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Abstract
Alzheimer’s disease (AD) research has recently witnessed a great deal of activity focused on
developing new statistical learning tools for automated inference using imaging data. The
workhorse for many of these techniques is the Support Vector Machine (SVM) framework (or
more generally kernel based methods). Most of these require, as a first step, specification of a
kernel matrix  between input examples (i.e., images). The inner product between images Ii and Ij
in a feature space can generally be written in closed form, and so it is convenient to treat  as
“given”. However, in certain neuroimaging applications such an assumption becomes problematic.
As an example, it is rather challenging to provide a scalar measure of similarity between two
instances of highly attributed data such as cortical thickness measures on cortical surfaces. Note
that cortical thickness is known to be discriminative for neurological disorders, so leveraging such
information in an inference framework, especially within a multi-modal method, is potentially
advantageous. But despite being clinically meaningful, relatively few works have successfully
exploited this measure for classification or regression. Motivated by these applications, our paper
presents novel techniques to compute similarity matrices for such topologically-based attributed
data. Our ideas leverage recent developments to characterize signals (e.g., cortical thickness)
motivated by the persistence of their topological features, leading to a scheme for simple
constructions of kernel matrices. As a proof of principle, on a dataset of 356 subjects from the
ADNI study, we report good performance on several statistical inference tasks without any feature
selection, dimensionality reduction, or parameter tuning.

Copyright © 2010 IEEE.
*Data used in the preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete list of ADNI investigators is available at
adni.loni.ucla.edu/wpcontent/uploads/how to apply/ADNI Authorship List.pdf.
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I. Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to progressive loss of
memory and cognitive function. Early clinical diagnosis is challenging because AD-specific
changes begin years before the patient becomes symptomatic [1], [2], [3], [4], [5].
Therefore, a major focus is to identify such changes at the earliest possible stage by
leveraging neuroimaging data [6]. One specific interest is to go beyond group analysis (i.e.,
between clinically different groups), rather to “learn” patterns characteristic of neurode-
generation using machine learning (ML) methods. Of course, AD is just one potential
application, and image-based machine learning methods are applicable to a variety of
neuroimaging problems.

Statistical machine learning methods provide means for learning a hypothesis (or concept)
from a set of training examples. In the context of a specific disorder (e.g., AD), the training
data is given as a set comprised of both diseased and control subjects, and our objective is to
learn a pattern in such examples to help predict the target variables for new “test” cases.
Some work in the last few years has focused on making use of a popular machine learning
algorithm called Support Vector Machine (SVM) learning for inference problems, such as
classification, regression etc. A main focus of recent efforts has been directed towards
classification of AD and control subjects in the hope that this will lead to earlier predictions
of which subjects will go on to develop AD. Beyond the classification domain, however,
there are other significant scientific questions which may be addressed via kernel methods,
e.g., analyzing subtle interactions between biological or psychological measures and brain
topology. We provide a brief review of these strategies next to highlight their key
advantages and limitations, especially in the context of the data types (and the inference
problems) of interest in this paper. The review will not only help establish the discriminative
power of imaging data (esp. cortical thickness), but highlight the growing consensus
towards the design of automated tools, so as to use other markers of histological changes
(plaques, tangles, etc.) in a disease’s presymptomatic phases by adapting extensions of ML
algorithms.

A. Related Work
The need to represent, manipulate, and analyze complex brain data has led to a set of novel
techniques for brain surface parameterization. These algorithms provide a smooth functional
representation of the complex inherent geometries of brain surfaces [7], [8], [9], and have
successfully been applied to discover disease-specific regions in group analysis [10]. On the
other hand, a number of recent efforts have focused on utilizing domain knowledge. For
instance, in [11], the authors exploited the fact that the hippocampal volume was atrophic in
AD and reported 82%–95% classification accuracy on a data set of 39 subjects (19 AD, 20
controls). Numerous MR imaging-driven volumetric studies have used Voxel Based
Morphometry (VBM) [12] to perform disease specific statistical analysis using clinically
relevant measures at the voxel level (such as gray matter density [13]), and show differences
in regional gray matter loss between the two groups [14]. However, [15], [16], [17] have
independently shown that classification models that depend on voxel-by-voxel evaluation of
the neurological data require extensive feature reduction either by recursive elimination [18]
or by manipulating the weights learned by a linear SVM [16]. Klöppel and colleagues [16]
achieved 95% accuracy on a data set of 90 subjects (33 AD, 57 controls). Likewise,
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classification performance of methods based on PCA [19], [20] show a dependence on
selection criteria of principal components of the dataset, while [21] proposes that
improvements in accuracy can be obtained via a spatial regularization (Markovian
interaction between voxels) and reported an increased classification accuracy of 82% on a
subset of 183 subjects from ADNI. While feature selection (or dimensionality reduction) is
extensively used, it involves a careful selection of parameters to preserve the important
components of the signal. Also, the performance must not be too dependent on the sample
size, and the number of features must remain stable across datasets [22]. Nonetheless, the
above papers demonstrate that good classification accuracy on certain types of neuroimaging
data can be obtained via novel pre-processing or by incorporating additional domain specific
modifications in the learning algorithm. Next, we make the case that the above techniques
are not easily extensible to a class of (clinically interesting) neuroimaging data for many
inference tasks, and new methods are needed to exploit the discriminative components of the
signal.

