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ABSTRACT: Several algorithms have been proposed in the literature
for image denoising but none exhibit optimal performance for all

range and types of noise and for all image acquisition modes. We
describe a new general framework, built from four-neighborhood cli-

que system, for denoising medical images. The kernel quantifies
smoothness energy of spatially continuous anatomical structures.
Scalar and vector valued quantification of smoothness energy config-

ures images for Bayesian and variational denoising modes, respec-
tively. Within variational mode, the choice of norm adapts images for
either total variation or Tikhonov technique. Our proposal has three

significant contributions. First, it demonstrates that the four-
neighborhood clique kernel is a basic filter, in same class as Gaus-

sian and wavelet filters, from which state-of-the-art denoising algo-
rithms are derived. Second, we formulate theoretical analysis, which

connects and integrates Bayesian and variational techniques into a
two-layer structured denoising system. Third, our proposal reveals

that the first layer of the new denoising system is a hitherto unknown
form of Markov random field model referred to as single-layer Markov
random field (SLMRF). The new model denoises a specific type of

medical image by minimizing energy subject to knowledge of mathe-
matical model that describes relationship between the image
smoothness energy and noise level but without reference to a classi-

cal prior model. SLMRF was applied to and evaluated on two real
brain magnetic resonance imaging datasets acquired with different

protocols. Comparative performance evaluation shows that our pro-
posal is comparable to state-of-the-art algorithms. SLMRF is simple
and computationally efficient because it does not incorporate a regu-

larization parameter. Furthermore, it preserves edges and its output
is devoid of blurring and ringing artifacts associated with Gaussian-

based and wavelet-based algorithms. The denoising system is
potentially applicable to speckle reduction in ultrasound images and
extendable to three-layer structure that account for texture features

in medical images. VC 2014 Wiley Periodicals, Inc. Int J Imaging Syst

Technol, 24, 224–238, 2014; Published online in Wiley Online Library

(wileyonlinelibrary.com). DOI: 10.1002/ima.22098
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I. INTRODUCTION

Medical images are the most important patient data for diagnostic,

therapeutic, surgical, and prognostic procedures in clinical settings.

Images acquired from magnetic resonance imaging (MRI) systems

are important components of clinical trials of drugs for the treatment
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of multiple sclerosis, Alzheimer, and other neurodegenerative dis-

eases (Thulborn and Uttecht, 2000; Gaspari et al., 2009; Gold et al.,

2012). The efficacy of image analysis performed either by visual

inspections or computer aided systems is strongly dependent on level

of noise in the image. Noise is unavoidably present in images

because of imperfections of device components and the trade-offs in

the operating parameters of imaging systems; signal-to-noise ratio

(SNR), resolution, and length of scan time (Pizurica et al., 2003).

Noise reduces diagnostic utility of images because it changes pixel

configurations, weakens and can even obliterate what is supposed to

be sharp edges, causes low spatial resolution as well as low contrast

within and between anatomical structures. In the field of medical

imaging and computer vision, noise reduction is at the crossroad

between image processing and image analysis. Its invasive nature

makes it the most delicate fundamental problem because there is

high risk of introducing extraneous features which can further

degrade image quality and reverse the gains derived from previous

image processing tasks.

Many image denoising approaches have been proposed in the

past. However, no particular algorithm can perform optimally for

all range and types of noise and for all the different image acquisi-

tion modes. Careful review of their design reveals that sophisti-

cated and state-of-the-art techniques can be classified into two

major classes, global and specific schemes. The global schemes

are general frameworks for specific ones, and their formulation

generally results in a new specific scheme. They include geometri-

cal framework proposed by Sochen et al. (1998) that combines lin-

ear heat flow, anisotropic diffusion, and mean curvature flow

techniques into a single scheme, deformation by curvature tech-

nique proposed by Kimla and Siddiqi (1996), which unifies geo-

metric heat equation and anisotropic diffusion, unification of

probabilistic and variational techniques proposed by Hamza et al.

(2002), and the global approach for solving the heat equation pro-

posed by Auclair-Fortier and Ziou (2006). The specific schemes

adopt one of three basic functions as core component. Gaussian

and wavelets are two of the three basic functions. In the following

two subsections, we describe how some of the state-of-the-art tech-

niques are derived from the Gaussian and wavelets functions.

A. Gaussian-Based Algorithms. Gaussian filtering is the ear-

liest classical technique for reducing noise in images (Deng and

Cahill, 1993; Russo, 2005). A single two-dimensional Gaussian ker-

nel is cast on a window moving in two orthogonal directions over the

noisy image in a convolution process. At low noise levels when

image structures dominate over noise signals, Gaussian filters in a

single operation are excellent noise filters on images with pixels that

are Gaussian distributed. At significant level of noise when image

structures compete for visibility alongside noise signals and multiple

operations of the denoising process are required, its rotationally

invariant property results in smoothing both edges and homogeneous

regions and this reduces the utility of the image for diagnosis. It is

from this characteristic that the filter earns the name of smoothing

kernel in literature (Monir and Siyal, 2011).

