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a b s t r a c t

This work is a feature-extraction and classification study between Alzheimer’s disease (AD) patients and
normal subjects. Voxel-wise morphological features of brain MRI are defined as the Jacobian determi-
nants that measure the local volume change between each subject and a given atlas. The goal of this work
ccepted 4 October 2010
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tudent’s t-test

is to determine the region of interest (ROI) which is best suited for classification. Two types of ROIs are
considered: anatomical regions, that were automatically segmented in the atlas (amygdalae, hippocampi
and lateral ventricles); and statistical regions, defined from group comparison statistical maps. Classi-
fication performance was assessed with five classifiers on 20 pairs of matched training and test groups
of subjects from the ADNI database. In this study the statistical masks provided the best classification
natomical masks
lassification

performance.

lzheimer’s disease (AD) is the most common neurodegenerative
llness, accounting for 60–70% of age-related dementia cases [27].
n 2000, approximately 24 million people over the age of 60 were
iagnosed with dementia worldwide, and this number is expected
o reach over 81 million by 2040 [7].

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [19] is a
arge multi-site longitudinal structural Magnetic Resonance Imag-
ng (MRI) and Fluorodeoxyglucose Positron Emission Tomography
FDG-PET) study of 800 adults, ages 55–90, including 200 elderly
ontrols, 400 subjects with Mild Cognitive Impairment (MCI), and
00 patients with AD. The ADNI was launched in 2003 by National

nstitute on Aging, National Institute of Biomedical Imaging and
ioengineering, Food and Drug Administration, private pharma-
eutical companies and non-profit organizations, as a $60 million,

-year public–private partnership. The primary goal of ADNI has
een to test whether serial MRI, PET, other biological markers, and
linical and neuropsychological assessment can be combined to
easure the progression of MCI and early AD.

∗ Corresponding author. Dep. Ingeniería Electrónica y Comunicaciones, Edificio
da Byron, Universidad de Zaragoza, María de Luna n◦1, 50018 Zaragoza, Spain.
el.: +34 976762875; fax: +34 976 762111.

E-mail address: mdpelaez@unizar.es (M. Pelaez-Coca).
1 Data used in the preparation of this article were obtained from the Alzheimer’s
isease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As

uch, the investigators within the ADNI contributed to the design and imple-
entation of ADNI and/or provided data but did not participate in analysis or
riting of this report. For a complete list of investigators involved in ADNI see:
ttp://www.loni.ucla.edu/ADNI/About/About InvestigatorsTable.shtml.
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MRI is widely used in AD studies as it can non-invasively quan-
tify gray and white matter integrity with high reproducibility [17].
MRI-based measures of cortical and hippocampal atrophy have
been used in clinical trials [11,15], and they have been shown to
correlate with pathologically confirmed neuronal loss and with the
molecular hallmarks of AD [14,22]. In recent years, multivariate
pattern recognition methods have been proposed to classify AD ver-
sus normal subjects [4,9,26]. In order to reduce data dimensionality
a mask is usually defined, either by thresholding a Student’s t-test
map [9,26], or by selecting a ROI from automatic segmentation of
anatomical structures [9]. Voxel-based features from a large rect-
angular region of interest (ROI) in the medial temporal lobe were
used in [4].

Several type of MRI features have been used for AD classifi-
cation, such as image intensity [4], tissue density [26], Jacobian
determinant [4], boundary shape descriptors based on SPHARM-
PDM (Spherical Harmonics-Point Distribution Model) [9]. On the
other hand, gender and age may be relevant information for AD dis-
criminate [16], being old age the largest risk factor [5]. In addition,
the ApolipoproteinE (ApoE) genotype is linked to AD risk, where
the presence of �4 allele increases the AD risk while �2 is protec-
tive [1]. Vemuri et al. [26] included these demographic variables to
improve classification accuracy.

In this study, three major design criteria for the classification

algorithm were used: generalizability, small number of features,
and amenability to anatomical interpretation of the selected fea-
tures. To ensure the generalization of the results, an evaluation
that included 20 random allocation of pairs of training and testing
groups was carried out. This type of evaluation has not been taken
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nto account in other papers [4,9,26]. A small number of features
esults in simpler and more robust classifiers. Thirdly, providing
n anatomical interpretation of the selected features may help to
nderstand the disease. It is well known that AD has a pattern of
trophy starting in the temporal lobe, mainly at entorhinal cortex
nd hipocampi, distributing throughout the cortex [21,25,3]. This
trophy is accompanied by lateral ventricle expansion [6,25].