Recent evidence suggests that neurological measures de-fined on cortical surfaces, such as
cortical thickness values [23], [24], [25], [26], [27] are a clinically meaningful measure of
the underlying brain morphology and a reliable measure of gray matter atrophy [28], [29],
but are not yet fully utilized for automated inference in the context of AD. To address this
problem, we focus on methods for extraction and precise characterization of important
topological features for such data – with cortical thickness values as an example, we design
new methods for “kernelizing” signals defined on cortical surfaces. Using characterizations
inspired from the “persistence” of topological surface features, we present a framework for
construction of affinity (or weight) matrices between subjects’ distributions of cortical
thickness (or other measures 1), each defined on surfaces. This permits using such data
systematically within any off-the-shelf statistical toolbox, without manual parameter or
feature selection. The construction of similarity measures based on a topological signal such
as cortical thickness allows the inclusion of topological data along with other biomarkers in
predictive models. The inclusion of such highly independent covariates offers the potential
to aid machine learning methods that operate with ROI measures, gray matter maps, and so
on, by providing additional information which is not detected by other feature extraction
methods. Note that our goal is not to argue that cortical thickness is better than existing
features, rather, the machinery developed here presents methods to construct representations
for such data which may then be used in conjuction with other features of choice. Indeed,
since cortical thickness is a clinical measure, its relevance will be different in different
application scenarios. Finally, the proposed algorithm achieves a general purpose
characterization of any topology-based signal in a mathematically elegant framework –
which is in fact the primary focus of the proposed method.

The contributions of this paper are: (i) We give topology-based kernel construction
algorithm for measures defined on cortical surfaces. (ii) On a dataset of AD and control
subjects (ADNI), we investigate the effectiveness of proposed characterization in group
level studies, standard regression, and classification. This avoids the difficulties of extensive
preprocessing and regularization, as when using standard ML tools. In an additional set of
experiments with standard ROI-based features, we evaluate the utility of proposed topology
based features. (iii) We provide an implementation for performing inference (classification,
regression, linear models, and so on) on complex data such as signal defined on cortical
surfaces. The goal of this work is neither to assert that cortical thickness is the best
discriminator of AD, nor to claim that the proposed method is the best mechanism for
classification purposes. Rather, it is a general purpose non-parametric method for

1The complete analysis in the paper refer to cortical thickness values. We will be using terms “signal”, “brain measure” and “cortical
thickness values” interchangeably because the proposed method is easily extendable to any brain measure defined on cortical surfaces.
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constructing similarity measures on topological signals which can be included in multi-
modal or multi-variate models to boost the signal of interest.

II. Main ideas
In the following section, we draw an outline for the motivation behind our method in the
context of AD-related statistical inference. We will present the complete formulation of
topology based kernel construction using cortical thickness signal in the next section.

