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Abstract
Alzheimerʼs disease is amultifactorial neurodegenerative disorder preceded by a prodromal stage
calledmild cognitive impairment (MCI). Early diagnosis ofMCI is crucial for delaying the progression
and optimizing the treatment. In this studywe propose a random forest (RF) classifier to distinguish
betweenMCI and healthy control subjects (HC), identifying themost relevant features computed
from structural T1-weighted and diffusion-weightedmagnetic resonance images (sMRI andDWI),
combinedwith neuro-psychological scores. To train the RFwe used a set of 60 subjects (HC= 30,
MCI= 30) drawn from theAlzheimerʼs disease neuroimaging initiative database, while testingwith
unseen datawas carried out on a 23-subjectsMexican cohort (HC= 12,MCI= 11). Features from
hippocampus, thalamus and amygdala, for left and right hemispheres were fed to the RF, with the
most relevant being previously selected by applying extra trees classifier and themean decrease in
impurity index. All the analyzed brain structures presented changes in sMRI andDWI features for
MCI, but those computed from sMRI contribute themost to distinguish fromHC.However, sMRI
+DWI improves classification performance in training area under the receiver operating character-
istic curve (AUROC= 93.5±8%, accuracy= 88.8±9%) and testingwith unseen data
(AUROC= 93.79%, accuracy= 91.3%), having a better performancewhen neuro-psychological
scores were included. Compared to other classifiers the proposed RF provide the best performance for
HC/MCI discrimination and the application of a feature selection step improves its performance.
Thesefindings imply thatmultimodal analysis gives better results than unimodal analysis and hence
may be a useful tool to assist in earlyMCI diagnosis.

1. Introduction

Alzheimerʼs disease (AD) is a neurodegenerative, incurable illness that causes language,memory and behavior
changes, and can lead to loss of functional independence and finally to dementia. It is usually preceded by a
prodromal stage calledmild cognitive impairment (MCI), where the first behavioral symptoms can be detected
through specifically designed neuro-psychological tests. This pathology evolves frombiochemical deficiency on
tau proteins and beta-amyloids production, that provokes neurofibrillary tangles and neuritic plaques. These
early changes are detectable with biomarkersmeasured in cerebrospinal fluid (CSF) (with higher specificity) as
well as in blood plasma. As a consequence, brain atrophy appears in some specific cerebral regions that lose
mass, volume and functionality. Anatomical and functional alterations are observable andmeasurable at this

RECEIVED

5 January 2021

REVISED

27May 2021

ACCEPTED FOR PUBLICATION

24 June 2021

PUBLISHED

22 July 2021

© 2021 Institute of Physics and Engineering inMedicine

https://doi.org/10.1088/1361-6560/ac0e77
https://orcid.org/0000-0002-4069-4268
https://orcid.org/0000-0002-4069-4268
https://orcid.org/0000-0002-7390-0814
https://orcid.org/0000-0002-7390-0814
https://orcid.org/0000-0001-8072-3927
https://orcid.org/0000-0001-8072-3927
mailto:vera@xanum.uam.mx
https://doi.org/10.1088/1361-6560/ac0e77
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac0e77&domain=pdf&date_stamp=2021-07-22
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ac0e77&domain=pdf&date_stamp=2021-07-22


stagewith several imagingmodalities, that provide useful biomarkers to diagnose andmonitor ADʼs evolution.
Cognitive and behavioral changes become evident inmore advanced stages of the disease and are clinically
characterizedwith the help of specific neuro-psychological tests, whose scores can be considered as surrogate
parameters. All these biomarkers are useful for diagnosis at different stages of the disease, although definite
corroboration can only be obtained postmortem after an autopsy. Even though there is no cure for AD, its
progression can be delayed if it can be detected early and therefore, the importance ofmaking a diagnosis during
theMCI stage has been highlighted bymany researchers.