The convolution process in Gaussian filtering is the solution of

two-dimensional diffusion equation of a physical system (Weickert,

1998; Wei, 2005), where the physical system under consideration is

an image. This is the basis of anisotropic diffusion method pioneered

by Perona and Malik (1990). In this method, a parameterized family

of images satisfying partial differential equation describing diffusion

process is generated from the noisy image. To reduce blurring, the

diffusion tensor is configured as a symmetric positive-definite diffu-

sion tensor chosen in such a way to encourage smoothing in homoge-

neous regions and discourage smoothing in the direction of edges.

Variants of anisotropic diffusion can be found in Ma et al. (2012),

Ford and El-Fallah (1997), and Gerig et al. (1992).

The bilateral filter introduced in Tomasi and Manduchi (1998) is

a two-in-one Gaussian kernel filter. The first is the domain filter. It

filters a pixel located in a square neighborhood within an image by

assigning a closeness coefficient based on spatial proximity of the

pixel to its neighbors. The other is the range filter which assigns a

corresponding range coefficient based on similarity of its intensity

values with its neighbors. The combination of both filters determines

the denoised pixel by weighting the filter coefficients in the spatial

domain with their corresponding pixel intensities. Detailed theoreti-

cal formulation behind the bilateral filter can be found in Hu et al.

(2004) and Elad (2002).

Nonlocal means algorithm introduced in Buades et al. (2005)

determines a denoised pixel at position in a neighborhood of an

image from Gaussian weighted linear combination of all the pixels

outside the neighborhood of the pixels under consideration. The

degree of filtering and similarity features are measured using similar-

ity weights determined by the parameters of the Gaussian kernel.

Nonlocal means denoising was implemented for brain MRI images

by Manjon et al. (2008) and Aksam Iftikhar et al. (2013).

In the kernel regression framework for image denoising intro-

duced by Takeda et al. (2007), the authors formulate relationship

between the number of noisy samples, estimator of the denoised pix-

els, and noise in a 2D image. Taylor series expansion around each

data sample for estimation of the denoised pixels is implemented

using spatially adaptive Gaussian kernel having steerable feature.

B. Wavelet-Based Algorithms. Wavelet function is family of

wavelets generated by scalings and translations of a mother wavelet

(Chui, 1992). In image processing task such as denoising, a family of

wavelets is convolved with a degraded image to generate wavelet

coefficients. In the transformed domain, the image signals are sparse,

the coefficients are assumed Gaussian distributed, and the noise sig-

nal is spread out equally along all the coefficients. These properties

are exploited to remove noise by reconstructing the image from the

coefficients by retaining and eliminating coefficients of the image

which are stronger and insignificant, respectively, relatively to a

defined threshold energy of the Gaussian noise. This technique

known as wavelet soft and hard thresholding method was pioneered

by Donoho and Johnstone (1994, 1995a, 1995b). The threshold

energy is a function of the noise level and the number of pixels in the

image. Other thresholding methods have been formulated by manip-

ulating the parameters of the threshold energy. They include VISU

shrink (Donoho and Johnstone, 1995b), SURE shrink (Zhang and

Desai, 1998; Luisier et al., 2007), and Bayes shrink (Chang et al.,

2000). The authors in Nowak (1999), Pizurica et al. (2003), Wen

et al. (2013), and Elad and Aharon (2006) have developed robust

denoising methods by combining sparsity property with prior infor-

mation of the image such as spatial smoothness for effective descrip-

tion and classification of the coefficients when the image is corrupted

by various types of noise.

C. Limitations of Current Algorithms. Three major draw-

backs common to current algorithms are high computational cost,

introduction of artifacts into the denoised images, and the fact that

their operations are restricted to nontexture images degraded by

Gaussian-related noise. For some algorithms, such as nonlocal

means, optimal performance is dependent on accurate estimate of
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noise level. These setbacks are consequences of the strong paramet-

ric assumption inherent in their design. Current algorithms tend to

attain optimal performance by adaptive estimate of Gaussian param-

eters that is robust to noise at each local region or wavelet scale. This

makes the algorithms computationally intensive particularly when

deployed to 3D MRI data of a single patient that may contain as

much as 50 images (Hu et al., 2004; Coupe et al., 2008). The com-

puted Gaussian parameters are not the ideal expectation because

local structures of the image and wavelet coefficients at each scale

cannot be well described by Gaussian distribution (Rajwade et al.,

2013) resulting in blurring and ringing artifacts for Gaussian-based

and wavelet-based algorithms, respectively.

D. Our Contribution. In this article, we propose a new two-

layers structured general framework for image denoising which over-

comes some of the problems of current algorithms. It is based on

four-neighborhood clique system, an idea borrowed from graphical

models (Koller and Friedman, 2009). We show that the four-

neighborhood clique is the third basic filter which is a core compo-

nent in the formulation of Markov random field model (Geman and

Geman, 1984), Rudin, Osher, and Fatemi (ROF) total variation

(Rudin et al., 1992), and Tikhonov regularization (Tikhonov and

Arsenin, 1978) techniques for reducing noise in images. Our pro-

posal results in a new algorithm which we refer to as the single-layer

Markov random field (SLMRF) model. In the model, we detach the

classical Markov random field model from Bayesian inference

beliefs so that the observed image such as brain MRI image is the

only physical system under consideration. SLMRF preserves edges

in images and is computationally efficient as it denoises an image

without the need to compute regularization parameter or reference to

a prior model. The general framework can also be extended to three-

layers structure to preserve texture features and reduce multiplicative

noise in ultrasound images.