In the context of Alzheimer’s disease as well as other disorders [30], [31], [32], numerous
findings confirm fundamental differences in the patterns of cortical volume loss, and regard
cortical atrophy a useful biomarker for AD [10], [33]. Cortical thinning leads to localized
changes in the spatial distribution of gray matter, and hence a geometric realization of
topological measures on the cortex can induce separability between diseased and healthy
brains. The goal is to use such clinical signals to derive similarity measures. Because
cortical thickness is a highly attributed marker, most of the existing models have used this
anatomically relevant aspect of disease progression in a generative setting by assuming co-
registered surfaces and by performing statistical tests to evaluate the discriminative power of
each feature, where the feature vector’s dimensionality equals the number of cortical surface
vertices, and the thickness values at the vertices give the magnitude of each corresponding
entry. One may then calculate inter-subject distances (or similarities) in terms of geometric
distances based on top discriminative features (or inner products), which may then be fed
into a standard SVM procedure. Notice the two major difficulties with this approach: first,
we must account for the mismatch between the training set size and the dimensionality of
the distribution via feature reduction [22], [19] or introduction of bias [21]. Second, during
the reconstruction step of cortical thickness using automated software tools, point-wise
correspondence of mesh topology among the training subjects may be unavailable. This will
lead to different number of vertices at different coordinates for different subjects. One
approach to this problem is to try mapping cortical thickness onto a sphere with a fixed
number of vertices, re-sample and interpolate the cortical thickness measure for each subject
so as to allow a direct point-wise comparison. However, the procedure not only attenuates
vertex-wise signal but also ignores the higher order interactions between subsets of vertices
that vary between the two groups. Also neurodegeneration is an exclusive event, and exact
locations (coordinates of affected vertices) also vary among the population, obscuring the
statistical concept under study. More importantly, in the context of cortical thickness,
vertex-wise thickness values may be less relevant – in some settings separability between
classes likely comes from variation between topological features (comprised of more than
one vertex). In other words, subtle losses of gray matter may affect the shape or topology or
cortical surfaces before they significantly affect the thickness measures1. A naive alternative
is to look at all possible groups of vertices, and evaluate the significance of their variation,
which is clearly intractable. Our approach below seeks to characterize brain images by
deriving a representation of “groups” of vertices on each individual cortex. Briefly, we
determine whether a localized region in the brain exhibits any gray matter atrophy via
construction of a simplex on critical points – which provide information on the global
topology.

Our method is based on topological persistence of brain measurements defined on cortical
surfaces. Within the framework of signal filtration, if one considers the cortex as a complex
then the spatial properties of cortical thickness can be represented as the history of a
growing complex using notions of “birth and death” of homological classes. It is reasonable

1Note that this means that in the case of AD vs. control classification, such an advantage may be lost, since cortical thickness has been
shown to be discriminative by itself.

Pachauri et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 December 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to expect that inferences based on such topological changes which occur during the growth
either as critical points or noise as a function of their lifetime, will capture the differences
between clinically different groups well on a global level. Our algorithm seeks to
characterize such changes to derive a precise representation of the topological features on
the signal. Once such a representation is obtained, we can easily construct similarity
measures (kernels) and leverage emerging ML tools (e.g., MKL) for inclusion in statistical
inferences.

III. Algorithm
Summary

Let us denote the set of cortical data in the training set as X = {X1, X2, …, Xn} with known
target variables y = {y1, y2, …, yn}, where yi ∈ {+1, −1} (or yi ∈ ℝ) in a classification (or
regression) setting. X comprises the cortical data of both AD and control groups. The
original signal defined on the cortical surface is noisy and it is necessary to estimate the
unknown signal to increase signal-to-noise ratio and smoothness of the signal for subsequent
analysis. This is achieved via image smoothing over . Making use of the mean signal is not
ideal for constructing similarity matrices which promote separability, due to signal
attenuation. Such a process will make it rather difficult to identify subtle, but clinically
relevant variations. Further, substantial overlap in the class distributions confounds
inference. In contrast, our proposed method is motivated by the topological characterization
of the signal which makes no assumption on point-wise correspondences of cortical measure
on a naturally formed spherical atlas. Hence, no assumption is made regarding a specific
pre-processing tool for extraction, allowing the proposed framework to handle disparities
among spherical atlases of individual subjects (generated by some pre-processing tool of
choice). As a result, the collection of critical points on the mean signal is adequate to
characterize the topology of the signal. By pairing the critical points in a nonlinear fashion,
we construct scatter plot for each image, which encodes the topological properties of the
input signal. The concentration maps of such scatter plots are then used to learn the disease
patterns by employing off-the-shelf ML toolbox. We now present details of the algorithm in
the following subsections.

A. Heat Kernel Smoothing
Existing methods model the cortical measurement f(x) as signal plus noise: f(x) = μ(x) + ε(x),
where μ is the signal, and ε is noise. In the following analysis, f(x) is the cortical thickness
mapped onto a spherical surface, i.e., x ∈  as shown in Fig. 1 (right).