It is widely assumed that incipient protein pathology in themedial temporal lobe initiate the loss of episodic
memory inAD, one of the earliest cognitive deficits in this type of dementia. The cingulate cortex projects back
to the entorhinal cortex of parahippocampal gyrus (Papez circuit)who in turn, connect withmany other areas of
the limbic system that are involved in learning andmemory, emotion, social behavior, and emotional
experience. The loss of episodicmemory in early AD reflects a neurodegeneration in the Papez circuit, which
critically involves the limbic thalamus (Aggleton et al 2016). Thalamic abnormalities generally occur in the early
stages of the disease. It has been observed severe tau immunoreactive cytoskeletal pathology in the thalamus of
clinically diagnosedADpatients, with the affection of the extraterritorial nuclei of thalamus (Rüb et al 2016). In
AD andMCI patients, structural connectivity between hippocampus and thalamus affects the functional
connectivity between them. The anterior thalamic nuclei in turn connect to the cingulate cortex. The amygdala,
alongwith neocortical areas, are now known to be centrally involved in emotional experience. Thus, the limbic
areas in associationwith neocortical areas, are affected in the neurological deterioration of patients withAD. In
this circuit, hippocampal atrophy is one of themost validated, easily accessible andwidely used biomarker of
AD. Preliminary studies have indicated that looking at this focal atrophy pattern rather than standardwhole
hippocampal volumetry by fMRI, improves diagnostic accuracy at theMCI stage (de Flores et al 2015). These
regions showhigh levels of amyloid deposition inAD and are both structurally and functionally vulnerable early
in the disease. Added to this, amygdalamay represent a preferential locus for a pivotal transition froma relatively
benign clinical condition to amore aggressive diseasewhereinmultiple protein species aremisfolded, Nelson
et al (2018) proposes the amygdala like an incubator formisfolded proteins that participate in the cognitive and
emotional damage of patients withAD.

Several studies have reported the diagnostic capability of the available imagingmodalities and have proposed
different biomarkers to identify the disease’ stages. Specifically, accuracies of up to 89%have been obtained
using parameters extracted fromT1-weighted structuralmagnetic resonance images (sMRI), that reflect the
degree of brain atrophy. In themost recent challenge, the proposalsmade byDimitriadis and Liparas (2018) and
Jiménez-Mesa et al (2020)provided accuracies of 61.9% and 67%.Among other imagingmodalities, diffusion
weightedMRI (DWI) has been employed in several studies for the extraction of useful biomarkers. Themost
successful approaches have consisted on the combination ofmultimodalmetrics, particularly sMRI, DWI and
DTI, as shown in the researches by Zhang et al (2013), Lee et al (2017), Jung et al (2015), Gupta et al (2020),
Marzban et al (2020),Wen et al (2021) attaining accuracies of up to 79%. Particularly,Mesrob et al (2012) have
proposed amultimodalmeasure that combines anatomical and diffusivitymeasures taken atmultiple
anatomical structures, attaining up to 99%accuracy, when relevant regionswere selected. Schouten et al (2016)
combine anatomical, diffusion, and resting state functionalmagnetic resonance imaging for individual
classification ofmild andmoderate AD,with the help of an elastic net classifier. They found that the
combination ofmultiplemodalities can substantially improve classification performance over unimodal
classification. In another study, the same authors (Schouten et al 2017) improved feature selection and found
that fractional anisotropy (FA) clustered into ICA components was the best performingmeasure.