E. Outline. In section II, we describe the sources of data used for

our experiments and explain the theoretical background behind our

proposal. Section III displays the experimental results obtained by

comparing our proposed SLMRF model with three popular denoising

techniques. The results of the experiments are discussed in section

IV. Section V concludes this article.

II. MATERIALS AND METHOD

A. Materials. The materials used for this article are 300 real MRI

data provided by two international clinical trial study management

centers: NeuroRx Research Inc. and the Alzheimer’s Disease Neuroi-

maging Initiative (ADNI). Data from both sources were processed

T2, T1, FLAIR, and PD weighted images formatted as 16 bit

unsigned integer DICOM file of dimension 256 3 256. The two

organizations that provided the data are described below.

A.1. NeuroRx Research. NeuroRx Research (http://www.neu-

rorx.com/en/home.htm) is dedicated to working with the pharmaceu-

tical industry to facilitate clinical trials of new drugs for multiple

sclerosis (MS) and other neurological diseases. NeuroRx provides

professional management of all MRI-related study activities and

promptly delivers precise MRI outcome measurements that are per-

formed in a regulatory compliant environment. The organization spe-

cializes in logistics of scan handling and tracking and can provide

this service exclusively, if needed. NeuroRx uses advanced image

analysis techniques to provide precise outcome data that maximize

study power. Images are corrected for inhomogeneity and coregis-

tered for perfect realignment and increased precision. Analysis is

conducted in 3D, rather than on slices, so that information can be

properly related to structures that span multiple slices. Customized

automatic segmentation techniques are combined with expert super-

vision to maximize the precision of outcome measures related to

both lesional and nonlesional pathology, as well as brain volume

changes.

A.2. ADNI. The ADNI (adni.loni.usc.edu) was launched in 2003

by the National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies, and

nonprofit organizations, as a $60 million, 5-year public-private part-

nership. The primary goal of ADNI has been to test whether serial

MRI, positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). Determination of sensitive and spe-

cific markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials.

The Principal Investigator of this initiative is Michael W. Weiner,

MD, VA Medical Center and University of California, San Fran-

cisco. ADNI is the result of efforts of many coinvestigators from a

broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 subjects but

ADNI has been followed by ADNI-GO and ADNI-2. To date, these

three protocols have recruited over 1500 adults, ages 55–90, to par-

ticipate in the research, consisting of cognitively normal older indi-

viduals, people with early or late MCI, and people with early AD.

The follow up duration of each group is specified in the protocols for

ADNI-1, ADNI-2, and ADNI-GO. Subjects originally recruited for

ADNI-1 and ADNI-GO had the option to be followed in ADNI-2.

For up-to-date information, see www.adni-info.org.

B. Methods. The specific algorithms within our proposed gener-

alized framework are presented as layered-structured schemes. When

only the test image is the physical system under consideration the

scheme is regarded as single layer, and as double layer when both

the test image and a classical prior are considered. We begin this sec-

tion with description of the four-neighborhood kernel, the building

block of our proposed global scheme, followed by explanation of

how the total clique potential of an MRI slice image varies with

noise level. Next, we describe a new specific scheme which we refer

to as SLMRF and how assignment of different smoothness costs to

the kernel configures a test image for Bayesian and variational tech-

niques. The four-neighborhood kernel was used as basic function to

formulate our proposed SLMRF model, ROF total variation, Tikho-

nov, and classical Markov random field model techniques. We also

provide theoretical formulation on how to “navigate” from ROF total

variation to the classical Markov random field model, and vice versa.

The section concludes by integrating the aforementioned specific

schemes into a global scheme.

B.1. The 4-Neighborhood Kernel. Given a 2D image I of size m
3 m, the four-neighborhood clique system N having clique size of

two is the set consisting of four pixels that are closest in distance to

any pixel located at (x, y):
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N5fN15ðx; y1hÞ;N25ðx1h; yÞ;N35ðx; y2hÞ;N45ðx2h; yÞg;
(1)

where x and y are indices of the rows and columns within the image,

N1, N2, N3, and N4 are labels identifying each neighbor, and h is

the interval between each grid. The structure of the system is dis-

played in Figure 1a. The red colored pixel is the reference pixel and

the four neighbors are the black colored pixels. The intensity levels

of pixels that constitute the image belongs to a family of random var-

iables F5fF1; . . . ;FMg defined on the set of pixel locations called

sites:

S5fðx; yÞj1 � x; y � mg; (2)

where jSj5M5m3m. Assignment of intensity levels, for example,

for a grey level image, from the set L5f0; 1; . . . ; 255g to each site S
is an event called configuration f 5ff1; . . . ; fMg. In the clique system,

the reference pixel located at (x,y) is denoted i and any of its neigh-

bors N1, N2, N3, and N4 located as expressed in Eq. (1) is denoted

i
0
. They are assigned configurations fi and fi0 , respectively. These

configurations are adopted as indices to compute the Gibbs energy.

