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Abstract—The prominent morphometric alterations of

Alzheimer’s disease (AD) occur both in gray matter and in

white matter. Multimodal fusion can examine joint informa-

tion by combining multiple neuroimaging datasets to iden-

tify the covariant morphometric alterations in AD in greater

detail. In the current study, we conducted a multimodal

canonical correlation analysis and joint independent

component analysis to identify the covariance patterns of

the gray and white matter by fusing structural magnetic

resonance imaging and diffusion tensor imaging data of 39

AD patients (23 males and 16 females, mean age:

74.91 ± 8.13 years) and 41 normal controls (NCs) (20 males

and 21 females, mean age: 73.97 ± 6.34 years) derived from

the Alzheimer’s Disease Neuroimaging Initiative database.

The results revealed 25 joint independent components

(ICs), of which three joint ICs exhibited strong links between

the gray matter volume and the white matter fractional

anisotropy (FA) and significant differences between the

AD and NC group. The joint IC maps revealed that the

simultaneous changes in the gray matter and FA values
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primarily involved the following areas: (1) the temporal lobe/

hippocampus-cingulum, (2) the frontal/cingulate gyrus-

corpus callosum, and (3) the temporal/occipital/parietal

lobe-corpus callosum/corona radiata. Our findings suggest

that gray matter atrophy is associated with reduced white

matter fiber integrity in AD and possibly expand the under-

standing of the neuropathological mechanisms in AD.

� 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

Alzheimer’s disease (AD) is a common progressive

neurodegenerative disease that is clinically

characterized by cognitive impairments, such as

declines in memory (Cummings et al., 1998; Dartigues,

2009). The prominent morphological alterations of AD

occur both in gray matter and in white matter. Using

structural magnetic resonance imaging (MRI), numerous

studies have identified gray matter volume reductions that

primarily occur in the medial temporal structures, the insu-

lar, the thalamus, cingulate areas, and the parietal and

frontal areas (Baron et al., 2001; Frisoni et al., 2002;

Zhang et al., 2009; Yang et al., 2012; Margarida Matos

et al., 2013); for review, see (Frisoni et al., 2010; Yang

et al., 2012). The decreases in white matter volume pri-

marily occur in the corpus callosum, the cingulum, the

parahippocampal, the uncinated fasciculus, the superior

longitudinal fasciculus, the frontal lobe and the temporal

lobe in AD patients compared to normal controls (NCs)

(Salat et al., 2009; Yoon et al., 2011; Li et al., 2012a).

Multiple diffusion tensor imaging (DTI) indices, such

as fractional anisotropy (FA), radial diffusivity, axial

diffusivity and mean diffusivity, can detect abnormalities

in the white matter fibers in AD (Oishi et al., 2011; Shu

et al., 2011; Bosch et al., 2012; Li et al., 2012b; Kincses

et al., 2013). Among these indices, FA, which represents

the degree of anisotropy of water diffusion, is one of the

most important parameters that are commonly used to

characterize the microstructural characteristics of white

matter fibers in AD (Medina et al., 2006; Zhang et al.,

2009; Liu et al., 2011; Oishi et al., 2011). FA is sensitive

to white matter integrity and most probably reflects

changes in white matter integrity but could not always pro-

vide specifically such measure for all circumstances
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(Jones et al., 2013). Earlier DTI studies have applied uni-

variate methods that focus on differences in the FA and

found significant FA reductions that involved the majority

of white matter tracts, including the body, genu and sple-

nium of the corpus callosum, the cingulum, the superior

longitudinal fasciculus and the corona radiata (Zhang

et al., 2009; Oishi et al., 2011; Shu et al., 2011); for

review, see (Chua et al., 2008; Oishi et al., 2011; Clerx

et al., 2012; Amlien and Fjell, 2014).

Structural MRI can be used to examine changes in

gray matter, and DTI can detect the diffusion

characteristics that reflect the connectivity of white

matter fibers. Most of the previously published studies

only utilized one imaging modality and used univariate

approaches such as region of interest, voxel-based

morphometry (VBM) or tract-based spatial statistics

(TBSS) to analyze structural MRI or DTI data. More

recently, a number of studies employed different

imaging modalities but analyzed each imaging dataset

separately to investigate the fundamental pathology of

AD (Wang et al., 2013; Balachandar et al., 2014; Racine

et al., 2014). In contrast, multimodal fusion methods can

extract simultaneous information by combining multiple

neuroimaging datasets into one joint analysis to better

identify the hidden covariant relationships among multiple

morphological measurements in AD. To date, few studies

have applied multimodal fusion approaches to explore the

covariant morphological differences between AD and NCs

(Guo et al., 2012; Kincses et al., 2013; Teipel et al., 2014).