On another aspect, analyses of regional changes in specific brain structures has allowed the identification of
different stages of ADʼs evolution. Studies reported in Li et al (2013), Nir et al (2013), Lee et al (2017), Eldeeb et al
(2018), Gupta et al (2019, 2020), Zarei et al (2010) focused on hippocampal, thalamic and other cortical and
subcortical regions. Also,multiple studies have demonstrated that an efficient feature selection can be helpful in
characterizing ADbrain changes (Mesrob et al 2012, Jung et al 2015, Schouten et al 2017). Particularly, Eldeeb
et al (2018) extracted speeded up robust features and scale invariant feature transformparameters, based on the
visual diffusion patterns of FA, andmean diffusivity (MD)maps, to build bag-of-words AD-signature,
specifically for the hippocampal area, attaining accuracies of 87% and 89% for FA andMDmaps respectively.
Jiménez-Mesa et al (2020)propose a novelmulticlass classification approach that addresses the outlier detection
problem, uses pairwise t-test feature selection, project the selected features onto a partial-least-squares
multiclass subspace, and applies one-versus-one error correction output codes classification, obtaining an
accuracy of 67%.Wen et al (2021)developed an open-source framework to evaluate AD classification fromT1-
weightedMRI, PET and diffusionMRI parameters. They found that FS has a positive impact on classification
results, that voxel-wise features generally give better performance than regional features and that FA andMD
provided comparable results for voxel-wise features. They conclude that, with proper feature rescaling and
selection, the performance of diffusionMRI features is comparable to that of structuralMRI.
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In this study, the integration of newmorphologicalmetrics, together with information extracted from
diffusion imaging is proposed. The latter is analyzedwith an original approach, by extracting representative
parameters frommetabolic histogramsmeasured in specificVOIs. Feature vectors are completedwith scores
obtained fromneuro-psychological tests. The influence of eachmodality is analyzed individually and in
different combinations. The overall pipeline also includes selection of features, that are fed to a random forest
(RF) classifier, whose performance is then contrastedwith other conventional diagnostic strategies, specifically
designed forMCI detection.

2.Methodology

In this section, the steps for volumes’ processing, segmentation, feature extraction and classification are
described, according to the overall diagram shown infigure 1.

2.1. Studied populations
2.1.1. Alzheimer’s disease neuroimaging initiative (ADNI) subjects (training population)
T1-weightedMR images (sMRI) andDWI, as well asminimental state examination (MMSE) and clinical
dementia rating (CDR) scores for 30 control subjects and 30MCI patients were obtained from theADNI (adni.
loni.usc.edu) database.MMSE andCDR are standard clinical neuro-psychological tests that allow to assess
several cognitive areas, such as attention, recall, language and space-time orientation, among others. Subjects
were diagnosed byADNI experts, according to inclusion/exclusion criteria reported in Petersen et al (2010),
following the ethical statement of the ADNI protocol.

Figure 1.Methodological diagram.DWI—difussion-weighted imaging; sMRI—T1-weightedmagnetic resonance imaging; FA—
fractional anisotropy;MD—mean diffusivity;MO—mode of anisotropy;MMSE—mini-mental state examination; CDR—clinical
dementia rating; HC—healthy controls;MCI—mild cognitive impairment; ETC—extra tree classifier;MDI—mean decrease in
impurity; RF—random forest; SVM—support vectormachine; ANN—artificial neural network; GP-RBF—Gaussian process with
radial basis functions; AUROC—area under the receiver operating characteristic curve.

Table 1.Characteristics of the training and holdout test populations.

Training populations Holdout populations

(ADNI) (CI3M)
HC MCI HC MCI

(N = 30) (N = 30) (N = 12) (N = 11)

Age (years) (μ±σ) 69.0±5.2 68.5±4.3 73.4±6.2 79.9±9.2
Gender (F/M) 15/15 12/18 12/0 8/3

MMSE (rank/μ±σ) 27–39 24–30 27–30 14–22

(29.5±0.9) (27.6±2.5) (28.6±1.2) (18.6±2.9)
CDR (rank/μ±σ) 0 0.5–4 0 0.5–2

(1.9±1.5) (1.3±0.6)
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For all subjects, the following informationwas retrieved:

• T1-weightedMRvolumes, obtained at 1.5 T, with voxel resolution of 1.2× 0.93× 0.93 mm3.

• DWI volumes.

• Cognitive scores obtainedwith bothMMSE andCDR tests.

• Age-paired and gender-balanced groups.

• All studies obtained in nearby dates.

These rigorous criteria led to a relatively reduced training population size (N= 60), for which the
subsequent analysis was carried out following the standardmethodology for classification (cross-validation
during training) as described later in section 2.6. Table 1 shows demographic information and neuro-
psychological scores for both groups (second and third columns).

