each subject MRI data

only the useful slices were used as test images. The useless

slices are the slices located towards the most superior and

inferior sections of the head and are dominated by partial

volume of nonbrain structures. We assume that each MRI

slice is noise free, hence for evaluation, we induced artificial

noise. For a m percent Rician noise level the standard

deviation of the equivalent normal distribution is given by

(23)

where τ is the maximum pixel intensity [53]. The algorithms

were evaluated using MRI slices from all the four types of

MRI acquisitions and noise levels in the range 0 percent

(≈ σ = 0) to 30 percent (≈ σ = 75). However, to satisfy the

requirement of page limit for this journal we display only T2

weighted images for Rician noise level of 10 percent

(≈ σ = 25). The source code of the TV algorithm was the

implementation reported in [54], and the algorithm runs

through 100 iterations for each test image. The sources of

MRI data are described below.

Experimental data - part A - NeuroRx Research Inc.

The first part of our experiments presents evaluation results

using data from NeuroRx Research (http://www.neurorx.com/

en/home.htm). NeuroRx was established in 2003 as a clinical

research organization. NeuroRx is dedicated to working with

the pharmaceutical industry to facilitate clinical trials of new

drugs for multiple sclerosis (MS) and other neurological

diseases. NeuroRx provides professional management of all

MRI-related study activities and promptly delivers precise

MRI outcome measurements that are performed in a regulatory

compliant environment. The organization specializes in

logistics of scan handling and tracking and can provide this

service exclusively, if needed. NeuroRx uses advanced

image analysis techniques to provide precise outcome data

that maximize study power. Images are corrected for

inhomogeneity and co-registered for perfect re-alignment

and increased precision. Analyses are conducted in 3D,

rather than on slices, so that information can be properly

related to structures that span multiple slices. Customized

automatic segmentation techniques are combined with expert

supervision to maximize the precision of outcome measures

related to both lesional and non-lesional pathology, as well as

brain volume changes.

The CEO and president of NeuroRx is Douglas Arnold,

MD. Douglas Arnold is currently Professor, Department of

Neurology and Neurosurgery at McGill University and

Director of the Magnetic Resonance Spectroscopy Unit in

the Brain Imaging Center at the Montreal Neurological

Institute.

Experimental data - part B - Alzheimer’s Disease Neuroimaging

Initiative

Data used in the preparation of the second part of this

experiment were obtained from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food

and Drug Administration (FDA), private pharmaceutical

companies and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI

has been to test whether serial MRI, positron emission

tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment (MCI)

σ N 0, 
τm

100
---------⎝ ⎠

⎛ ⎞≈

Fig. 2. Plot of mathematical model that describes relationship
between Markov random field energy and noise level for magnetic
resonance images of the brain with background pixels.
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and early Alzheimer’s disease (AD). Determination of

sensitive and specific markers of very early AD progression

is intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California,

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from

over 50 sites across the U.S. and Canada. The initial goal of

ADNI was to recruit 800 subjects but ADNI has been

followed by ADNI-GO and ADNI-2. To date these three

protocols have recruited over 1500 adults, ages 55 to 90, to

participate in the research, consisting of cognitively normal

older individuals, people with early or late MCI, and people

with early AD. The follow up duration of each group is

specified in the protocols for ADNI-1, ADNI-2 and ADNI-

GO. Subjects originally recruited for ADNI-1 and ADNI-

GO had the option to be followed in ADNI-2. For up-to-date

information, see www.adni-info.org.

Results

Fig. 3 displays images of a T2-weighted MRI slice from

NeuroRx. The slice is indexed as slice number 32 in a single

subject MRI data consisting of 45 slices. The original,

degraded and denoised images are in Fig. 3a, Fig. 3b, and

Fig. 3c, respectively. Fig. 4a and Fig. 4b are the convergence

results, in terms of MSE, for the single slice of Fig. 3 and 31

MRI slices in the single subject MRI data, respectively.

The images in Fig. 5 are visual quality assessment to

demonstrate optimality of the computed regularization

parameter. In the figures are outputs of the TV algorithm and

its MSE convergence plots for regularization parameter

scaled to 10 percent, 100 percent and 190 percent of the

computed value of λ. Graphical description of the optimality

of the computed regularization parameter in terms of MSE

convergence is shown in Fig. 6 for computed regularization

parameter scaled to seven different values, from 0.1λ to 1.9λ

Fig. 3. A T2-weighted MRI slice image from NeuroRx Research in
its (a) original state of acquisition (b) degraded state by noise level
of σ = 25 (c) denoised version using TV algorithm with λ = 25.

Fig. 4. Mean square error convergence test of TV algorithm for
100 iterations in the denoising (σ = 25) of (a) single MRI slice
image shown in Fig. 3b (b) 31 MRI slice images of a single
subject (including the image shown in Fig. 3b).
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in steps of 0.3.