The Gibbs energy U(f) of an image with pixel configuration f 2 F is

the sum of single site V1 and pair-site V2 cliques (Li, 2009):

Uðf Þ5
X
i2S

a1V1ðfiÞ1
X
i2S

X
i0 2N

a2V2ðfi; fi0 Þ � Ed1Es; (3)

where the first and second terms are the data Ed and spatially varying

smoothness Es terms, respectively, and a1 and a2 are the interaction

coefficients. At each local clique N, where the reference pixel is

i 2 S, the contribution of each neighboring pixel i
0 2 N to the local

smoothness energy is determined according to the expression

V2ðfi; fi
0 Þ5

nr if fi5fi0

np otherwise
;

(
(4)

where nr is the reward and np the penalty for conformity fi5fi0 and

violations fi 6¼ fi0 of the smoothness constraints, respectively. Hence-

forth, the two terms, Markov random field energy and smoothness

energy, are considered equivalent and have same meaning for a

given image. Matrix formulation of the kernel for computing the

local clique potential energy is

H5

0 nr;p 0

nr;p 0 nr;p

0 nr;p 0

2
664

3
775; (5)

where nr,p denotes assignment of either reward nr if fi5fi0 or penalty

np if fi 6¼ fi0 . The physical structure of the kernel corresponding to

this matrix is displayed in Figure 1b.

Assignment of scalar values c1 and c2 to nr and np, respectively, in

Eq. (4) results in a scalar valued smoothness cost at each local clique:

V2ðfi; fi0 Þ5
nr5c1 if fi5fi0

np5c2 otherwise
;

(
(6)

and H in Eq. (5) becomes

Hs5

0 c1;2 0

c1;2 0 c1;2

0 c1;2 0

2
664

3
775; (7)

where c1,2 denotes assignment of either reward c1 if fi5fi0 or penalty

c2 if fi 6¼ fi0 . Assignment of vector values of nrj
and nrk to nr and npj

and npk
to np in two orthogonal directions j and k, respectively in Eq.

(4) results in a vector valued smoothness cost expressed as

V2ðfi; fi0 Þ5

nrj
5nrk

50 if fi5fi0

npj
otherwise; j direction

npk
otherwise; k direction

:

8>><
>>: (8)

The penalties npj
and npk

can be expressed using standard image

location notation:

npj
5

Iðj1h; kÞ2Iðj2h; kÞ
2h

npk
5

Iðj; k1hÞ2Iðj; k2hÞ
2h

: (9)

In this case H in Eq. (5) becomes

Hv5

0 2
1

2
0

2
1

2
0

1

2

0
1

2
0

2
6666664

3
7777775
: (10)

The physical structure of the kernel corresponding to Hs and Hv

are displayed in Figures 1c and 1d, respectively.

Figure 1. (a) Structural description of the four-neighborhood clique

system. The four nearest neighbor of a pixel (in red color) located at
(x, y) are the black colored pixels labeled N1, N2, N3, and N4. (b) The

general form of the kernel for the four-neighborhood clique system.
(c) Kernel for configuring an image for Bayesian mode of operation.
(d) Kernel for configuring an image for variational mode of operation.

[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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In the degradation process, different image pixel configurations f
2 F can be realized from an observed image Irn

ðf Þ degraded by

noise rn of level n. The convolution of Irn
ðf Þ with Hs is scalar val-

ued total smoothness energy U(f) computed from sum of local clique

potentials. We denote the scalar value as c and express it as a func-

tion of image pixel configuration c(f):

Uðf Þ5
X

x

X
y

Irn
ðx2j; y2kÞHsðj; kÞ5cðf Þ: (11)

Conversely, convolution with Hv results in total smoothness

energy U(f) that is vector valued and is expressed as function of

image gradientrIðf Þ:

Uðf Þ5
X

x

X
y

Irn
ðx2j; y2kÞHvðj; kÞ5rIðf Þ; (12)

where j and k are the two orthogonal directions of the convolution

process. The magnitude of the vector valued total energy can be

measured either in L1 or L2 norm:

Lq5
ðjjrIjjÞ if q51

ðjjrIjj2Þ if q52
;

(
(13)

where q is the choice of norm.

B.2. SLMRF. In the SLMRF, the observed image is a specific

image data such as a brain MRI slice image Irn
ðf Þ having pixel con-

figuration f degraded by noise rn of level n. The observed image is

the only physical system under consideration, and there is no refer-

ence to a classical prior model. The image is assumed to be initially

clean and without noise r0 5 0 as shown in Figure 2a. The energy at

the noise-free state is regarded as the equilibrium energy state. The

observed noisy or higher energy state rn is attained by stepwise Dr
incremental degradation by noise. Different levels of noise r30530;
r60560 and r90590 results in different pattern of arrangement of

pixels, different spatial coherence and hence different image energy

as shown in Figures 2b–2d. The mathematical model describing

relationship between normalized smoothness energy fE : 21 < E
� 1g and noise level r for T2 weighted MRI image with background

(bg) and foreground (fg) was reported in our previous work (Osade-

bey et al., 2013):

Figure 2. An MRI slice image at various levels of degradation by Rician noise. Observe the different image pixel configurations associated with

noise levels of (a) r 5 0, (b) r 5 30, (c) r 5 60, and (d) r 5 90.
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E5ar̂b1c

abg 521:67; afg 520:6863

bbg 520:6764; bfg 520:3663

cbg 51:053; cfg 51:105

: (14)