We used heat kernel smoothing to estimate the signal [7], [34]. The heat kernel is essentially
Green’s function of the isotropic diffusion equation [34]. The solution of which with the
following initial conditions (f(t, σ = 0) = ) provides the heat kernel Kσ as

(1)

where −λl = l(l+1) is the eigenvalue and Ylm are eigenfunctions of the operator known as
spherical harmonics. Spherical diffusion of a given functional measurement f ∈ L2( ) i.e., a
smooth estimate of f denoted as f̂ is written as a convolution: f̂ = Kσ *f. The finite estimate of
the continuous convolution is called the Weighted Fourier Series (WFS),

Pachauri et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 December 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2)

where f̂lm = 〈f, Ylm〉 is the Fourier coefficient. This is a more flexible spectral approach that
explicitly represents the solution to the diffusion equation analytically.

In principle, series approximation of smoother cortical signal improves by increasing the
number of coefficients in the summation. The optimal choice of the degree is useful to save
computational time, Fig. 2 (top row) shows the finite expansion approximation of the
cortical thickness shown in Fig. 1 as the degree increases from k = 5 to k = 70 (bandwidth
(σ) = 0). The spatial smoothness of the thickness is controlled by σ. Fig. 2 (bottom row)
shows the thickness data as σ varies in the range [10−2, 10−5]. The goal is to estimate the
signal using WFS to suppress noise. An optimal selection of σ is required to avoid over-
fitting and not to lose the discriminative features during smoothing step. We used σ = 10−4

and corresponding degree k = 50 in our experiments based on [7].

B. Scatter plots of Persistence
We will characterize the signal in terms of its critical points and the sublevel sets. The
sublevel sets of a signal f are defined as R(y) = f−1(−∞, y] where f(x) is the signal (i.e., the
corresponding cortical thickness measure), and f−1(y) is its inverse. In other words, a
sublevel set is the set of all points x for which f(x) ≤ y. Observe that critical points of the
signal (i.e., local minima and maxima) provide information about local variations in signal.
But we are interested in points which preserve information about the connected regions of
its sublevel sets. We can define the time-point (thickness value) at which a critical point will
be “visited” in a filtration of the signal [35]. As we increase y, the critical points of the
signal are visited (in order) and homology of f(x) ≤ y changes (with y) i.e., signal value f(x)
is critical if the rank of homology groups of sublevel set R(f(x)) change by visiting f(x), i.e.,
if a homology class is born (or dies) by visiting f(x).

Clearly, the critical points are markers of the creation and deletion of connected components
in the sublevel sets, with increasing values of the filtration. More importantly, unique
pairings of these critical points are sufficient to identify each topological feature in the
signal. Our pairing rule is defined using persistence of critical points [36], [37] and is
formulated as follows:

Consider an ordered set C of all critical points of f(x) (i.e., cortical thickness), C = {c1 ≤ c2 ≤
…..cn}. This defines a sequence of connected components and a corresponding sequence of
homology groups. Our aim is to store the history of homological changes within this
sequence i.e., a history of homology classes. A class is born at ci if it did not exist in
sublevel sets R(y) such that y ∈ Ci where Ci = {cj |(∀cj ≤ ci), ci, cj ∈ C}. A class dies
entering ch if it existed in sublevel sets R(y) such that y ∈ Ch but did not exist in sublevel
sets with filtration value in subset Ch = {cj|(∀cj ≥ ch), cj, ch ∈ C}. Now we can represent the
“life duration” of a class born at ci and dies at ch by pairing the critical points (ci, ch).
Furthermore, we can present the history of each class by drawing these pairs of critical
points in two-dimensional plane “scatter plot”. The construction of a scatter plot for an
arbitrary one-dimensional function f(x), x ∈ ℝ1 is illustrated in Fig. 3.

To facilitate the construction of scatter plots using cortical thickness for each subject, we
first calculated critical points of the cortical thickness. Critical points in this setting are
defined as those points where the cortical thickness is maximum/minimum relative to its
immediate neighbors. We used Delaunay triangulation [38] to generate a simplical complex
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of critical points. The signal value was used to define the “filtration” on the complex. We
used publicly available software [39] to calculate the persistent homology in degree-0 for
each subject. The procedure essentially provides a unique pairing of critical points which
preserve the information of connected regions as discussed above. That is, preserving only
the paired critical points (birth-death pairs) and the corresponding filtration step at which
they were visited i.e., thickness values. This procedure yields a collection of topological
feature descriptors (i.e., connected regions of a sublevel set) for each subject which can be
represented as a scatter plot (also known as a plot of Betti intervals). In the scatter plot
representation, each feature is described in terms of its birth and death “time”, i.e., the
filtration values of the paired critical points. Now, by comparing the scatter plots of such
paired values, we can establish the desired similarity measure between subjects.