However, these published studies only focused on the dif-

ferent indices of one modality. The combination of struc-

tural MRI and DTI can effectively provide information

about the covariance patterns of gray matter volume

and white matter FA that are associated with AD.

The combination of multimodal canonical correlation

analysis (mCCA) and joint independent component

analysis (jICA) is a user-independent data-driven

approach that was proposed by Sui et al. (2011). MCCA

and jICA feature the advantages of both mCCA and jICA

aswell as flexiblemodel association and source separation

(Sui et al., 2011). MCCA can be used to examine the inter-

subject covariation across the two imaging modalities by

providing a linear mixing model (Correa et al., 2008).

JICA is an extension of ICA that fuses different neuroimag-

ing datasets from the same subject and then decomposes

the linear mixing signals into maximally joint independent

components (ICs) and examines the inter-subject covari-

ances and the between-group differences (Calhoun et al.,

2006). Different from themulti-modal techniques,multivari-

ate but single-modal techniques such as scaled subprofile

modeling (SSM) can only identify the uncorrelated sources

based on single modal imaging data. MCCA and jICA have

been validated and applied to identify the structural and

functional abnormalities in the brain patterns of patients

with schizophrenia (Sui et al., 2011, 2012b). The results

showed that the mCCA and jICA method is effective to

find the function–structure correlation via the strong

connection between joint components of the twomodalities

(Sui et al., 2011).

In the current study, we performed mCCA and jICA to

identify the covariance patterns of the gray and white
matter by fusing the structural MRI and DTI data of AD

patients and NCs derived from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database.
EXPERIMENTAL PROCEDURES

Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies

and non-profit organizations, as a $60 million, 5-year

public–private partnership. The primary goal of ADNI

has been to test whether serial MRI, positron emission

tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined

to measure the progression of mild cognitive impairment

(MCI) and early AD. Determination of sensitive and

specific markers of very early AD progression is

intended to aid researchers and clinicians to develop

new treatments and monitor their effectiveness, as well

as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael

W. Weiner, MD, VA Medical Center and University of

California – San Francisco. ADNI is the result of efforts

of many co-investigators from a broad range of

academic institutions and private corporations, and

subjects have been recruited from over 50 sites across

the U.S. and Canada. The initial goal of ADNI was to

recruit 800 subjects but ADNI has been followed by

ADNI-GO and ADNI-2. To date these three protocols

have recruited over 1500 adults, ages 55–90, to

participate in the research, consisting of cognitively

normal older individuals, people with early or late MCI,

and people with early AD. The follow-up duration of

each group is specified in the protocols for ADNI-1,

ADNI-2 and ADNI-GO. Subjects originally recruited for

ADNI-1 and ADNI-GO had the option to be followed in

ADNI-2. For up-to-date information, see www.adni-info.

org.
Subjects

All participants were obtained from the ADNI database.

According to the ADNI protocols, AD was diagnosed

based on the National Institute of Neurological and

Communicative Disorders and Stroke/Alzheimer’s

Disease and Related Disorders Association

(NINCDS/ADRDA) criteria, and the severity of cognitive

impairment was assessed based on the Mini-Mental

State Examination (MMSE) (Folstein et al., 1975) and

Clinical Dementia Rating (CDR) (Morris, 1993) scores.

To minimize the effect of the scanner systems, we added

the constraint that the Structural MRI and DTI data

should be acquired on 3T GE Medical Systems scanners.

