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Abstract

Alzheimer’s disease is a multifactorial neurodegenerative disorder preceded by a prodromal stage
called mild cognitive impairment (MCI). Early diagnosis of MCl is crucial for delaying the progression
and optimizing the treatment. In this study we propose a random forest (RF) classifier to distinguish
between MCI and healthy control subjects (HC), identifying the most relevant features computed
from structural T1-weighted and diffusion-weighted magnetic resonance images (sSMRI and DWT),
combined with neuro-psychological scores. To train the RF we used a set of 60 subjects (HC = 30,
MCI = 30) drawn from the Alzheimer’s disease neuroimaging initiative database, while testing with
unseen data was carried out on a 23-subjects Mexican cohort (HC = 12, MCI = 11). Features from
hippocampus, thalamus and amygdala, for left and right hemispheres were fed to the RF, with the
most relevant being previously selected by applying extra trees classifier and the mean decrease in
impurity index. All the analyzed brain structures presented changes in sMRI and DWI features for
MCI, but those computed from sMRI contribute the most to distinguish from HC. However, sMRI
+DWTIimproves classification performance in training area under the receiver operating character-
istic curve (AUROC = 93.5 £ 8%, accuracy = 88.8 £ 9%) and testing with unseen data

(AUROC = 93.79%, accuracy = 91.3%), having a better performance when neuro-psychological
scores were included. Compared to other classifiers the proposed RF provide the best performance for
HC/MCI discrimination and the application of a feature selection step improves its performance.
These findings imply that multimodal analysis gives better results than unimodal analysis and hence
may be a useful tool to assist in early MCI diagnosis.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative, incurable illness that causes language, memory and behavior
changes, and can lead to loss of functional independence and finally to dementia. It is usually preceded by a
prodromal stage called mild cognitive impairment (MCI), where the first behavioral symptoms can be detected
through specifically designed neuro-psychological tests. This pathology evolves from biochemical deficiency on
tau proteins and beta-amyloids production, that provokes neurofibrillary tangles and neuritic plaques. These
early changes are detectable with biomarkers measured in cerebrospinal fluid (CSF) (with higher specificity) as
well as in blood plasma. As a consequence, brain atrophy appears in some specific cerebral regions that lose
mass, volume and functionality. Anatomical and functional alterations are observable and measurable at this

© 2021 Institute of Physics and Engineering in Medicine
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stage with several imaging modalities, that provide useful biomarkers to diagnose and monitor AD’s evolution.
Cognitive and behavioral changes become evident in more advanced stages of the disease and are clinically
characterized with the help of specific neuro-psychological tests, whose scores can be considered as surrogate
parameters. All these biomarkers are useful for diagnosis at different stages of the disease, although definite
corroboration can only be obtained post mortem after an autopsy. Even though there is no cure for AD, its
progression can be delayed if it can be detected early and therefore, the importance of making a diagnosis during
the MCI stage has been highlighted by many researchers.

Itis widely assumed that incipient protein pathology in the medial temporal lobe initiate the loss of episodic
memory in AD, one of the earliest cognitive deficits in this type of dementia. The cingulate cortex projects back
to the entorhinal cortex of parahippocampal gyrus (Papez circuit) who in turn, connect with many other areas of
the limbic system that are involved in learning and memory, emotion, social behavior, and emotional
experience. The loss of episodic memory in early AD reflects a neurodegeneration in the Papez circuit, which
critically involves the limbic thalamus (Aggleton ef al 2016). Thalamic abnormalities generally occur in the early
stages of the disease. It has been observed severe tau immunoreactive cytoskeletal pathology in the thalamus of
clinically diagnosed AD patients, with the affection of the extraterritorial nuclei of thalamus (Riib e al 2016). In
AD and MCI patients, structural connectivity between hippocampus and thalamus affects the functional
connectivity between them. The anterior thalamic nuclei in turn connect to the cingulate cortex. The amygdala,
along with neocortical areas, are now known to be centrally involved in emotional experience. Thus, the limbic
areas in association with neocortical areas, are affected in the neurological deterioration of patients with AD. In
this circuit, hippocampal atrophy is one of the most validated, easily accessible and widely used biomarker of
AD. Preliminary studies have indicated that looking at this focal atrophy pattern rather than standard whole
hippocampal volumetry by fMRI, improves diagnostic accuracy at the MCI stage (de Flores er al 2015). These
regions show high levels of amyloid deposition in AD and are both structurally and functionally vulnerable early
in the disease. Added to this, amygdala may represent a preferential locus for a pivotal transition from a relatively
benign clinical condition to a more aggressive disease wherein multiple protein species are misfolded, Nelson
etal (2018) proposes the amygdala like an incubator for misfolded proteins that participate in the cognitive and
emotional damage of patients with AD.