2.1.2.Mexican cohort (holdout dataset)
For testingwith unseen data, two populations ofMexican subjects were conformed. They consisted of 12 healthy
control (HC) and 11MCI subjects, previously diagnosed by an expert neurologist.MCI patients received a
clinical diagnosis of Alzheimer-related dementia withMMSE� 24 andCDR� 0.5 scores; subjects with other
neurodegenerative conditions were excluded. Both groupswere paired by age, socio-cultural and academic
levels, with the characteristics shown in the last two columns of table 1. All patients gave their written consent,
according to the declaration ofHelsinki. Images for these populationswere acquired at the CentroNacional de
Investigación en Imagenología e InstrumentaciónMédica (CI3M) of theUniversidadAutónomaMetropolitana,
unidad Iztapalapa (UAM-I) inMexico, after approval of project number PND_AC_08_16.

T1-weightedMRvolumeswere obtainedwith the following parameters: TR=31.92 ms, TE=1.95 ms,
voxel resolution 0.42× 0.42× 5 mm3.DTIwere acquiredwith the following characteristics: b-values of 0 and
800 s mm−2 and 32 diffusion-weighted directions. Both studies were obtained using a 3T Phillips equipment.

2.2. Segmentation
sMRIwere segmented using Freesurfer v 6.0 to extract graymatter (GM), whitematter (WM) andCSF. Also, we
have analyzed some of the subcortical substructures that have been reported to bemostly affected inMCI and
AD: hippocampus, thalamus and amygdala, for left and right hemispheres.

Image processing begins by removing cranium and other extraencephalic structures to proceed towhite and
GMsegmentations. Afterwards, topological correction, intensity normalization,WM tessellation and surface
atlas registration are applied, tofinally obtain an individual atlas for each subject, consisting of up to 82 brain
structures. Final labeling of the regions of interest is carried out based on theDesikan–Killiany Atlas. Details on
thewhole segmentation procedure can be found in Fischl et al (2004, 2002).

2.3. sMRI biomarkers
For all segmented structures, several anatomical biomarkers were computed: volume (V), determined as the
sumof voxels belonging to eachVOI; normalized volume (NV), obtained as the ratio between eachVOIʼs
volume and intracranial volume, determined as the sumof voxels corresponding to thewhole brain; and cortical
thickness (CT), calculated as the average of the distance from theWMsurface to the closest point on the pial
surface (Fischl andDale 2000).

Additionally, Perez-Gonzalez et al (2014)demonstrated that discrete compactness (DC), related to the
surface area of those voxels thatmake contact in 3D, can be a valuable biomarker to identify ADʼs evolution
stages and therefore is useful for its early diagnosis. Therefore, in this study, DCmeasured on the segmented
brain structures has been incorporated into the features vector. Another parameter that quantifies the degree of
brain atrophy is surface discrete tortuosity (DT), proposed by Barbará-Morales et al (2020) as a valuable
discriminator betweenHC,MCI andAD classes. It is computed using the sumof anglesmethod and is also being
considered in this study, to complement structural biomarkers. Allmorphological features were computed
usingMATLAB 2020b, except for CTwhichwas calculatedwith Fresurfer v 6.0.

2.4.Diffusion biomarkers
DWIdatawere processed using a combination of commands inMRtrix3 package (Tournier et al 2019) and the
FMRIB Software Library (Jenkinson et al 2012). Initial preprocessing steps included denoising (Veraart et al
2016), eddy-current and EPI distortion correction andmotion correction (Andersson and Sotiropoulos 2016),
Gibbs ringing removal (Kellner et al 2016) and bias-field correction (Tustison et al 2010).
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PreprocessedDWIdatawere aligned to b0 image, followed by removing the non-brain tissues using the
brain extraction tool (Smith 2002).WMsegmentationwas based on the subsequent TBSS procedures (Smith
et al 2007). Eigenvalues of the diffusion tensormodel were computed at each voxel to generate rotationally
invariant indices like the FA,MDandmode of anisotropy (MO). FA is computed as the normalized standard
deviation of the eigenvalues andmeasures the degree of water diffusion anisotropy, ranging from0 (isotropic
diffusion) to 1 (completely anisotropic diffusion).MD is proportional to the trace of the diffusion tensor and
quantifies watermolecules diffusivity independently of direction.MO is ameasure of anisotropy type, ranging
from−1 to+1: negativeMOvalues describe planar anisotropywhereas positiveMOvalues indicate linear
anisotropy (Ennis andKindlmann 2006, Kindlmann et al 2007).