This study included 39 AD patients (23 males and 16

females, mean age: 74.91 ± 8.13 years, range: 60–90;

mean MMSE: 22.87 ± 2.32, range:18–27; CDR: 0.5 or 1)

and 41 NCs (20 males and 21 females, mean age:

http://www.adni-info.org
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Table 1. Demographic information of the subjects

Group AD NC

Number 39 41

Gender (F/M) 23/16 20/21

Age 74.91 ± 8.13 73.97 ± 6.34

Age range (60–90) (60–90)

MMSE 22.87 ± 2.32 29.07 ± 0.96

MMSE range (18–27) (27–30)

CDR 0.5 or 1 0

*AD= Alzheimer’s Disease, NC= Normal Control, MMSE=Mini-Mental State

Examination, CDR = Clinical Dementia Rating.
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73.97 ± 6.34 years, range: 60–90; mean MMSE:

29.07 ± 0.96, range: 27–30; CDR: 0). The sexes and ages

of the AD group and NC group were matched, and

the sex ratio and age did not significantly differ

v2
ð1Þ ¼ 0:836; p ¼ 0:361 and t(78) = 0.575, p= 0.567,

respectively); however, the MMSE scores of the

AD group were significantly lower (t(78) = �15.768,
p= 5.693e�026). The sample descriptions are presented

in Table 1.

The ADNI study was approved by the Institutional

Review Boards (IRBs) of each participating site and was

conducted in accordance with Federal Regulations, the

Internal Conference on Harmonization (ICH) and Good

Clinical Practices (GCP). The study subjects provided

written informed consent at the time of enrollment for

imaging and completed questionnaires that were

approved by each participating site’s IRB.
Structural MRI data acquisition

All structural MRI scans were acquired with 3T GE

Medical Systems scanners. The scanning parameters of

T1-weighted 3D anatomical imaging data were defined

as follows: pulse sequence=GR; matrix size= 256� 256;

voxel size = 1.0 � 1.0 mm2; flip angle = 11�; slice

thickness = 1.2 mm; number of slices = 196. The other

parameters such as TE/TR differed across scanning

sites. Additionally, the images had undergone pre-

processing including non-uniformity correction and

gradwarp correction to avoid the possible differences

among different scans according to the ADNI protocol

(http://www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml).
DTI data acquisition

For each subject, high-resolution DTI scans were

acquired on 3T GE Medical Systems scanners. The

scans were collected according to the standard ADNI

MRI protocol. The following parameters were used:

pulse sequence = EP/SE; matrix size = 256 � 256;

voxel size = 1.4 � 1.4 mm2; flip angle = 90�; slice

thickness = 2.7 mm; number of slices = 59; gradient

directions = 41 (b= 1000 s/mm2) and five acquisitions

without diffusion weighting (b= 0 s/mm2). The other

parameters such as TE/TR differed across scanning sites.
Structural MRI data preprocessing

The structural MRI data were preprocessed using the

VBM8 Toolbox (http://dbm.neuro.uni-jena.de/vbm8) in

Statistical Parametric Mapping (SPM8, http://www.fil.ion.

ucl.ac.uk/spm). This process primarily consisted of

segmentation and normalization. First, each subject’s

MRI data were segmented into gray matter, white

matter and cerebrospinal fluid (CSF) images using

adaptive maximum a posteriori (MAP) (Rajapakse et al.,

1997) and partial volume estimations (PVE) (Tohka

et al., 2004). Subsequently, the diffeomorphic anatomical

registration using exponential lie algebra (DARTEL)

(Ashburner, 2007) was applied to normalize the gray mat-

ter images and iteratively create the template. A single-

constant velocity field was used in the DARTEL to
generate the diffeomorphic and invertible deformations.

The subjects’ gray matter images were registered to

new templates for each iteration. Next, the normalized

gray matter images were multiplied by the Jacobian deter-

minants from the nonlinear deformations to preserve the

absolute volume of gray matter in the subjects’ native

spaces. Finally, all gray matter images were smoothed

with an 8-mm full-width at half-maximum (FWHM)

Gaussian kernel and entered into the mCCA and jICA

procedure.

DTI data preprocessing and TBSS

The DTI data were preprocessed in the FMRIB’s Software

Library (FSL) software (FSL 5.0, http://www.fmrib.ox.ac.