In Fig. 7 are images of a T2-weighted MRI slice from

ADNI. The slice is indexed as slice number 28 in a single

subject MRI data consisting of 42 slices. The original,

degraded and denoised images are in Fig. 7a, Fig. 7b and

Fig. 7c respectively. Fig. 8a and Fig. 8b are the convergence

results in terms of MSE for the single slice of Fig. 7 and 26

MRI slices in the single subject MRI data respectively.

Images for visual quality assessment of the optimality of the

computed regularization parameter are displayed in Fig. 9.

These figures display output of the TV algorithm and its

Fig. 5. Three NeuroRx images shown in (a), (c) and (e) were
denoised using TV algorithm with regularization parameters of λ
= 0.1λOp, λ = λOp and λ = 2λOp respectively where λOp = 25 is the
computed optimal regularization parameter. Corresponding mean
square error convergence test results are shown in (b), (d) and (f)
respectively.

Fig. 6. Test of optimality of computed regularization parameter.
The MRI slice image from NeuroRx shown in Fig. 3b was
denoised using TV algorithm with the computed optimal
regularization parameter scaled from 0.1 to 2 at interval of 0.3.

Fig. 7. A T2-weighted MRI slice image from ADNI in its (a)
original state of acquisition (b) degraded state by noise level of σ
= 25 (c) denoised version using TV algorithm with λ = 25.



88 Biomed Eng Lett (2014) 4:80-92

convergence in terms of MSE for regularization parameter

scaled to 10 percent, 100 percent and 190 percent of the

computed value of λ. Graphical description of the optimality

of the computed regularization parameter in terms of MSE

convergence is shown in Fig. 10 for regularization parameter

scaled to seven different values from 0.1λ to 1.9λ in steps of

0.3. The computation time of the TV algorithm in denoising

each slice image in each single subject MRI data from

NeuroRx and ADNI is displayed in Table 1.

DISCUSSION

This section is in two parts. The first part is evaluation of our

proposal. The second part is the limitations of total variation

technique and future work.

Evaluation

The evaluation was based on four criteria: visual quality

assessment, mean square error convergence, optimality of

the computed regularization parameter and computation time.

Visual quality assessment

The grainy characteristics of Rician noise is absent in the

Fig. 8. Mean square error convergence test of TV algorithm for
100 iterations in the denoising (σ = 25) of (a) single MRI slice
image shown in Fig. 7b (b) 26 MRI slice images of a single
subject (including the image shown in Fig. 7b).

Fig. 9. Three ADNI images shown in (a), (c) and (e) were
denoised using TV algorithm with regularization parameters of λ
= 0.1λOp, λ = λOp and λ = 2λOp respectively where λOp = 25 is the
computed optimal regularization parameter. Corresponding mean
square error convergence test results are shown in (b), (d) and (f)
respectively.
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denoised images shown in Fig. 3c and Fig. 7c when compared

to their noisy versions in Fig. 3b and Fig. 7b, respectively.

Thus, we conclude that the TV algorithm significantly

improves the visual quality of the degraded images.

Mean square error convergence test

The MSE data is computed relative to the MSE of the

degraded image such that the degraded image has MSE

value of 1. As shown in Fig. 4a the algorithm recorded about

25 percent improvement in MSE value, after 100 iterations,

in the denoising of the single MRI slice shown in Fig. 3b.

For the same number of iterations the algorithm improved

the MSE of 31 MRI slices in a single subject MRI data by

between 20 percent to 25 percent as shown in Fig. 4b.

For the corresponding ADNI data the algorithm recorded

close to 30 percent improvement in MSE for a single MRI

slice (see Fig. 8a) and between 25 percent to 30 percent for

the 26 slices in the single subject MRI data (Fig. 8b).

Optimality test

The plot in Fig. 5b shows that for λ = 0.1λOp where λOp is the

computed regularization parameter there is less than 10

percent decrease in the MSE of the degraded image in

Fig. 3b compared to its denoised version in Fig. 5a. This

slight decrease is reflected in the visual quality of the image

as it is characterized by the grainy features seen in its

degraded version. For λ = 1.9λOp the image shown in Fig. 5e

is significantly blurred. This visual quality is reflected in the

MSE convergence plot in Fig. 5f where it can be seen that

the high value of regularization parameter reduced the MSE

by about 20 percent in less than 10 iterations and the process

of degradation began immediately until the MSE value is

reduced to less than 15 percent. The output of the TV

algorithm for optimal regularization parameter λ = λOp

shown in Fig. 5c and its corresponding MSE convergence

plot in Fig. 5d which indicates 25 percent reduction in MSE

has the best visual quality when compared to the TV output

for λ = 0.1λOp and λ = 1.9λOp.

The image and the plot in Fig. 9a and Fig. 9b respectively

shows that for λ = 0.1λOp there is less than 10 percent

reduction in MSE of the degraded image shown in Fig. 7b.