Several studies have reported the diagnostic capability of the available imaging modalities and have proposed
different biomarkers to identify the disease’ stages. Specifically, accuracies of up to 89% have been obtained
using parameters extracted from T1-weighted structural magnetic resonance images (sMRI), that reflect the
degree of brain atrophy. In the most recent challenge, the proposals made by Dimitriadis and Liparas (2018) and
Jiménez-Mesa et al (2020) provided accuracies of 61.9% and 67%. Among other imaging modalities, diffusion
weighted MRI (DWTI) has been employed in several studies for the extraction of useful biomarkers. The most
successful approaches have consisted on the combination of multimodal metrics, particularly sMRI, DWI and
DTI, as shown in the researches by Zhang et al (2013), Lee et al (2017), Jung et al (2015), Gupta et al (2020),
Marzban et al (2020), Wen et al (2021) attaining accuracies of up to 79%. Particularly, Mesrob et al (2012) have
proposed a multimodal measure that combines anatomical and diffusivity measures taken at multiple
anatomical structures, attaining up to 99% accuracy, when relevant regions were selected. Schouten et al (2016)
combine anatomical, diffusion, and resting state functional magnetic resonance imaging for individual
classification of mild and moderate AD, with the help of an elastic net classifier. They found that the
combination of multiple modalities can substantially improve classification performance over unimodal
classification. In another study, the same authors (Schouten et al 2017) improved feature selection and found
that fractional anisotropy (FA) clustered into ICA components was the best performing measure.

On another aspect, analyses of regional changes in specific brain structures has allowed the identification of
different stages of AD’s evolution. Studies reported in Li et al (2013), Nir et al (2013), Lee etal (2017), Eldeeb et al
(2018), Gupta et al (2019, 2020), Zarei et al (2010) focused on hippocampal, thalamic and other cortical and
subcortical regions. Also, multiple studies have demonstrated that an efficient feature selection can be helpful in
characterizing AD brain changes (Mesrob et al 2012, Jung et al 2015, Schouten et al 2017). Particularly, Eldeeb
etal (2018) extracted speeded up robust features and scale invariant feature transform parameters, based on the
visual diffusion patterns of FA, and mean diffusivity (MD) maps, to build bag-of-words AD-signature,
specifically for the hippocampal area, attaining accuracies of 87% and 89% for FA and MD maps respectively.
Jiménez-Mesa et al (2020) propose a novel multiclass classification approach that addresses the outlier detection
problem, uses pairwise t-test feature selection, project the selected features onto a partial-least-squares
multiclass subspace, and applies one-versus-one error correction output codes classification, obtaining an
accuracy of 67%. Wen et al (2021) developed an open-source framework to evaluate AD classification from T1-
weighted MRI, PET and diffusion MRI parameters. They found that FS has a positive impact on classification
results, that voxel-wise features generally give better performance than regional features and that FA and MD
provided comparable results for voxel-wise features. They conclude that, with proper feature rescaling and
selection, the performance of diffusion MRI features is comparable to that of structural MRI.
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Figure 1. Methodological diagram. DWI—difussion-weighted imaging; sMRI—T1-weighted magnetic resonance imaging; FA—
fractional anisotropy; MD—mean diffusivity; MO—mode of anisotropy; MM SE—mini-mental state examination; CDR—clinical
dementia rating; HC—healthy controls; MCI—mild cognitive impairment; ETC—extra tree classifier; MDI—mean decrease in
impurity; RF—random forest; SVM—support vector machine; ANN—artificial neural network; GP-RBF—Gaussian process with
radial basis functions; AUROC—area under the receiver operating characteristic curve.
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Table 1. Characteristics of the training and holdout test populations.

Training populations Holdout populations
(ADNTI) (CI3M)
HC MCI HC MCI
(N = 30) (N = 30) (N=12) (N=11)
Age (years) (u £+ o) 69.0 + 5.2 68.5 + 4.3 734 £ 6.2 799 £9.2
Gender (F/M) 15/15 12/18 12/0 8/3
MMSE (rank/p £ o) 27-39 24-30 27-30 14-22
(29.5 £ 0.9) (27.6 £ 2.5) (28.6 £ 1.2) (18.6 &+ 2.9)
CDR (rank/p + o) 0 0.5-4 0 0.5-2
(1.9 £ 1.5) (1.3 £ 0.6)

In this study, the integration of new morphological metrics, together with information extracted from
diffusion imaging is proposed. The latter is analyzed with an original approach, by extracting representative
parameters from metabolic histograms measured in specific VOIs. Feature vectors are completed with scores
obtained from neuro-psychological tests. The influence of each modality is analyzed individually and in
different combinations. The overall pipeline also includes selection of features, that are fed to a random forest
(RF) classifier, whose performance is then contrasted with other conventional diagnostic strategies, specifically

designed for MCI detection.