The goal of this work was to determine which ROI is better suited
or classification of normal versus AD subjects. Two types of ROIs
ere explored: anatomically defined masks and statistical masks.
mygdalae, hippocampi, and lateral ventricles were selected as
natomical masks for their relationship with AD [21,6,25,3]. The
tatistical masks were defined by thresholding a Student’s t-test
ap in the whole brain, identifying the voxels with the most sig-

ificant differences in volume between the two patient groups. In
his paper we studied whether these voxels are adequate for clas-
ifying subjects. The study was focused on the determination of the
asks rather than in the classifier design, therefore five standard

lassifiers were used. As in neuroimaging studies the number of
oxels in each mask is much larger than the number of subjects, a
imensionality reduction technique, such as principal component
nalysis (PCA), was applied before the classifier [4,24].

This study was performed on baseline MRI data from the ADNI
tudy. All subjects underwent clinical/cognitive assessment at the
ime of scan acquisition. As part of each subject’s cognitive evalua-
ion, the Mini-Mental State Examination (MMSE) was performed to
rovide a global measure of mental status [8]. The Clinical Dementia
ating (CDR) was also assessed as a measure of dementia severity
13]. The elderly normal subjects had no symptoms of depression,

ild cognitive impairment, or other forms of dementia. All AD sub-
ects met NINCDS/ADRDA criteria for probable AD [18].

All exclusion and inclusion criteria from the ADNI protocol were
pplied to the selected AD and NOR subjects [19]; refer to the
DNI protocol for detailed inclusion and exclusion criteria. Finally,
72 AD subjects (87 males, 85 females, age ± standard deviation =
5 ± 8 years, range = 55–91 years, MMSE=23.2 ± 2.1, range = 18–27,
DR = 1.0 ± 0.3, range = 0.5–2) and 186 normal control subjects
NOR) (94 males, 92 females, age = 76 ± 5 years, range = 60–90
ears, MMSE = 29 ± 1, range = 25–30, CDR = 0 for all NOR subjects)
ere considered for this study. Two independent datasets were
efined using random allocation: 240 subjects for training (120 AD,
20 NOR) and 100 subjects for testing (50 AD and 50 NOR), both
ender-matched. The random allocation was executed 20 times,
ielding 20 different pairs of training–testing datasets. Note that in
ach random allocation 18 subjects were not assigned to any group,
n order to assure gender-matched groups in both trainig and test-
ng dataset. For each allocation the training dataset was used to
stimate the statistical masks.

High-resolution structural brain MRI scans were acquired at
DNI sites with 1.5 T MRI scanners using the standard ADNI
RI protocol. For each subject, two T1 MRI scans were col-

ected using a sagittal 3D MP-RAGE sequence with voxel size
f 0.94 mm × 0.94 mm × 1.2 mm. The images were calibrated
ith phantom-based geometric corrections to ensure consistency

mong scans acquired at different sites. Additional image correc-
ions included geometric distortion correction, bias field correction
nd geometrical scaling. See [19] for more details. The pre-
rocessed images are available to the scientific community and
ere downloaded from the ADNI website.

In this study the anatomical feature was the local volume change
f the mapping between an unbiased atlas and each subject [2].

he unbiased atlas was estimated once from 40 normal elderly
ubjects. Although these 40 subjects take part in the dataset for
andom allocation, it has been forced that neither of these 40 sub-
ects ever fall within any testing dataset. The resolution of the atlas

as isotropic. Non-rigid registration was performed using a sta-
Letters 487 (2011) 113–117

tionary velocity field diffeomorphic registration, that provided high
resolution Jacobian fields [2]. The Jacobian determinant of the spa-
tial transformation is the atrophy/expansion factor at each voxel
in atlas coordinates. As these scalar values are positive, they are
intrinsically skew-distributed, and the logarithm transformation
was applied to make its distribution more symmetric. The Jacobian
determinant fields were masked with either statistical or anatom-
ical masks.

The statistical masks for each allocation were defined by the vox-
els with the largest significant difference in a group comparison
statistical map performed on the corresponding training dataset.
Voxel-wise Student’s t-test was performed on the log of Jacobian
determinants in the whole brain. As shown in [2], the statistical
maps between subject groups obtained by using stationary velocity
field diffeomorphic registration provided better spatial resolution
and larger significance when compared with previous works [12].
Three threshold values, tht = 6, 8 and 10, were applied to the abso-
lute value of Student’s t statistic, providing larger, medium and
smaller masks respectively with different significance. If the sign
of the t statistic is considered, negative values correspond with
volume expansion while positive values correspond with atrophy.
Fig. 1 shows the boundary of the masks corresponding to the aver-
age of the t-test maps. The number of voxels of these average masks
was 10399, 3065 and 948 corresponding to tht = 6, 8 and 10.