All individual FA,MDandMO images were linearly and nonlinearly aligned to FMRIB58_FA template
(Douaud et al 2011)using themean FA skeleton that served as the study-specific template and represents the
center of the commonWMtracts. The FA skeletonwas labeled to identify the 50WMregionswith reference to
the JHU ICBM-DTI-81WMatlas (Mori et al 2005) and to generate the binarymasking images of thalamus,
hippocampus, and amygdala.

For each segmentedVOI on both hemispheres, normalized histograms of FA,MDandMOwere computed
and analyzed, following themethodology proposed inMascalchi et al (2018). Normalization, obtained after
dividing each histogramby the number of voxels of each structure, allows to correct differences of the subjectʼs
brain size. Eight parameters were extracted fromnormalized histograms:mean (μ,MEAN), standard deviation
(σ, STD), as well as skewness (SKEW), kurtosis (KUR) and entropy (ENT) defined by:
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where n is the number of voxels of each structure; xi is the voxelʼs intensity for FA,MDandMO; and p(xi) is a
probability estimator ofm bins. Additionally, histograms’median value (MED), peak location (LOC) and peak

Figure 2.Representative FAhistogramof aHC,with themeasurement of the peak height in red, peakʼs location in green andmedian
in yellow color.
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height (HEIGHT)were determined as shown infigure 2. The algorithm tomeasure these features was
implemented inMATLAB 2020b.

2.5. Classification and feature selection
Automatic classification betweenHC andMCI subjects was carried outwith the help of a RF. It is an algorithm
widely used for differentmedical applications due to its high adaptability to biological data. RF is based on
majority voting ofmultiple decision treeswith optimal thresholds to separate classes contained on the training
dataset (Criminisi and Shotton 2013).

With the purpose of evaluating the discrimination capability of each datamodality, features were fed to the
classifier either individually or combined, as follows:morphological biomarkers (sMRI); diffusion biomarkers
(DWI); sMRI+DWI; and sMRI+DWI+Neuro-psychological scores (Neuropsy). Additionally, for each feature

Figure 3.Classification algorithms pipeline betweenHCandMCI subjects. Blue boxes represent feature extraction stage described in
sections 2.3 and 2.4. The steps of feature selection and classifiers’ parameters adjustment are shown in green (described in this section).
Finally, in red, the validation stages described in section 2.6 are shown.

Figure 4.Examples of the segmented structures forHC andMCI subjects: amygdala in yellow, hippocampus in red and thalamus in
green.
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set, themost relevant parameters were selected, and the dimensionality reduced by applying Extra Trees
Classifier (ETC), together with themean decrease in impurity (MDI) index (Tuv et al 2009, Breiman 2001). ETC
is an ensemble algorithmbased on a set of decision trees (500 in this case)with random separation thresholds
and bootstrap feature sampling.

For each feature, theMDIs are determined through ETC and sorted in decreasing order. Afterwards, the area
under the receiver operating characteristic curve (AUROC) is calculated by gradually aggregating features and
the combination thatmaximizes the AUROC isfinally selected.

RFʼs performancewas compared to other conventional classifiers: a support vectormachine (SVM), an
artificial neural network (ANN) and a radial basis functionGaussian process classifier (GP-RBF). All classifiers’
hyper-parameters were optimized during the training stage through grid searching andwere used afterwards
during the test stage. The list and final values of the tuned parameters are included as supplementarymaterial
(available online at stacks.iop.org/PMB/66/155010/mmedia).