From the plots of the model displayed in Figure 3, the minimum

energies for background and foreground are Ubg 520:6 and

Ufg 5 0.5, respectively. The energies associated with the different

levels of noise are computed by convolving the image with Hv

according to Eq. (12). Different levels of noise rn result in different

pixels configurations Irn
ðf Þ, different image gradients rIðrðf ÞÞ, and

hence different levels of energy Unðrðf ÞÞ. Thus, the smoothness

energy U of the image I is a functional having three variables namely

the image variance rn, the image pixel configurations Irn
ðf Þ, and the

image gradientrIðrðf ÞÞ measured in the L1 norm:

Uðrn; Irn
ðf Þ;rIðrðf ÞÞÞ5

X
x

X
y

ðjjðrIrn
ðf ÞÞx;yjjÞ: (15)

The task of noise reduction is to return the image from the higher

energy state rn to the equilibrium energy state r0. The Euler-

Lagrange partial differential equation corresponding to Eq. (15) is

(Chambolle, 2004; Lanczos, 1986):

@U

@I
2
@U

@r
@U

@ðjjrIjjÞ50: (16)

The classical method to derive the solution of Euler-Lagrange

equation is by adopting finite difference method of approximating

partial derivatives (Thomas, 1995). To make the expression in Eq.

(16) well posed, the variable jjrIjj is perturbed by an amount f
b : 0 < b � 1g and expressed as:

jjrIjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjrIjj21b

q
; (17)

so that the solution of the perturbed problem will converge to a solu-

tion of the original expression as b ! 0 (Acar and Vogel, 1994).

After perturbation, the solution Irr becomes:

Irr5
ðIxðx; yÞ21bÞIyyðx; yÞ22Ixðx; yÞIyðx; yÞIxyðx; yÞ

ðIxðx; yÞ21Iyðx; yÞ21bÞ3=2
1

Ixxðx; yÞðIyðx; yÞ1bÞ2

ðIxðx; yÞ21Iyðx; yÞ21bÞ3=2

: (18)

Based on the theoretical formulation of our algorithm, we adopt

variance marching scheme with variance step of 0.1 in the gradient

descent minimization scheme:

Ir115Ir2grrðIrÞ: (19)

Where the notations Ir11; Ir; gr and rðIrÞ5Irr are the currently

observed image, the initial image, the variance step and the gradient

of the initial image. The minimization of the image gradient is sub-

ject to the mathematical model describing relationship between Mar-

kov random field energy and noise level in Eq. (14). At each

iteration, the Markov random field energy expressed by the total cli-

que potential is computed according to the formulation in Osadebey

et al. (2013). Using the mathematical model described by the plots in

Figure 3, the stopping criterion Es is fixed at Es5Kbg Ubg and Es5

Kfg Ufg for background and foreground modes, respectively, where

Kbg and Kfg are arbitrary constants. These constants are multiplica-

tion factors, derived from experimental observations, which deter-

mines the number of iterations before the energy Es is attained in the

minimization process. The images we utilize for our experiments

were with background and we choose Kbg 5 2.5.

B.3. Double-Layer Markov Randon Field: ROF Total Variation
and Tikhonov Techniques. ROF total variation technique follows

the same theoretical formulation as the SLMRF explained in the pre-

vious section but there is another physical system under considera-

tion. It is an underlying clean image modeled as piecewise smooth

and referred to as prior model Ic so that the minimization of Eq. (15)

is subject to the observed image being closely matched to the prior.

The estimate of the true image Î c is:

Î c5 min
Ic

X
x

X
y

jjðrIrn
ðf ÞÞx;yjj1kjjIrn

ðf Þ2Icjj2: (20)

If the L1 norm of the vector valued smoothness constraint in Eq.

(20) is changed to L2 norm the ROF total variation technique changes

to Tikhonov or Sobolev regularization technique (Karl, 2005):

Figure 3. The plots of the proposed generalized mathematical

models for describing the relationship between total clique potential
energy and noise level of brain MRI slice images in the (a) back-
ground and (b) foreground modes. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Vol. 24, 224–238 (2014) 229

http://wileyonlinelibrary.com


Î c5 min
Ic

X
x

X
y

jjðrIrn
ðf ÞÞx;yjj

2
1kjjIrn

ðf Þ2Icjj2: (21)

The parameter ½k : 0 � k <1g is a positive constant referred to

as the regularization parameter. This parameter is a weight which

balances the level of the piecewise smooth property of the prior

image that is impacted to the denoised image and the level of noise

removal which is a measure of fidelity ðIrn
ðf Þ2IcÞ to the prior image

Ic. The selection of k in three different range of values results in

denoised images with three different properties:

k )
TooHigh Îc ) denoised & oversmooth

TooLow Îc ) noisy & piecewise smooth

50 Îc5Id denoised image same asobservation

:

8>><
>>:

(22)

If the value of k tends to be too high, the algorithm is constrained

to place more emphasize on noise removal but the denoised image is

oversmooth because there is less emphasis on impacting piecewise

smooth property of the prior image on the denoised image. Con-

versely, value of k that tends to be too low results in denoised image

that possesses the piecewise smooth property of the prior image but

retains noise. A special case is when k 5 0 in which the denoised

image is same as the noisy image. Thus, optimal performance of

both ROF and Tikhonov techniques is strongly dependent on optimal

selection of k (Galatsanos and Katsaggelos, 1992).