We construct a concentration map from the scatter plot by using kernel density estimation
(KDE); we estimate the distribution of pairs on a uniform grid. Vectorization of the
concentration map provides a probability distribution function (PDF) for each subject. This
is PDF of the scatter plot, and does not directly tie to the high and low thickness values. By
choice of a suitable KDE similarity measure, we can now compute similarity inter-subject
measures, that will give a positive semi-definite (PSD) kernel matrix; where entries are the
similarity between these PDFs. If the topology of cortical thickness is discriminative then
many of these cortical topology measures will show a variation (between AD and controls)
resulting in measurable group differences in the clinical populations in terms of their critical
point pairings. Observe that with the similarity measure and kernels constructed above, the
application of kernel regression or classification (also, group analysis) on this data is quite
simple. In Fig. 4 we have demonstrated the various steps involved in the algorithm.

IV. Experimental setup
Our objective in this section is to evaluate the effectiveness of the chosen topological
representation. As an illustrative example, we focus on inference problems in AD such as
classification, regression and group studies on clinically different groups. The purpose here
is not to achieve the best classification accuracy for AD (or that cortical thickness is the
most discriminative feature) rather to show how topologically-based data can be
systematically used within image-based statistical analysis. We performed experiments
using cortical thickness signal defined on cortical surfaces for each subject employing our
algorithm discussed in III. The initial processing of T1 weighted MR images was performed
using FreeSurfer. To learn discriminative topological characteristics we used a set of 356
subjects (160 AD, 196 controls) in our evaluations. We made use of ground truth diagnosis
of each subject (i.e., class labels), based on given clinical evaluation of cognitive status for
each subject. A more detailed description of the data set, preliminary processing and
algorithm implementation are covered in the following subsections. Later, in section V, we
demonstrate the use of derived features in various inference settings.

A. Data set
We evaluated the accuracy of our method by performing experiments on data collected as
part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(www.loni.ucla.edu/ADNI). A summary of demographic and neuropsychological details of
subjects used in our study is presented in Table I.

B. Preliminary data processing
The MR images in our data set were processed using FreeSurfer [41] to calculate the cortical
and subcortical anatomy. To enable the reconstruction of brains cortical surface from
structural MRI data, freely available software FreeSurfer (v1.133.2.57) was used on a 64-bit
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Linux workstation. FreeSurfer models the boundary between white matter and cortical gray
matter, tessellates the resulting surfaces, and calculates distances between the surfaces (i.e.,
thickness values) at each vertex. This procedure gives an cortical thickness measure at each
point on the cortex for each subject’s cortical surface (in fact, for each pair of left and right
hemispheres) in our dataset2. For improved visualization, a cortical surface-based spherical
atlas has been defined based on average folding patterns (see Fig. 1). Surfaces from
individuals were aligned with this atlas with a nonlinear registration algorithm. The
registration is based on aligning the cortical folding patterns and therefore directly aligns the
anatomy instead of image intensities. The spherical atlas forms a coordinate system in which
point-wise correspondence between subjects can be achieved by interpolation, though such
correspondence is not required for our algorithm.

C. Implementation
Mean signal on the cortical surface was obtained via image smoothing, as discussed in
III(A). We calculated critical points and scatter plots on the mean signal for each subject
Fig. 5(a), as discussed in III(B). To derive a similarity measure on scatter plots, we used
kernel density estimation to generate the concentration map of a scatter plot on a square grid
[0, 5]2 with 502 pixels for each cortical surface Fig. 5(b). Once the concentration map for
each cortical surface was obtained, vectorized concentration maps (PDFs) Fig. 5(c) were
used to construct the kernels. We used these kernels to perform the following experiments:

i. 2-sample t-tests on the concentration maps (PDFs) to locate statistically relevant
pixels in the concentration map.

ii. Kernel regression to model important cognitive markers in a 10-fold cross-
validation setting [42] for the two clinical groups. (iii) 10-fold cross-validation
classification to estimate predictive accuracy on unseen test examples using the
kernel SVM implementation provided in the Shogun toolbox [42]. The entire
process described above was carried out separately for the right and left
hemispheres of each subject’s brain, giving two trained SVM classifiers. While
sophisticated methods to combine different types of kernels exist, our final
prediction label for a test example was derived by averaging the two classifier
outputs – i.e., winner (classifier with a higher confidence) takes all. An additional
set of classification experiments to assess the predictive accuracy of ROI-based
features supplemented with topological persistence kernels is also presented. (iv)
Localizing the brain regions which were involved in homological changes in the
two groups.