Extracted biomarkers were fed to the classification step in different combinations: only sMRI, onlyDWI,
sMRI+DWI and sMRI+DWI+Neuropsy, with andwithout feature selection, totalling eight tests for each
classifier. Themost relevant features for each combination are also presented as supplementarymaterial.

In all cases the procedure shown infigure 3was followed.

2.6. Classifiers’performance
To evaluate classification performance, a 20-times randomly repeated 5-fold cross validationwith the training
datasets (see section 2.1.1) and afinal test with the holdout datasets (see section 2.1.2)were carried out. As
described in the previous section, RF results were compared to SVM,ANNandGP-RBF, under the same
conditions (same feature vectors, with andwithout dimensionality reduction). All performances, either in
training and infinal test stages, were determinedwith two parameters: AUROC and accuracy (Acc)with a 50%
cutoff threshold. Feature selection, classification, optimization and validation algorithmswere programmed in
Python 3.7 using Scikit-learn 0.024.0 library, and the statistical analysis was performed inR 4.0.5.

Figure 5.HistogramofDWImeasurements on the left hemisphere.
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3. Results

Figure 4 shows examples of the segmentedVOIs for control andMCI subjects, in coronal and saggital
projections: amygdala in yellow, hippocampus in red and thalamus in green.

In afirst exploratory inter-group analysis, box plots and statistical significance levels were determined for
each individual biomarker (included as supplementarymaterial). Although all features were considered for the
subsequent classification task, this analysis allowed us to depict biomarkers relevant forHC versusMCI
discrimination.

As indicated in section 2.4, the histograms of diffusion biomarkers for all structures and both hemispheres,
were computed to extract representative features from thismodality. Figure 5 shows the distributions obtained
for FA,MOandMDof the studied brain structures, corresponding to the left hemisphere as an example.
Histograms for the right hemisphere show a similar distribution. Differences can be observed betweenHC and

Table 2.AUROC and accuracy (%,μ±σ) ofHCandMCI classification, obtained during the training step, for different biomarkers’
combinations, with andwithout feature selection (FS).

Biomarkers’ combination
sMRI DWI sMRI+DWI

sMRI+DWI+
Neuropsy

Classifier Without With Without With Without With Without With

FS FS FS FS FS FS FS FS

AUROC (%,μ±σ)
RF 89.6±8 92.1±9 67.3±16 82.9±12 84.5±13 93.5±8 92.5±8 99.9±1
SVM 78.9±11 85±10 72.8±13 73.1±12 81.5±11 91.9±4 86±11 99.1±2
ANN 80.1±11 84±12 60.3±14 77.6±13 77.8±15 88.6±9 85.6±10 98.7±3
GP-RBF 83.3±10 85.8±9 71.7±14 77.8±12 79.9±11 89.6±9 85.8±11 98.4±3

Accuracy (%,μ±σ)
RF 84.1±10 85.4±9 65.5±13 75.7±11 76.3±13 88.8±9 84.6±11 98.1±5
SVM 71.1±11 74±12 65±13 68.7±11 77.7±10 83.6±8 80.3±10 94.4±7
ANN 72.9±12 73.3±13 60.3±14 69.9±12 72.6±12 79.3±11 75.9±12 93.6±7
GP-RBF 73.4±11 75.6±10 66.1±10 71.9±11 72.9±10 82.4±10 76.1±10 93.5±6

Figure 6.Box plots of the 20 (sMRI+DWI+Neuropsy)most relevant features, selected for classification. AMY=Amygdala,
HIPPO=Hippocampus andTHAL=Thalamus.
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MCI,which suggests that parameters extracted from these histograms can be useful in the subsequent
classification step, as discussed later.

Results of the repetitive cross-validation, carried out during training, are shown in table 2. Final tests were
conductedwith unseen data, as described in section 2.6. Table 3 shows the corresponding results. For both
tables, the eight tested combinations appear in columns, while the compared classifiers correspond to each row.
The highest performances for each biomarkers’ combination are highlighted in bold.