uk/fsl). After correcting the eddy current and head

motion with the affine registrations of each subject’s

diffusion-weighted images to the non-diffusion-weighted

images in the FMRIB’s Diffusion Toolbox (FDT) 2.0, the

non-brain structures were removed using the Brain

Extraction Tool, and the FA maps were generated

based on the diffusion tensors reconstructed with the

DTIfit program. Next, the TBSS (Smith et al., 2006,

2007) procedure was implemented on all subjects’ FA

images to obtain the FA skeleton images. First, each sub-

ject’s FA image was nonlinearly normalized to the MNI

space. Second, the mean FA image was calculated and

thinned to create the mean FA skeleton image

(FA > 0.2), which represents the center of the white

matter tract. Third, each subject’s aligned FA image was

projected onto the mean FA skeleton image by calculating

the maximum FA values from the nearest tract center and

filling the corresponding position in the skeleton. Finally,

all subjects’ skeletonized FA images were calculated in

the standard 1 � 1 � 1 mm3 MNI152 atlas space,

smoothed with a 4-mm FWHM Gaussian kernel, and then

entered into the mCCA and jICA procedure.
Multimodal CCA and joint ICA

The mCCA and jICA were performed for the multivariate

analysis in the Fusion ICA toolbox (FIT v2.0c; http://

icatb.sourceforge.net). Each subject’s gray matter

volume image and skeletonized FA image was

separately converted to a one-dimensional row vector.

The initial data matrix was formed by arraying 39 gray

matter volume and FA vectors of AD and 41 gray matter

and FA vectors of NCs into an 80-row subjects by

voxels matrix. A minimum description length (MDL)

http://www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml
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criterion was used to estimate the number of ICs for each

dataset and dimension reduction was performed using the

singular value decomposition (SVD) of the initial data

matrix (Li et al., 2007). Second, mCCA was performed

on the dimensionally reduced matrix to obtain the canon-

ical variants matrix (D1/D2) and the associated compo-

nents matrix (C1/C2) for each modality. The jICA based

on the Infomax algorithm was then applied to the associ-

ated components matrix ([C1,C2]) to obtain the maxi-

mized joint independence components ([S1,S2]) (the

joint source matrix (sources by voxels)) and the mixing

coefficient matrix of the jICA (W�1) (subjects by sources).

The final mixing coefficient matrixes were calculated by

obtaining the product of the canonical variants matrix

and the mixing coefficient matrix of the jICA (D1 �W�1

for gray matter (GM), D2 �W�1 for FA), which represent

the source differences between the AD and NC group for

each modality, respectively. Fig. 1 shows the of flowchart

mCCA and jICA procedure.
Statistical analyses

We performed a two-sample t-test on the column of the

mixing coefficient matrixes of the jICA to compare

the differences between AD/NC groups (p< 0.001,

Bonferroni correction) (Bland and Altman, 1995). The

significant joint sources (the row of the joint source

matrix) were converted to units of standard deviations

(Z-scores) and then reshaped to two 3D brain maps (gray

matter regions and white matter regions). We set the

threshold at Z P 3 to reflect the statistically significant

ICs of the gray matter covariant patterns and a threshold

of Z P 2 to reflect the statistically significant ICs of the

white matter covariant patterns.

To statistically characterize the sensitivity and

specificity (Wu et al., 2013), a multivariate receiver oper-

ating characteristic (multiV-ROC) was applied to the com-

bination of the two indices (i.e., the mixing coefficient

matrixes) for each joint independent component (joint

IC): First, a logistic regression was applied on the ICA

weights of gray matter and white matter in one component

to calculate a column of predicted value. Then, the pre-

dicted values entered the ROC procedure. Additionally,

Pearson’s correlation coefficients were calculated

between the subjects’ MMSE scores and each column

of the predicted values of the joint ICs.
RESULTS

Twenty-five joint ICs were extracted according to the MDL

criterion, and a two-sample t-test with Bonferroni

correction on each column of these mixing coefficients

revealed significant differences between the AD patients

and the NCs in the jICA weights for three interpretable

ICs. These three significant joint ICs also exhibited

strong correlations (r> 0.6) between gray matter

volumes and white matter FA values.

Figs. 2–4 illustrate the spatial maps of the joint

covariant reductions of the gray matter volumes (left)

and the FA values (right) in the AD patients compared

to the NCs for three joint ICs. The middle panels show

the corresponding scatter-plots of the mixing coefficient
differences between the AD patients and the NCs. The

positively weighted coefficients in the joint IC spatial

maps illustrate decreases in the gray matter volumes

and FA values in the AD patients compared to the NCs.