V. Experimental results
In order to show the effectiveness of topological features, we have performed (A) group
analysis, (B) regression, and (C) classification. Here, we present an analysis of the
performance of our algorithm on the data described above.

A. t-statistics
In order to test the hypothesis that the proposed topology based features do indeed extract
meaningful about AD-related atrophy, we performed 2-sample t-tests on each pixel in the
concentration map. Fig. 6 shows the differences in means for each pixel above (AD -
control, for left and right hemispheres,) and p-values in negative log scale below, with
statistically significant pixels in correspondingly “warmer” colors. Several notable

2AD brain scans have severe atrophy due to which “auto-Talairach” step failed. Therefore during automated cortical reconstruction
process using recon-all directive, we disabled Talairach transformation via –notal-check for all subjects.
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properties can be seen from the figure. First, we see that there is a significant shift in the AD
group towards the origin, corresponding to the global thinning seen in AD. Second, we can
see from the distribution of the p-values that there are more subtle effects in regions off of
the y = x line, which suggest that there are higher-order topological effects. Finally, we can
see that there are regions of non-zero density below the y = x line despite there not being any
min-max pairs in these regions – this is due to the kernel density estimation step, which
interpolates the density function to regions where there are no min-max pairs, and which is
agnostic of the process by which the points are extracted.

B. Regression
We also used our topological representation to predict the values of various relevant
cognitive measures in a 10-fold cross-validation setting using a kernel regression model.
This way, the model does not have access to the quantities it is trying to estimate until after
training. We then performed 2-sample t-tests between the outputs to show that the model is
indeed detecting separable group differences. We found that predicted values of 20
neuropsychological scores showed highly significant group-wise differences between AD
and control subjects. The p-values of two-tailed t-test were ≃ 0 for these neuropsychological
scores. In other words, the estimated values of individual cognitive scores were
discriminative for clinically different groups. This also helps explain the fact that gray
matter atrophy, and thus topological features lead to cognitive decay. Table II presents the
complete set of significant results.

C. Classification
In addition we calculated predictive accuracy, ROC curves, and area under ROC curves for
cross-validated classification experiments. These results are shown in Table III and Fig. 7,
and summarized below. The combined classifier had an accuracy of 75%. Left hemisphere-
and right hemisphere-derived classifiers had accuracies of 73.31% and 73.03% respectively.
The higher accuracy of the combined classifier compared to that of either of the single-
hemisphere-derived classifiers suggests that it affords greater separability of the clinical
groups when both hemispheres are used. The AUC measures were 0.7955 for the left
hemisphere derived classifier, 0.7973 for the right hemisphere derived classifier, and 0.8063
for the combined classifier.

1) ROI—In order to quantify the significance of proposed topology based features, we
investigated the following hypothesis: Do topology persistence based kernels add to the
discriminative power of ROI-base kernels? If so, we can conclude that the proposed
representation scheme provides information on certain aspects of the concept not captured
by ROI features on their own.

ROI-data from ADNI consists of volumetric numerical summaries of hippocampus and
temporal lobes. In a set of experiments, we studied the predictive accuracy for AD vs CN of
ROI-base features exclusively. In the second step, we combined the topological & ROI-
based kernels and tested the discriminative power of the unified kernel on exactly same 10-
fold setup used in ROI-based experiments. Table IV shows the different combinations and
their predictive accuracies. Except one combination (left middle temporal), all combinations
show non-negligible improvements in the mean accuracy. We performed a paired t-test on
the outcome. We found that while on all cases the mean accuracy improved, for the left &
right hippocampul ROIs as well as right middle temporal lobes, the null-hypothesis can be
rejected at α = 0.05. For the two other features, the p-values were also small. This
experiment, provides reasonable evidence that topological persistence based kernels add
relevant information in the unified kernel for statistical analysis tasks.
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D. Correlation between algorithm outcomes and cognitive biomarkers
From both a therapeutic and a research standpoint, it is important to identify signs of a
disease at its predementia stage. Current diagnostic criteria for AD are based on
neuropsychological scores such as: mini-mental status examination (MMSE), and
neuropsychological battery scores such as logical memory and delayed recall. Other
neuropsychological scores (Category fluency, Trail making, Rey auditory, Boston Naming
etc.) are not used in diagnosis, however, as measures of cognitive status we nevertheless
expect such scores to be highly correlated with the diagnosis (i.e., ground truth), and regard
them as “pseudo-ground truth” due to this confounding influence. Recent studies have
suggested that in early stages of AD, cognitive impairment does not correlate with brain
structure delineation, which explains the weakness of cognitive scores particularly with
early AD onset identification. Fig. 8, illustrates statistical correlation of many cognitive
scores with the classification confidence output by an SVM trained on the proposed imaging
based topological features. We found that most cognitive scores are in agreement with the
classification confidence for both left and right hemisphere. This suggestes that indeed
imaging based markers are capable of predicting the status of individual subjects accurately
so as to identify individuals likely to progress to AD.