In order to identify those biomarkers that contribute themost in enhancing theAUROC, theywere ordered
accordingly to theirMDI, as separatemodalities (sMRI andDWI) and in combination (sMRI+DWI, sMRI
+DWI+Neuropsy). These rankings are included as supplementarymaterial. As a particular case, figure 6 shows
the 20most relevant parameters of sMRI+DWI combination, where it can be observed that bothmodalities
influence classification and that the proposed biomarkers appear as relevant features.

4.Discussion

The complete statistical analysis (see supplementarymaterial), carried out to depict between-group changes in
the proposed biomarkers’ set, showed that thalamus suffers importantmorphological differences reflected by
theNVs of both hemispheres andDTof the left side. Also, the three diffusion biomarkersmeasured in this
structure were significantly different between control andMCI subjects. Regarding the amygdala, surface
tortuosity andMD showdifferences on both hemispheres, as does the hippocampus, that also presents changes
on tortuosity (only on the left side) and overallMD. These results concurwith those obtained by Li et al (2013),
Lee et al (2017) andCoupé et al (2019) that have reportedmicrostructural and diffusivity changes in these
structures, along the progression of the disease. Even though not all biomarkers indicate changes in the analyzed
structures, theywere all included as a global feature vector, trying tomaximally exploit the complementarity of
themorphological and diffusion information that they contain. Among the advantages of the proposed
morphological biomarkers, the translation, rotation and scaling invariance ofDC, as well as the angleʼs
normalization applied toDT, contribute to the adequate characterization ofmorphological changes of the
analyzed structures, regardless of subjectʼs brain size and position, such as reported by Perez-Gonzalez et al
(2014) andBarbará-Morales et al (2020).

A qualitative analysis carried out on FA,MOandMDhistograms (figure 5) allows to appreciate differences
between the two populations’ distributions and suggests that all parameters that can synthesize these behaviors
are potential biomarkers to facilitate groups’ classification. In the research reported byMascalchi et al (2018) the
authors had already demonstrated that histogram-derived indicators reflectmicrostructural changes in brain
degeneration for another clinical application. In our study, we have proposed an expanded set of biomarkers
that constitute an enhanced feature vector derived fromDWI.Unlike voxel-basedmorphometry, the analysis
based on histogram-extracted parameters allows the comparison between structures, by only aligning the
reference atlas to each individual, without the need of inter-subject volumes’ registration.

As previously indicated, the contribution of the proposed biomarkers, either in individual or combined
modalities, can be seen in table 2 for the training step. Afirst observation indicates that, compared to other
classifiers, RFs provide the best performance forHC/MCI discrimination, given the biomarkerʼs vector
proposed in this research. RF and SVMclassifiers had already been demonstrated to be suitable for this task, as

Table 3.AUROCand accuracy (%) ofHC andMCI classification, obtained during testingwith the holdout dataset, for different
biomarkers’ combinations, with andwithout feature selection (FS).