For joint IC 1, the gray matter atrophy occurred

mainly in the superior/middle/inferior temporal gyri,

parahippocampal area and the hippocampus, and the FA

value generally decreased in the cingulum

(hippocampus, Fig. 2). For joint IC 2, the gray matter

volume reductions occurred in the superior/middle/inferior

frontal gyri, whereas the FA reductions occurred mainly

of the genu and body of the corpus callosum, cingulum

(cingulate gyrus), external capsule and superior

longitudinal fasciculus (Fig. 3). Regarding joint IC 3, the

decreases in the gray matter volumes primarily involved

the middle occipital gyrus, middle temporal gyrus, and

precuneus, and the FA reductions predominantly

included the body/splenium of the corpus callosum (Fig. 4).

Table 2 shows the locations of the covariant

decreases in the gray matter volume and white matter

FA in the AD patients compared to the NCs for joint ICs

1–3. We used the AAL mask in the WFU_PickAtlas

toolbox for gray matter regions and the ICBM DTI-81

Atlas in the FSL toolbox for white matter regions when

we obtained the MNI coordinates and cluster size.

Table 3 shows the correlation coefficients between the

gray matter volumes and white matter FAs and the

multiV-ROC results for the mixing coefficients of the two

modalities for each joint IC. Pearson’s correlation

coefficients between the subjects’ MMSE scores and

the predicted values of the joint ICs were �0.746
(p= 2.01e�15), �0.632 (p= 3.10e�10) and �0.651
(p= 6.54e�11), respectively for joint IC 1, 2 and 3.
DISCUSSION

In the current study, we performed mCCA and jICA, an

effective multimodal fusion approach, on structural MRI

and DTI data from both AD patients and NCs to

investigate the shared alterations in the gray and white

matter associated with AD. The priori hypothesis about

what regions (based on the existing literatures) are

involved in AD was also considered in the proper

selection of the relevant ICs. We found that three

significant joint ICs revealed atrophy in the gray matter

volumes and decreases in the white matter FA values in

the AD patients compared to the NCs. Additionally, the

multiV-ROC analysis revealed the high sensitivity and

specificity of the discrimination.

For joint IC 1, the reduction in gray matter volume

occurred mainly in the temporal lobe, particularly the

hippocampus and parahippocampal gyrus, which

generally agrees with previous reports (Frisoni et al.,

2002; Guo et al., 2010, 2012). The majority of the FA

decreases were located in the cingulum (hippocampus),

which coincides with the findings of most DTI studies of

AD (Liu et al., 2011; Guo et al., 2012). Killiany et al. found

that AD patients with only mild symptoms show significant

atrophy in the temporal lobe (Killiany et al., 1993) includ-

ing brain areas that are essential to memory function

(Dickerson et al., 2004). Stoub et al. also found that gray



Fig. 1. The flowchart of mCCA and jICA procedures.

Fig. 2. Significance maps illustrating the spatial maps of the joint covariant reductions in gray matter volume (left) and FA value (right) in the AD

patients compared to the NCs for joint IC 1. The color bar represents the Z-scores. The middle panels show the corresponding scatter-plots of the

mixing coefficient differences between the AD patients and the NCs. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 3. Significance maps illustrating the spatial maps of the joint covariant reductions in gray matter volume (left) and FA value (right) in the AD

patients compared to the NCs for joint IC 2. The color bar represents the Z-scores. The middle panels show the corresponding scatter-plots of the

mixing coefficient differences between the AD patients and the NCs. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 4. Significance maps illustrating the spatial maps of the joint covariant reductions in gray matter volume (left) and FA value (right) in the AD

patients compared to the NCs for joint IC 3. The color bar represents the Z-scores. The middle panels show the corresponding scatter-plots of the

mixing coefficient differences between the AD patients and the NCs. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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matter volume atrophy in the hippocampus and white

matter volume atrophy in the parahippocampal gyrus lead

to memory declines in people with MCI (Stoub et al.,

2006), which implies that gray matter volume atrophy in

the hippocampus could be considered one of the most

valuable biomarkers for the diagnosis of AD (Stoub

et al., 2006; Guo et al., 2012). The white matter fibers in

the cingulum connect the prefrontal lobes to the posterior

cortices, including the hippocampal formation (Bürgel

et al., 2006). Villain et al. also found that hippocampal

atrophy is related to the cingulum bundle (Villain et al.,

2008). These findings suggest that the reduced fiber

integrity of the white matter in the cingulum (hippocam-

pus) may also affect the gray matter reduction observed

in joint IC 1, particularly in the hippocampus, and thus

lead to memory impairment in AD.