E. Localizing persistence
Finally, we used spatial information of min-max pairs to locate the brain regions persistently
involved in topological changes in each subject. These are representative locations on the
brain where homology classes were born (and died) during the growth of individual cortex.
Fig. 9 (top) shows the differences in means of min-max locations for the clinical groups (AD
- control, for left and right hemispheres). We noticed significant differences in the patterns
of topologically active brain regions between the two groups corresponding to the global
thinning in AD. Fig. 9 (bottom) shows p-values in negative log scale of 2-sample t-tests on
each vertex. Statistically significant regions are shown in “warmer” colors. Noticeably,
localized regions (neighboring vertices) corresponds to the cortical thinning in specific brain
regions.

VI. Conclusions
In this paper we have proposed a new method for constructing kernels using cortical
thickness measures defined on brain surfaces. This type of feature extraction will allow the
inclusion of highly attributed brain signals into statistical inference machinery. We have
demonstrated the value of these features in the context of mild AD via kernel based analysis
methods. Our method offers a discriminative, yet compact representation of cortical
surfaces, using persistence of the topological features induced by cortical thickness signal.
The method is self-governing with respect to any point-wise correspondence of the mesh
topology among subjects and any kind of feature reduction. The underlying concept of our
method enables easy computation of meaningful similarity measures in a non-generative
manner for use within machine learning methods, not offered by most existing methods. Due
to this reason, our experiments show possible and scientifically important inferences that can
be derived using proposed features, using AD as an illustrative example. Our experimental
results demonstrate the strength of topological features in capturing subtle anatomical
variations present in complex data. Given that cortical thickness measures are suspected to
be relevant for neurological disorders. In its present form, the paper outlines machanisms to
exploit such data, if available. We believe that these methods will add to the diagnostic
accuracy obtainable by MR and/or FDG-PET images alone [21], or within multi-modal
analysis frameworks proposed recently [43], [44]. Our implementation will be provided at
http://pages.cs.wisc.edu/~pachauri/minmax.
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Appendix A
With an eye towards making our paper as self-contained as possible, in the following we
give a viable illustration of scatter plot construction for an arbitrary one-dimensional
function f(x), x ∈ ℝ1. For more information pertaining to homological classes and
persistence, see [36], [45], [46], [40].

Fig. 10 shows a one-diemsional signal f(x). This function has four extremum points, two
local minima [c1, c2] and two local maxima [c3, c4]. Sublevel set of f(x) with R(y) = f−1(c1),
is shown as collection of data points in solid red color under blue line in Fig. 11(a).
Similarly, other sublevel sets corresponding to other extremum points c2, c3 and c4 are
shown in Fig. 11(b), (c), and (d) respectively.

The pairing scheme of critical points in one-dimensional case, can be understood as follows:
the rank of homology groups of all sublevel sets R(y) with y ⪇ c2 is one: only H1 (one-
dimensional hole) is present. At time-point c2 (f(x) = c2), the rank of homology groups for
sublevel set R(y = c2) becomes two with the “birth” of another class H2 by entering c2. For
sublevel sets with R(y) such that c2 ≤ y ⪇ c3, the rank remained constant. Entering c3, the
class born at c2 (H2) “died” and the rank of homology groups becomes one for sublevel set
R(y = c3). Therefore, the persistence (history) of class H2 is preserved in time-points (c2, c3).
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Similarly, pair (c1, c4) represents the persistence of homology class H1. Fig. 12 demonstrate
the pairing scheme for topological persistence. For completeness, Fig. 15 is shown with the
one-dimensional signal f(x), Fig. 15(left), and its scatter plot, Fig. 15(right).