The anatomical masks were obtained by using FIRST segmenta-
tion tool [20] from FSL package [23] on the atlas. Three regions were
selected: both amygdalae (Amyg), hippocampi (Hipp), and lateral
ventricles (Late). Segmentation of the lateral ventricles was man-
ually edited to include the temporal horns. The number of voxels
of each mask was 4448, 8272 and 41540 respectively. Two addi-
tional masks were generated as the union of the three previous
masks (Amyg–Hipp–Late), and the union of the amygdalae and
hippocampi (Amyg–Hipp) masks.

These two types of masks provided an important dimensionality
reduction while preserving relevant features. However the number
of selected features was still larger than the number of subjects and
PCA was used to reduce further the dimensionality.

For the purposes of this study we selected five standard clas-
sifiers, namely Linear and Quadratic Discriminant Analysis (LDA,
QDA) and Support Vector Machine (SVM) classifiers using three dif-
ferent kernels: linear kernel with a Least Squares (LS) optimization
technique and a constraint size on the margin of 106 (svmL-LS6);
quadratic (svmQ-QP) and cubic polynomial kernels (svmP-QP) with
a quadratic programming (QP) optimization technique. Classifica-
tion experiments were computed using MATLAB (The MathWorks,
Natick, MA). Classification performance was assessed on the 20
pairs of training–testing datasets. Performance was measured in
terms of classification accuracy.

Two discrimination models were analyzed. Model I used only
atrophy/expansion features considering the first n PCA coefficients.
Model II was an extension of Model I by adding demographic infor-
mation (age and gender) and ApoE allele genotype for each subject.
The combination of three different ApoE alleles (�2, �3, and �4)
give six possible genotypes. FeaApoE is an integer that represents
such combinations: 1 = (�2, �2) ; 2 = (�2, �3) ; 3 = (�2, �4) ; 4 = (�3,
�3) ; 5 = (�3, �4) ; and 6 = (�4, �4). The input features to Model II was
{Age; Sex; FeaApoE; first PCA coefficients}.

The classification accuracy for Model II outperformed Model I
when using either statistical or anatomical masks and for all classi-
fiers except for the svmP–QP classifier. The difference ranged from
0% to 12%, with a maximum accuracy of 95%. For brevity reasons

and to facilitate comparison with previous studies only Model I
performance is shown in Fig. 2. The best performance among the
anatomical masks (upper panel in Fig. 2) was obtained by the union
of both amygdalae and hippocampi (Amyg–Hipp) considering a
compromise between the following criteria in the Model I and II:
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ig. 1. Illustration of the statistical masks defined by threshold values tht = 10 in bl
epresentations of the anatomical and statistical masks (amygdalae in green, hipp
lectronic version: The last video sequence shows the mask tht = 6 with two colors
ith the statistical masks overlaid with the same color criteria.

etter performance in the worst case (0.25th percentile), better per-
ormance in an average case (represented as the median score) as
ell as better performance in the best case (99.75th percentile).
egarding to the statistical masks (bottom panel in Fig. 2, the mask
efined by the threshold value tht = 8 obtained the best accuracy
erformance following the same criteria as before.

Fig. 2 shows that the performance of the classifiers degrades
hen using large enough number of PCA coefficients, being

his decline more pronounced in the more complex classi-
ers.

In order to compare the performance between the best statisti-
al mask (tht = 8) and the best anatomical mask (Amyg–Hipp), the
ccuracy difference was computed for each of the 20 random alloca-
ions. The anatomical mask (tht = 8) outperformed the Amyg–Hipp

ask in 83% of the 20 experiments when using from 1 to 4 PCA
oefficients. The median difference was of 5% for the first PCA coef-
cient, which was the coefficient where more differences between
he two masks were found.

The main interest of the present work was to find the most rel-
vant brain strucutures/regions for NOR–AD discrimination using
rain atrophy/expansion features computed from MR images. To
his end five classifiers with different complexity levels were used.
ccording to the results in Fig. 2, the use of more complex classifiers
id not generally provide a better performance.