Regarding joint IC 2, the majority of the reductions in

the gray matter volume were found in the frontal lobe

and the anterior cingulate gyrus, which agrees with the

findings of previous studies (Frisoni et al., 2002;

Hämäläinen et al., 2007; Guo et al., 2010, 2012); how-

ever, the reduction in FA primarily involved the genu

and body of the corpus callosum (Zhang et al., 2009;

Guo et al., 2012). The regions found in joint IC 2 primarily

agree with a report by Guo et al.; who detected gray/white

matter volume differences by performing joint ICA to con-

struct covariant networks. They found gray matter volume

reductions in the frontal lobe, cingulate gyrus, hippocam-

pus and parahippocampal gyrus as well as white matter

volume covariant decreases in the related superior longi-

tudinal fasciculus, corpus callosum and corona radiata

(Guo et al., 2012). The genu of the corpus callosum has

been found to connect the left and right prefrontal cortical

regions (van den Heuvel et al., 2009), and the gray matter

reductions observed in the frontal lobes of AD patients

primarily occur in the anterior frontal lobe (Whitwell

et al., 2007). Moreover, the corpus callosum, which

connects the hemispheres, has been reported to play a

vital role in higher order cognitive functions (Schulte and

Müller-Oehring, 2010; Li et al., 2012a), and the majority

of the corpus callosum exhibited reduced integrity of white
matter regions in the current study. The above reports

suggest that the weakened integrity of the white matter

fibers in the corpus callosum might be associated with

the atrophy of the gray matter regions and thus might

influence functional networks and affect the cognitive

abilities of AD patients.

Regarding joint IC 3, the reductions in the gray matter

volumes primarily involved the occipital/temporal/parie

tal/frontal lobes, the precuneus, the angular and

posterior cingulate gyri; these results are similar to

those reported in previous studies (Guo et al., 2010,

2012). The FA reductions predominantly involved the

body/splenium of the corpus callosum and the corona

radiate, which agrees with previously published studies

of white matter in AD (Liu et al., 2011; Oishi et al.,

2011; Li et al., 2012a; Kincses et al., 2013). Chaim

et al. reported that the atrophy of the splenium of the cor-

pus callosum can reflect neuronal loss in the parieto-

temporal neocortical regions (Chaim et al., 2007), which

indicates that abnormal white matter fibers in the corpus

callosum might have influenced the gray matter in joint

IC 3. More importantly, most of the gray matter regions

that were involved in joint IC 3 are associated with the

default mode network (DMN), and the white matter fibers

in the corpus callosum and corona radiate are essential

for connecting the regions of the DMN (Luo et al.,

2012). Additionally, Rombouts et al. found that altered

activity in the DMN represents a potential early biomarker

of AD pathology (Rombouts et al., 2005), which suggests

that the structural covariance patterns of joint IC 3 might

be associated with the DMN in AD.

Joint IC 1 had the significant statistical power

(p= 4.46e�12 for the gray matter volumes and

p= 1.55e�10 for the white matter FA values) in the

between-group comparisons. Moreover, the gray matter

volume and FA value in joint IC 1 were the most

relevant (r= 0.708) among the three joint components.

The gray matter volume and white matter FA value also

exhibited greater relevance for joint IC 2 (r= 0.682) and

joint IC 3 (r= 0.636). The multiV-ROC analysis

revealed discriminabilities with 89.7% sensitivity and



Table 2. Locations of the covariant decreases in gray matter volume and FA value in the AD patients compared to the NCs for joint ICs 1–3

Brain regions Peak coordinates MNI (X,Y,Z) Z Cluster size (mm3) Overlap ratio (%)

Joint IC 1, gray matter (volume)

L Middle temporal gyrus �43.5 12 �36 12.71 17,814 39.1

R Middle temporal gyrus 36 9 �42 11.30 11,485 25.8

L Inferior temporal gyrus �43.5 10.5 �37.5 12.87 11,158 12.8

R Inferior temporal gyrus 36 7.5 �42 11.62 9163 9.3

L Superior temporal gyrus �27 10.5 �34.5 9.56 5738 16.3

R Superior temporal gyrus 28.5 12 �34.5 8.45 3584 10.0

L Parahippocampal gyrus �27 �3 �36 8.07 2629 10.1

R Parahippocampal gyrus 24 3 �30 7.52 3949 13.1

L Hippocampus �24 �6 �22.5 8.63 2079 8.3

R Hippocampus 24 �1.5 �24 8.74 1492 5.9

L Amygdala �24 �4.5 �24 8.48 1306 23.2

R Amygdala 24 �3 �22.5 8.70 1239 18.8

Joint IC 1, white matter (FA)