Appendix B
In the following we give an illustration of critical points for an arbitrary two-dimensional
function defined on spherical surface, i.e., x ∈ , and their respective location in scatter plot.
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Fig. 1.
(left) Cortical thickness and surface coordinates. (right) For our processing, cortical
thickness has been projected on to a sphere. Cortical thickness is measured in mm and color
bar corresponds to thickness values at each vertex.
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Fig. 2.
Weighted Fourier Series representation of cortical thickness signal. (top) Degree k = 5, 20,
50 and 70 (left to right). (bottom) Bandwidth σ = 0.01, 0:001, 0.0005 and 0.00001 (left to
right).
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Fig. 3.
Critical points pairing scheme for a one-dimensional function (based on [40]), also see
Appendix A.
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Fig. 4.
Flow chart to represent the complete algorithm.
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Fig. 5.
(a) Scatter plot of an AD subject. The units on the Birth-Death axes are mms. In general,
these scatter plots may have arbitrary units, (b) Concentration map of the scatter plot using
gaussian kernel of bandwidth of 0.2 on a square grid [0, 5]2 with 502 pixels (colorbar
represent the density of points), (c) PDF of a concentration map.
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Fig. 6.
Group analysis of extracted concentration maps for left and right hemispheres. Above are
shown the differences in means for each pixel, (AD - control for left and right hemispheres
resp.) Below are shown the p-values (negative log-scale). The differences are highly
significant, (p < 10−16) and suggest both gross and subtle anatomical variations are present
in the data.
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Fig. 7.
ROC curves demonstrating performance of topology-based representations of ADNI data.
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Fig. 8.
Pearson’s correlation between classification confidence of algorithm and cognitive
biomarkers.
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Fig. 9.
The flat maps to show topologically interesting brain regions. Angles θ and φ (zenith and
azimuthal respectively) are associated with spherical atlas. (Top) Differences in means at
each vertex, (AD vs. control for left and right hemispheres respectively). (Bottom) p-values
in negative log-scale.
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Fig. 10.
Example: an arbitrary one-dimensional signal.
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Fig. 11.
Sublevel sets R(y) (i.e., f(x) in solid red below blue line) are drawn on ordered set C for all
critical points of f(x), C = {c1 ≤ c2 ≤ c3 ≤ c4}. One homological class (1-dimensional hole)
is born at c1, let us call this class H1. Second class is born at c2 – call this class H2. H2 class
died at c3 (i.e., the 1-dimensional hole opens up at c2, closes off when entering c3). H1 died
at c4 (hole opened at c1 and closed off at c4).
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Fig. 12.
Critical points pairing scheme to preserve the history of homological classes (persistence)
present in f(x). (a) Pair (c1; c4) corresponds to the “life duration” of hole H1. (b) Similarly,
(c2; c3) corresponds to the “life duration” of hole H2.
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Fig. 13.
f(x) and its persistence scatter plot.
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Fig. 14.
Example: an arbitrary two-dimensional signal defined on x ∈  and multiple views of its
Weighted Fourier Series representation.
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Fig. 15.
(left) Flat map of WFS f(x). (right) Persistence scatter plot. Arrow shows the spatial location
of extremum points (birth-death) that correspond to single entry in scatter plot.
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TABLE I

Demographic details and baseline cognitive status measures of the study population.

AD (mean) AD (s.d.) Controls (mean) Controls (s.d.)

No. of subjects 160 – 196 –

Age 75.53 7.41 76.09 5.13

Gender(M/F) 86/74 – 101/95 –

APoE4 carriers 76 – 81 –

MMSE at Baseline 21.83 5.98 28.87 3.09

Years of Education 13.81 4.61 15.87 3.23
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TABLE II

A table of p-values on predicted neuropsychological scores.

Neuropsychological Scores p-value Neuropsychological Scores p-value

Rey Auditory Trial 1 10−10 Trail Making A ≃ 0

Rey Auditory Trial 2 ≃ 0 Trail Making B ≃ 0

Rey Auditory Trial 3 10−16 Trail Making A & B errors committed 10−14

Rey Auditory Trial 4 ≃ 0 Digit Span ≃ 0

Rey Auditory Trial 5 ≃ 0 Boston Naming (Spontaneous) 10−15

Rey Auditory Trial 6 ≃ 0 Boston Naming (Cues Given) 10−9

Rey Auditory Trial B 10−12 Boston Naming (Phonemic Cues Given) 10−9

Category Fluency: Animals 10−16 Boston Naming (Correct Response) 10−8

Category Fluency: Vegetables ≃ 0 Boston Naming (Total Number Correct) 10−15

Category Fluency: Vegetables, Intrusions 0.0002 ANART errors 10−11
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TABLE III

Measures of our method’s accuracy on classification experiments.

Method Accuracy AUC

Left Hemisphere 73.31% 0.7955

Right Hemisphere 73.03% 0.7973

Averaged Confidence 75.00% 0.8063
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