Biomarkers’ combination
sMRI DWI sMRI+DWI

sMRI+DWI+
Neuropsy

Classifier Without With Without With Without With Without With

FS FS FS FS FS FS FS FS

AUROC (%)
RF 77.94 87.22 82.58 87.12 76.78 93.79 82.08 98.29

SVM 72.79 85.95 74.24 79.24 74.46 91.54 80.45 98.13

ANN 64.54 75.65 81.81 82.57 65.83 87.97 80.76 95.32

GP-RBF 66.57 78.34 71.21 84.09 73.15 88.76 81.1 97.41

Accuracy (%)
RF 69.57 82.61 82.61 86.96 86.96 91.30 82.61 100

SVM 69.57 73.91 60.87 78.26 73.91 86.96 78.26 100

ANN 60.87 65.22 73.91 82.61 69.57 82.61 73.91 91.30

GP-RBF 65.22 69.57 65.21 82.61 65.22 82.61 78.26 95.65
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reported in several studies, using other feature sets (Tanveer et al 2020). A secondfinding indicates that the
application of a feature selection step prior to classification, considerably improves its performance, as
concluded by Sivapriya et al (2015) and byWen et al (2021)who also reported that with proper dimensionality
reduction, the performance of diffusionMRI features is comparable to that of sMRI. The analysis of individual
modalities seems to indicate thatmorphological biomarkers (1st and 2nd columns in table 2) contribute the
most to identify both groups, in comparison toDWI-extracted parameters (3rd and 4th columns). However, the
combination of the twomodalities (5th and 6th columns) improves classification performance, up to
93.5±8%AUROCand 88.8±9%accuracy in our study, using RF. This is consistent with findings reported by
Gupta et al (2020) (AUROC=0.96) andZhang et al (2013) (AUROC=94.9%). Finally, in the two last columns
of table 2 it can be observed that, when incorporating neuro-psychological scores into the feature vector,
classification performances substantially improve. This is expected, due to the contribution of limbic structures
in patients’ cognitive decline. Also,MMSE andCDR scores are considered as determinant criteria to diagnose
cases in the ADNI database. Again, it can be appreciated that a previous selection of features provides the best RF
performance.

A similar behaviorwas observed during classifiers’final testingwith unseen data (table 3), obtaining 93.79%
AUROCand 91.3% accuracies, when structural and diffusion biomarkers were combined (6th column). These
results outperform those obtained byMarzban et al (2020), who use deep learning for the same task
(AUROC=0.84, accuracy of 79.6%); by Sheelakumari et al (2018) (AUROC=0.89) that also consider
spectroscopy indicators; and by Jung et al (2015) that attain an accuracy of 84.4% inHC/MCI classification. This
demonstrates that a previous feature selection (ETC) and an adequate classification strategy (RF) are necessary
for this application.

Features that resultedmore relevant for classification (figure 6) include parameters extracted fromboth
modalities, such as right-amygdala and left-hippocampusDTpeakʼs height of theMD for the right-
hippocampus.Moreover, it can be seen that all the analyzed structures (amygdala, hippocampus and thalamus)
resulted relevant in structural parameters (DTand volumes) aswell as in diffusion biomarkers (MD,MOand
FA). This corroborates the previous statistical analysis and concours withfindings of Zarei et al (2010), Lee et al
(2017) and Li et al (2013) that report that diffusivity is strongly correlatedwith the cognitive performance.

5. Conclusions

In this study, a robustmethod for the automatic classification ofHC andMCI subjects, using anatomical (sMRI)
and diffusion (DWI)magnetic resonance volumeswas presented. An enhanced feature set was proposed, that
includes shape-invariantmorphological biomarkers, such asDC and tortuosity. Also, a strategy to extract
biomarkers fromDWIhistograms is incorporated, that proved to be useful to recovermicrostructural brain
changes between studied populations. The analysis focused on specific limbic structures, that are involved in
MCI, such as amygdala, hippocampus and thalamus.

The combination of an adequate classifier, together with a previous feature selection step provided the best
performance. In this study, given the proposed feature set, RF turned out to be themost adequate for
populations’ separation. The discrimination betweenMCI andHC subjects reached a high accuracywhen the
combination of sMRI andDWI biomarkers for specific brain regions (amygdala, thalamus and hippocampus) of
both brain hemispheres, and further when neuro-psychological scores were included. These results imply that
multimodal analysis gives better results than unimodal analysis and hencemay be a useful tool to assist in early
MCI diagnosis, attaining anAUROCof 93.79%and an accuracy of 91.3%during final testingwith the
holdout set.

As a futurework, amore detailed analysis ofMCIʼs involved substructures, the proposal of othermore
specific biomarkers, as well as the application of deep learningmethods to improve diagnosis, would be
necessary. Also, the incorporation of other diagnosticmodalities, such as biochemical or functional biomarkers
can help to better identifyMCI condition in an early stage.
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