Cingulum (hippocampus) �26 �22 �25 4.25 396 16.6

L External capsule �25 17 8 2.68 169 3.0

L Anterior limb of internal capsule �22 17 11 2.76 159 5.3

L Anterior corona radiata �24 18 10 2.70 80 1.2

Joint IC 2, gray matter (volume)

L Middle frontal gyrus �25.5 49.5 7.5 7.26 10,291 14.7

R Middle frontal gyrus 28.5 51 6 5.98 11,927 24.5

L Superior frontal gyrus �24 51 4.5 6.68 5417 15.0

R Superior frontal gyrus 7.5 48 �24 6.22 6574 3.0

L Inferior frontal gyrus �30 39 �15 6.38 3216 7.0

L Anterior cingulate gyrus �7.5 48 3 7.03 3952 10.6

R Anterior cingulate gyrus 7.5 33 21 5.44 4823 13.3

L Rectus 0 37.5 �18 6.17 3173 13.5

R Rectus 6 46.5 �24 6.37 3203 15.5

Joint IC 2, white matter (FA)

Body of corpus callosum �7 17 19 4.76 1891 13.8

Genu of corpus callosum �7 20 19 4.56 529 6.0

Cingulum (cingulated gyrus) �9 18 25 3.20 226 4.4

R External capsule 32 8 �9 2.84 123 2.2

Superior longitudinal fasciculus �34 �43 31 2.79 58 0. 4

Joint IC 3, gray matter (volume)

L Middle occipital gyrus �36 �78 39 10.39 10,301 39.3

R Middle occipital gyrus 40.5 �73.5 39 11.62 8188 48.9

L Middle temporal gyrus �43.5 �66 18 9.32 9005 22.7

R Middle temporal gyrus 45 �69 22.5 8.85 5130 14.6

L Angular �40.5 �75 37.5 9.92 7641 80.7

R Angular 39 �70.5 43.5 12.34 7911 56.0

L Precuneus 1.5 �55.5 33 6.62 5437 19.2

R Precuneus 6 �52.5 36 7.43 7155 27.6

L Inferior parietal gyrus �34.5 �78 40.5 10.15 3942 20.2

L Superior parietal gyrus �36 �70.5 49.5 7.51 2241 13.6

R Middle frontal gyrus 42 10.5 46.5 6.22 2217 5.4

L Post cingulate gyrus �6 �49.5 33 6.29 1472 39.4

Joint IC 3, white matter (FA)

Body of corpus callosum �6 �20 26 4.10 1403 10.2

Superior corona radiata 17 13 31 3.19 641 4.3

Posterior thalamic radiation 28 �55 16 2.94 401 5.0

Superior longitudinal fasciculus �40 �42 12 4.27 387 2.9

Posterior corona radiata �27 �30 30 3.46 189 2.5

R Anterior corona radiata 17 16 29 3.00 104 1.5

Splenium of corpus callosum 27 �55 16 2.94 94 0.7

*L: left; R: right; MNI: Montreal Neurological Institute; Overlap ratio: the number of voxels in ROI of Atlas divided by that of suprathreshold voxels in the corresponding brain

regions of significance maps.
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90.2% specificity for joint IC 1, 87.2% sensitivity and

75.6% specificity for joint IC 2 and 74.4% sensitivity and

90.2% specificity for joint IC 3. Multivariate jICA is
available to examine the correlation of the

neuropsychological scores or other scores and the

expression of joint ICs. The subjects’ MMSE scores and



Table 3. Correlation coefficients between the gray matter volumes and white matter FA values and the indices of the multivariate ROC analysis from the

mixing coefficients of the two modalities for each joint IC

Joint IC p-value Correlation Multivariate ROC

GM FA r(p) Area Sensitivity (%) Specificity (%)

Joint IC 1 4.46e�12 1.55e�10 0.708(2.05e�13) 0.928 89.7 90.2

Joint IC 2 3.41e�06 4.05e�08 0.682(3.18e�12) 0.841 87.2 75.6

Joint IC 3 8.75e�06 2.78e�09 0.636(2.31e�10) 0.862 74.4 90.2
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the predicted values of the joint ICs were significantly

correlated for three joint ICs. Each joint IC might reflect

a different aspect of the pathological abnormalities in

AD, and these joint ICs might serve as potential

biomarkers for the prediction of AD pathology.