B.4. Classical Double-Layer Markov Random Field Model. For

convenience, we restate the minimization formulation in ROF total

variation technique expressed as a convex functional in Eq. (20). The

subtraction operator is inserted on both sides of the equation:

2Îc5 min
Ic

2
X

x

X
y

jjðrIrn
ðf ÞÞx;yjj1kjjIc2Irn

ðf Þjj2
 !

: (23)

Application of natural logarithm transformation maintains the

convexity of the functional and equality of right-hand side (RHS)

and left-hand side terms of Eq. (23):

ln exp 2ðÎcÞ
� �

5 min
Ic

ln exp 2
X

x

X
y

jjðrIrn
ðf ÞÞx;yjj1kjjIc2Irn

ðf Þjj2
 !" #

:
(24)

Now, we separate the exponential function on the RHS of Eq.

(24) into product of two exponential functions:

ln exp 2ðÎcÞ
� �

5 min
Ic

ln exp 2
X

x

X
y

jjðrIrn
ðf ÞÞx;yjj

 !
exp 2 kðIc2Irn

ðf ÞÞ2
� �" #

:

(25)

With reference to Eq. (15), the first term on the RHS of Eq. (25)

is the SLMRF energy U(f) expressed as a function of the image pixel

configuration f. We insert this term in Eq. (25):

ln exp 2ðÎcÞ
� �

5 min
Ic

ln exp 2ðUðf ÞÞexp 2ðkðIc2Irn
ðf ÞÞ2Þ

h i
:

(26)

Reformulation of Eq. (26) as strictly exponential function main-

tains equality of both sides of the equation but the functional changes

from a convex functional to a concave functional. The optimization

criteria also changes from minimization to maximization;

exp 2ðÎcÞ
� �

5 max
Ic

exp 2ðUðf ÞÞexp 2ðkðIc2Irn
ðf ÞÞ2Þ

h i
: (27)

We know that the regularization parameter is a function of r. Let

us set ðk51=2r2Þ:

exp 2ðÎcÞ
� �

5 max
Ic

exp 2ðUðf ÞÞð Þ exp 2
ðIc2Irn

ðf ÞÞ2

2r2

 ! !" #
:

(28)

The Gibbs distribution P(f), the probability distribution of each

possible pixel configuration of the prior model is proportional to the

first term on the RHS of Eq. (28) (Li, 2009):

Pðf Þ5PðIcðf ÞÞ / exp 2ðUðf ÞÞ: (29)

The Gaussian distribution PN, the probability distribution of each

realization of the observed image Id from the prior Ic is proportional

to the second term on the RHS of Eq. (28):

PN5PðIdðf ÞjIcÞ / exp 2
ðIrn
ðf Þ2IcÞ2

2r2

 !
: (30)

Each possible image pixel configuration of the prior and the like-

lihood are assumed to be independent and identically distributed.

Thus, the probabilities P(Ic) and PðIdjIcÞ of the prior and likelihood

are expressed as:

Figure 4. Two paths from our proposed SLMRF model having only

the observed image Id to double-layer Markov random field model
having both observed and prior model images Ic. Scalar nr, np and
vector n̂rxy

; n̂pxy
values assigned for reward and penalty for conformity

and violations of the smoothness constraints configures the image
for double-layer probabilistic and variational approaches, respec-

tively. Choice of L1 and L2 norm for the image gradient leads to Tikho-
nov regularization and ROF total variation techniques, respectively.
[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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PðIcÞ /
Y
f2F

exp 2ðUðf ÞÞ; (31)

PðIdjIcÞ /
Y
f2F

exp 2
ðIrn
ðf Þ2IcÞ2

2r2

 !
: (32)

Inserting the probabilities in Eqs. (31) and (32) into the RHS of

Eq. (28) gives Bayes posterior probability PðIcjIdÞ formula (Mackay,

2003; Li, 2009):

PðIcjIdÞ / PðIdjIcÞPðIcÞ; (33)

and we arrive at the Bayesian formulation of the classical Markov

random field model for image restoration introduced by Geman and

Geman (1984):

Îc5arg max
Ic

PðIcjIdÞ5arg max
Ic

PðIdjIcÞPðIcÞ½ �

5arg max
Ic

Y
f2F

exp 2
ðIrn
ðf Þ2IcÞ2

2r2

 !" # Y
f2F

exp 2ðUðf ÞÞ
" #( )

:

(34)

This formulation estimates the denoised image Îc from the image

configuration which maximizes PðIcjIdÞ referred to as maximum a

Figure 5. Comparative performance evaluation using MRI slice image from NeuroRx Research Inc. (a) The original and clean MRI. (b) The

clean image degraded by noise level of r 5 20. (c) Denoised version of (b) by CPFM. (d) Denoised version of (b) by NLOC. (e) Denoised version
of (b) by DIFF. (f) Denoised version of (b) by WALT.
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posteriori probability. The probability distributions are functions of

the image pixel configurations. The configurations are determined by

the level of noise which is a function of the Markov random field

energy expressed as the total clique potential computed using scalar

valued kernel according to Eq. (11).