As mentioned in Introduction, three major design criteria for
he classification algorithm were used: small number of features,
eneralizability, and amenability to anatomical interpretation of
he selected features.

As regards generalizability, classification performance was

ssessed in this work using 20 experiments where subjects were
andomly allocated to either training or testing datasets. In con-
rast, previous works used either leave-one-out experiments,
roviding an optimistic score, [9,4] or single training-test exper-

ments [26]. Interestingly, the variability of the performance found
t = 8 in blue, and tht = 6 in red, obtained from the average t-test map. Top: Surface
pi in purple and lateral ventricles in orange). The top right panel is a video in the
hy in red and expansion in turquoise. Bottom: Two coronal MRI slices of the atlas

among the 20 experiments was higher than the performance dif-
ference obtained using different classifiers. Accordingly, several
random allocations of subjects should be used for a reliable assess-
ment of the perfomance.

The second criterion was imposed because the number of raw
features in medical imaging studies is very high. Therefore, feature
reduction is required in order to keep a feature set dimension small
enough as compared to the population size. In previous works:
237 features were selected from a training set of 280 subjects and
yielded an 89% classification accuracy on an independent testing
set of 100 subjects [26]; using 16 features with a SVM classifier a
classification accuracy of 94% was obtained on a population of 48
subjects [9]; about 84% accuracy was found using either a median
of 7 features with an LDA classifier or a median of 12 features with
a QDA where the size of the validation set was 150 subjects [4]. In
contrast, in this work a median classification accuracy of 82% (max-
imum of 91%, minimum of 78%), in Model I, was achieved even for
a simple QDA classifier with only 3 features for the statistical mask
tht = 10, on 20 different subsamplings of 240 training subjects and
100 test subjects. That is, similar results were obtained in this work,
but using a smaller number of features and a more demanding val-
idation; hence, the proposed algorithm has been shown to be more
robust and simple.

Regarding the anatomical interpretation, some previous stud-
ies did not offer a detailed interpretation of the relevant features
[4,9], except for Vemuri et al. [26]. The main feature extraction
technique used in this work, either an anatomical or a statisti-
cal mask, allows a anatomical interpretation. The masks with the
best classification performance identify the brain regions with rel-

evant volume changes for NOR–AD discrimination. The statistical
masks tht = 8 and 10 were found in voxels belonging to the hip-
pocampi and amygdalae (see video in Fig. 1). This is concordant
with the well-known fact that both hippocampi and amygdalae
are structures that suffer atrophy from the earlier stages of AD
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ig. 2. Illustration of classification accuracy of Model I for the 20 random allocation
asks. Bottom panel: statistical masks. For each working condition (classifier typ
arkers, interquartile range as vertical bars, and the (99.75, 0.25)-th percentile as d

3]. Three hippocampus substructures, subiculum, CA1 regions and
entate gyrus-hilar region, account for the majority of the voxels
ithin statiscal masks tht = 8, 10. This result is in agreement with

ther statistical studies (see [21] and references therein). As for the
tatistical mask tht = 6, it reached a performance accuracy similar
o the other statistical masks for a larger number of PCA coeffi-
ients. This larger statistical mask significant atrophy extends to
he isthmus of cingulate gyrus and the crus of fornix, which are
lose and connected to the hippocampus, and significant volume
ncrease of the temporal horns of the ventricles (see video and
anel in Fig. 1). The relationship between the lateral horns and AD

as been reported by other studies [6,25]. Furthermore, the lateral
entricle expansion may be also caused by normal aging, while the
mygdala and the hippocampi, structures being close to the lat-
ral horns, have been reported to exhibit small or no age effect
10].
five selected classifiers with different number of features. Upper panel: anatomical
number of features) accuracy results are represented as follows: median score as
lines.

The contributions of this work relative to previous studies are:
first, an extensive validation with 20 different subsamplings of
subjects, which highlights the variability existing in the results of
classification caused by this subsampling; second, an anatomical
interpretation of the used masks corroborated by the results in the
classification; third, non-rigid registration was performed using a
stationary velocity field diffeomorphic registration, that provide
high resolution Jacobian fields.

And finally in this work, the classification performance obtained
using the statistical mask tht = 8 exceded in most cases the ones
obtained with the anatomical masks. Another advantage of the sta-
tistical masks was that they allowed to highlight the heterogeneity
of anatomical regions, identifying which areas of these regions or

subfields are best suited for classifying subjects with AD. All in all, it
has been shown that statistical masks provide better performance
than anatomical masks under the conditions of this study.
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