We found four significant ones out of the twenty-five

joint ICs with Bonferroni multiple comparisons for a two-

sample t-test. We noted the existence of additional one

significant joint IC with scattered spatial distributions

primarily involving the periventricular regions. Like many

multivariate techniques, the proper selection of IC

components is always a problem in the ICA-related

literatures (Xu et al., 2009; Caprihan et al., 2011). To

examine the consistency and stability of three significant

joint sources reported in our study, we evaluated the

results in different number of ICs (the number of ICs is

more or less than 25 including 21, 23, 27 and 29) and con-

firmed that these three joint sources are significant and

consistently exist in varying IC numbers.

Other multivariate techniques investigating for the

covariant patterns include Bayesian network (BN),

structural equation modeling (SEM), SSM and partial

least squares (PLS). The first three methods can only

analyze single modal imaging data. BN and SEM are for

effective connectivity in the fMRI literature. SSM is based

on a modified principal component analysis (PCA). PLS

has the feature of PCA and regression analysis and form

a latent variable that maximizes the covariance among

multi-modal imaging data (McIntosh and Lobaugh, 2004).

The sources identified by SSM or PLS are uncorrelated,

but those identified by ICA are independent. Moreover,

jICA, as an extension of ICA, can combine two neuroimag-

ing datasets to find joint sources. Regarding the methodol-

ogy we adopted herein, the combination ofmCCA and jICA

is an effective multimodal fusion method that allowed us to

detect the source components that improved the identifica-

tion of the covariant patterns of the brain. Sui et al. applied

this method to fuse fMRI and DTI data in order to discrimi-

nate the different morphological abnormalities of the brain

patterns of patients with schizophrenia and bipolar disorder

(Sui et al., 2011). Additionally, jICA assumes that all modal-

ities have the common mixing matrix. CCA can maximize

the correlation in two datasets. Combining mCCA and

jICA better estimates the source and mixing matrices to

obtain higher and even weaker correlation within joint

sources than does mCCA or jICA alone (Sui et al.,

2012a). Sui et al. also reported that this method is flexible

and can be applied to three or more imaging modalities

by extending the multi-modal CCA to a multi-set CCA

(Sui et al., 2012b).

In the current study, all data were from ADNI. ADNI

has already performed some MRI image corrections to
make quality assurance. We performed a two-sample

t-test to examine between-group differences in head

motion parameters for DTI data. The results showed

that most head motion measures did not significantly

differ between the AD group and NC group with multiple

comparison corrections (All ps P 0.024). The spatial

preprocessing steps of structural MRI and DTI reduced

the positional difference between individual image and

the template, and the effect of head motion to a lesser

extent in this study. The effect of head motion was

investigated in several univariate studies (Yendiki et al.,

2014; Reuter et al., 2015), and such potential effect

should also be considered in the future multivariate study.

In addition, we considered data from two modalities, only

focusing on structural or morphological differences in AD.

In fact, functional MRI can provide useful information for

our understanding of the neuropathological mechanisms

of AD. With the use of multi-set CCA (Sui et al., 2012b)

in place of mCCA, it becomes possible to investigate

simultaneous differences in gray matter volumes, white

matter integrity and functional connectivity for more

comprehensive grasp of multi-aspects of AD. Lastly, we

are interested in applying the same technique to MCI, a

preclinical prior to the onset of AD to investigate the

predictability for the progression to AD with possible

increased statistical power.

In summary, we performed mCCA and jICA to identify

the covariances of gray matter and white matter that were

associated with AD. The mCCA and jICA method for

creating gray matter volume maps and FA value maps

effectively detects the underlying gray matter atrophies

that are associated with white matter connectivity in the

corresponding brain areas. The results of this study

predominantly correspond to those of earlier studies,

which suggest that our findings are reliable. These

findings could elucidate the neuropathological

mechanisms of AD from a covariance patterns

perspective.
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