B.5. Algorithm Design. The design of the proposed general

framework is illustrated by the flow chart in Figure 4. The system

has three input parameters. The first is the number of layers ðSL;DL

Þ representing the number of images under consideration. The second

is the type of value ðV;SÞ assigned to nr and np for conformity and

violations of the smoothness constraints. The third parameter is the

choice of norm ðq51; 2Þ for computing the magnitude of the image

gradient. For a user’s selection of single-layer SL, the denoising sys-

tem does not make reference to a prior model Ic but a vector valued

kernel of Eq. (12) is used for computing the gradient of the observed

image Id. For specific data such as brain MRI having pixels in the

background, the energy minimization is controlled by the mathemati-

cal model stated in Eq. (14). At each iteration, the Markov random

field energy is computed and the stopping criterion is fixed at ðEs5

KbUb521:5Þ based on knowledge of mathematical function

Figure 6. Comparative performance evaluation using MRI slice image from NeuroRx Research Inc. (a) The original and clean MRI. (b) The

clean image degraded by noise level of r 5 30. (c) Denoised version of (b) by CPFM. (d) Denoised version of (b) by NLOC. (e) Denoised version
of (b) by DIFF. (f) Denoised version of (b) by WALT.
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describing relationship between MRF energy and noise level (Osade-

bey et al., 2013).

The choice of double layer (DL) introduces an image prior as

reference and requires the user to make additional choice of either

scalar or vector valued smoothness constraint. With the choice of

scalar value the classical Markov random field algorithm is

deployed by the system to operate on the image and the energy of

the image is computed according to Eq. (11). For the choice of

vector valued smoothness, the system prompts the user to a choice

of either L1 or L2 according to the selection of q 5 1 or q 5 2,

respectively. Either choice deploys either total variation or Tikho-

nov technique to operate on the image which energy is computed

according to Eq. (12).

III. RESULTS

We assume that each MRI slice is noise free, hence for evaluation,

we induce artificial noise. For a m percent Rician noise level, the

standard deviation of the equivalent normal distribution is given by

Figure 7. Comparative performance evaluation using MRI slice image from ADNI. (a) The original and clean MRI. (b) The clean image degraded
by noise level of r 5 20. (c) Denoised version of (b) by CPFM. (d) Denoised version of (b) by NLOC. (e) Denoised version of (b) by DIFF. (f)

Denoised version of (b) by WALT.
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r � N 0;
sm

100

� �
; (35)

where s is the maximum pixel intensity (Coupe et al., 2010). The

algorithms were evaluated using MRI slices from all the four types

of MRI acquisitions and Rician noise levels in the range 0%

(� r50) to 30% (� r575). However, to satisfy space constraints,

we display only T2 weighted images for noise levels of r 5 20 and

r 5 30.

On the evaluation figure plots that will be discussed in the next

section our proposed approach is denoted CPFM. The state-of-the-

art algorithms are nonlocal means algorithm proposed in Buades

et al. (2005), denoted NLOC, anisotropic diffusion approach devel-

oped in Perona and Malik (1990), denoted DIFF, and implemented

by D. S Lopes in http://web.ist.utl.pt/daniel.s.lopes/software and

wavelet technique as detailed in Pizurica et al. (2003), denoted

WALT.

For each evaluation parameter, the experimental results were

categorized according to the source of MRI data. The images dis-

played in Figures 5 and 6 are comparative evaluations of the algo-

rithms using NeuroRx data for noise levels of r 5 20 and r 5 30,

respectively. Corresponding data from ADNI are shown in

Figure 8. Comparative performance evaluation using MRI slice image from ADNI. (b) The clean image degraded by noise level of r 5 30.
(c) Denoised version of (b) by CPFM. (d) Denoised version of (b) by NLOC. (e) Denoised version of (b) by DIFF. (f) Denoised version of (b) by WALT.
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Figures 7 and 8. Evaluation based on signal-to-noise-ratio, struc-

tural similarity index, mean square error, and root mean square

error for NeuroRx and ADNI data are shown in Figures 9 and 10,

respectively.

IV. DISCUSSION

This discussion section begins with comparative performance evalua-

tion of our proposal with three popular state-of-the-art algorithms.

Thereafter we explain the operating characteristics of our proposed

algorithm, its limitations and the future work to extend its performance.

A. Comparative Performance Evaluation. The comparative

performance evaluation experiment was biased in favor of NLOC

because noise level, an input parameter for its optimal performance

was assumed to be accurately estimated. Evaluation was based on

the following five criteria: visual quality, signal-to-noise-ratio, struc-

tural similarity index, mean square error, and root mean square error.

These criteria are discussed below.

A.1. Visual Quality. The images in Figures 5a and 6a are clean

MRI slice images from NeuroRx. Clean MRI slice images from

ADNI are displayed in Figures 7a and 8a. The degraded version of

these images at noise levels of r 5 20 and r 5 30 are displayed in

Figures 5b and 6b for NeuroRx data and Figures 7b and 8b for

ADNI data. In both cases, the visual quality of the denoised ver-

sion from our algorithm and the other algorithms can be said to be

comparable to each other. Based on visual cues, it can be said that

Figure 9. Comparative performance evaluation over the range of noise levels 0 � r � 75 using MRI slice image from NeuroRx Research Inc.
(a) Signal-to-noise-ratio, (b) Structural similarity index, (c) Mean square error, and (d) Root mean square error. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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our algorithm and nonlocal means NLOC are competing for supe-

riority. At first glance, NLOC can be said to be the best based on

global view of the images. There is no doubt that NLOC per-

formed excellently in removing noise from the background pixels,

but the background region of the images are useless in medical

diagnostics. A cursory examination of the foreground regions in

all the images shows that our algorithm CPFM was the best in

preserving the original structures of the images. The white and

grey matter structures in the MRI images denoised by our algo-

rithm are superior in visual quality because they are much more

similar to the original images than the images denoised by NLOC

which exhibit some degree of blurring.