The denoised image exhibit characteristics that are strongly

similar to its degraded version. The output of the algorithm

Fig. 10. Test of optimality of computed regularization parameter.
The MRI slice image from ADNI shown in Fig. 7b was denoised
using TV algorithm with the computed optimal regularization
parameter scaled from 0.1 to 2 at interval of 0.3.

Table 1. Computation time (in seconds) of total variation algorithm in the denoising of each slice in a single subject MRI data from
NeuroRx (31 slices) and ADNI (26 slices).

Total variation algorithm computation time

MRI slice number NeuroRx ADNI MRI Slice number NeuroRx ADNI

1 12 12 17 10 12

2 13 12 18 10 12

3 11 12 19 10 12

4 10 12 20 11 12

5 15 12 21 10 10

6 10 12 22 10 11

7 10 11 23 10 12

8 12 11 24 10 11

9 11 11 25 10 11

10 11 11 26 10 11

11 12 11 27 12 NA

12 11 11 28 12 NA

13 11 11 29 12 NA

14 11 11 30 12 NA

15 11 11 31 12 NA

16 11 11 32 NA NA
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for λ = 1.9λOp is blurry as shown in Fig. 9e. The profile of

the MSE convergence plot in Fig. 9f exhibit instability

similar to the plot in Fig. 5f. The output of the TV algorithm

for optimal regularization parameter λ = λOp shown in

Fig. 9c and its corresponding MSE convergence plot in

Fig. 9d indicates about 27 percent reduction in MSE in about

20 iterations, and this value of MSE is maintained up to 100

iterations. Thus, TV output corresponding to λ = λOp has the

best visual quality when compared to the TV output for

λ = 0.1λOp and λ = 1.9λOp.

Optimality test in terms of MSE using regularization

parameters generated from the set {0.1λOp : 0.3 : 2λOp} are

the plots shown in Fig. 6 and Fig. 10. A cursory look at the

plot indicates that three regularization parameter values

0.7λOp (blue colored solid line), λOp (red colored solid line

with circle) and 1.3λOp (black colored dash line) are

candidates for the optimal value. The plots identifying 1.3λOp

in Fig. 6 and Fig. 10 shows 23 percent and 27 percent

decrease respectively in MSE in about 10 iterations but lost

its steam afterwards by reversing its earlier gains to 20

percent and 25 percent respectively after 100 iterations. The

plots identifying the parameter 0.7λOp recorded 25 percent

(see Fig. 6) and 30 percent (see Fig. 10) decrease in MSE

after 40 iterations (see Fig. 6) and (Fig. 10). We conclude

that the plot identifying λOp is the optimal value of λ because

it reduced the MSE of the degraded image by 25 percent (see

Fig. 6) and by about 30 percent (see Fig. 10) in 20 iterations

which is half the number of iterations by the parameter

0.7λOp to attain same level of performance, and it maintained

this same level of performance up to 100 iterations.

Computation time

The results shown in Table 1 indicates that the TV algorithm

takes an average of 12 seconds to denoise an MRI slice

image. This translates to denoising 1000 MRI slice images in

less than three and a half hour.

Limitations of TV denoising technique

The main setback of TV technique is the transformation of

smooth regions within the image into piecewise constant

regions, a phenomenon referred to as staircasing effect [55].

This effect, which becomes increasingly significant with

higher levels of noise in the degraded image, is consequence

of the assumption that the underlying image is piecewise

smooth. This assumption is not the ideal description for

natural images such as brain MRI images. Cursory view of

TV denoised images displayed in Fig. 3c, Fig. 5c, Fig. 7c

and Fig. 9c shows that staircasing effect is much more

reduced in the foreground regions which is useful in clinical

diagnosis compared to the background regions where the

staircasing effect is significant. The background regions

contain no information, and are therefore irrelevant in

clinical diagnosis. How to overcome staircasing effect in TV

technique is outside the scope of this paper. However,

detailed explanation on how and why staircasing effect is

observed in TV denoised images, and how to address the

problem can be found in [56-59].

CONCLUSION

On this paper we analyze the relationship between total

variation and Bayesian problem formulations for noise

reduction in images. Results of the analysis show that both

techniques are equivalent, a notion that has been held for a

long time within the image processing and computer vision

community. Based on this equivalency we derive the value

of TV regularization parameter as equal to the noise variance

of the test image. We evaluated TV algorithm including our

proposed method of computing the regularization parameter

to noise reduction of images in two clinical trial study

management centers. The performance evaluation result show

that our proposed method for computation of regularization

parameter makes TV algorithm computationally efficient

and the quality of the denoised images are optimized by the

computed regularization parameter. These feature makes our

proposal suitable in application environment where there is

little tolerance for manual task and high level of automation

is demanded from image processing and image analysis

software.
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