A.2. SNR. Our proposed algorithm was comparable to the other

algorithms in terms of SNR as shown in Figures 9a and 10a. The plot

identifying our algorithm is raised above other algorithms but trailing

behind NLOC. As shown in these figures, for noise level in the range

ð0 � r � 75Þ, nonlocal means technique can be distinguished as a

superior algorithm.
A.3. Structural Similarity Index. For evaluation based on struc-

tural similarity index (see plots in Figures 9b and 10b), all the algo-

rithms are comparable. However, the best performance indicators of

0.57 and 0.55 were recorded by NLOC. Our proposal was trailing

behind NLOC with 0.47 and 0.51 and ahead of the other state-of-

the-art algorithms DIFF and WALT.

Figure 10. Comparative performance evaluation over the range of noise levels ð0 � r � 75Þ using MRI slice image from ADNI. (a) Signal-to-
noise-ratio, (b) structural similarity index, (c) mean square error, and (d) root mean square error. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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A.4. Mean Square Error. The plots in Figures 9c and 10c on

mean square error show that the plot identifying our algorithm is

lower than other algorithms but higher than NLOC, an indication

that our proposal has the second best performance indicator after

NLOC for noise level in the range 0 � r � 75.

A.5. Root Mean Square Error. In Figures 9d and 10d, our pro-

posal recorded root mean square error of 120 in both cases, and was

trailing behind nonlocal means, which recorded the best performance

indicator of 50 and 60, respectively.

A.6. Operating Characteristics of Proposed Algorithm. Our

proposed general framework is designed only for 2D medical

images. Its operation can be extended to 3D if the individual 2D

images that constitute the 3D data are fed separately to the system.

The first layer, SLMRF operates on a specific medical image data

because no prior model is required but the operation requires

knowledge of the relationship between the image Markov random

field energy and noise level. For a specific image data, such as

brain MRI, the relationship between its Markov random field

energy and noise level is described by the mathematical model in

Eq. (14). Using a computer having 3 GB RAM and 1.66 GHz

processor, it takes, on average, about 10 s to denoise a single MRI

slice image. This translates to about 7 min for denoising a patient

data consisting of 40 MRI slices. The second layer can operate on

any type of medical image data degraded by Gaussian-related

noise but its performance is dependent on optimal selection of

regularization or model parameter because reference is made to a

prior model.

A.7. Limitations of Proposed Algorithm. Operation of the pro-

posed general framework is restricted to Gaussian and Gaussian-

related noise such as Rician noise. Performance evaluation reveals

that our proposed general framework exhibit acceptable level of per-

formance at different noise levels for all the different modes of MRI

acquisitions except T1-weighted MRI. Beyond noise level of r 5 30

there is significant decline in the quality of denoised T1-weighted

MRI images. Operation of SLMRF on brain MRI images is restricted

to MRI slice images acquired with or resized to dimension 256 3

256. This requirement must be satisfied because the mathematical

model in Eq. (13) was derived using MRI images of dimension 256

3 256.

A.8. Future Work. We intend to extend the number of layers in

the MRF model from two to three. This technique is an adaptation

from the field of texture image segmentation where hierarchical

MRF model is widely applied (Li, 2009; Cao et al., 2011). In the

three-layer hierarchical MRF model, the image is assumed to be

composed of disjoint texture regions besides smooth regions. The

texture regions, the underlying piecewise smooth image regions, and

the observed image are the first, second, and third layers, respec-

tively. As in the double layer, the texture regions and the underlying

image are computed using Bayesian framework. We also intend to

formulate mathematical model that describes the relationship

between MRF energy and different levels of speckle noise in ultra-

sound images. This will increase the types of specific medical images

and noise in the operation of SLMRF.

V. CONCLUSIONS

In the literature (Li, 2009), different forms of variational techniques

are identified as types of Markov random field model for image

denoising but without details. In this article, we propose a new gen-

eral framework that reveals the interconnection between Bayesian

and variational techniques for image denoising. The proposed frame-

work also integrates Bayesian and variational techniques into a

layer-structured system. Its building block is the four-neighborhood

system having clique size of two. Our proposed general framework

reveals that the classical Markov random field model can be

detached from Bayesian inference belief to create a new simple and

computationally efficient noise reduction algorithm which we refer

to as SLMRF. In the SLMRF, there is no reference to a prior model

image, so the observed image is the only physical system under con-

sideration. The proposed algorithm was applied to reducing noise in

magnetic resonance images of the brain and can also be deployed to

reduce noise in other medical images where there is knowledge of

relationship between the image MRF energy and noise level. Com-

parative performance evaluation indicates that our proposed algo-

rithm is comparable to popular and state-of-the-art algorithms. It is

robust as it demonstrates steady denoising performance for very

wide range of noise level ð0 � r � 75Þ. Visual quality assessment

shows that it preserves the relevant image structures that are crucial

in medical diagnostics and its output is devoid of blurring and ring-

ing artifacts associated with some current algorithms.
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