2. Methodology

In this section, the steps for volumes’ processing, segmentation, feature extraction and classification are
described, according to the overall diagram shown in figure 1.

2.1. Studied populations

2.1.1. Alzheimer’s disease neuroimaging initiative (ADNI) subjects (training population)

T1-weighted MR images (sMRI) and DWI, as well as mini mental state examination (MMSE) and clinical
dementia rating (CDR) scores for 30 control subjects and 30 MCI patients were obtained from the ADNI (adni.
loni.usc.edu) database. MMSE and CDR are standard clinical neuro-psychological tests that allow to assess
several cognitive areas, such as attention, recall, language and space-time orientation, among others. Subjects
were diagnosed by ADNI experts, according to inclusion/exclusion criteria reported in Petersen et al (2010),

following the ethical statement of the ADNI protocol.
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For all subjects, the following information was retrieved:

+ T1-weighted MR volumes, obtained at 1.5 T, with voxel resolution of 1.2 x 0.93 x 0.93 mm?>.
+ DWI volumes.

+ Cognitive scores obtained with both MMSE and CDR tests.

+ Age-paired and gender-balanced groups.

+ Allstudies obtained in nearby dates.

These rigorous criteria led to a relatively reduced training population size (N = 60), for which the
subsequent analysis was carried out following the standard methodology for classification (cross-validation
during training) as described later in section 2.6. Table 1 shows demographic information and neuro-
psychological scores for both groups (second and third columns).

2.1.2. Mexican cohort (holdout dataset)
For testing with unseen data, two populations of Mexican subjects were conformed. They consisted of 12 healthy
control (HC) and 11 MCI subjects, previously diagnosed by an expert neurologist. MCI patients received a
clinical diagnosis of Alzheimer-related dementia with MMSE < 24 and CDR > 0.5 scores; subjects with other
neurodegenerative conditions were excluded. Both groups were paired by age, socio-cultural and academic
levels, with the characteristics shown in the last two columns of table 1. All patients gave their written consent,
according to the declaration of Helsinki. Images for these populations were acquired at the Centro Nacional de
Investigacion en Imagenologia e Instrumentacién Médica (CI3M) of the Universidad Auténoma Metropolitana,
unidad Iztapalapa (UAM-I) in Mexico, after approval of project number PND_AC_08_16.

T1-weighted MR volumes were obtained with the following parameters: TR = 31.92 ms, TE = 1.95 ms,
voxel resolution 0.42 x 0.42 x 5 mm®. DTI were acquired with the following characteristics: b-values of 0 and
800 s mm ™ and 32 diffusion-weighted directions. Both studies were obtained using a 3T Phillips equipment.

2.2.Segmentation

sMRI were segmented using Freesurfer v 6.0 to extract gray matter (GM), white matter (WM) and CSF. Also, we
have analyzed some of the subcortical substructures that have been reported to be mostly affected in MCI and
AD: hippocampus, thalamus and amygdala, for left and right hemispheres.

Image processing begins by removing cranium and other extraencephalic structures to proceed to white and
GM segmentations. Afterwards, topological correction, intensity normalization, WM tessellation and surface
atlas registration are applied, to finally obtain an individual atlas for each subject, consisting of up to 82 brain
structures. Final labeling of the regions of interest is carried out based on the Desikan—Killiany Atlas. Details on
the whole segmentation procedure can be found in Fischl et al (2004, 2002).

2.3. sMRI biomarkers

For all segmented structures, several anatomical biomarkers were computed: volume (V), determined as the
sum of voxels belonging to each VOI; normalized volume (NV), obtained as the ratio between each VOI’s
volume and intracranial volume, determined as the sum of voxels corresponding to the whole brain; and cortical
thickness (CT), calculated as the average of the distance from the WM surface to the closest point on the pial
surface (Fischl and Dale 2000).

Additionally, Perez-Gonzalez et al (2014) demonstrated that discrete compactness (DC), related to the
surface area of those voxels that make contact in 3D, can be a valuable biomarker to identify AD’s evolution
stages and therefore is useful for its early diagnosis. Therefore, in this study, DC measured on the segmented
brain structures has been incorporated into the features vector. Another parameter that quantifies the degree of
brain atrophy is surface discrete tortuosity (DT), proposed by Barbard-Morales et al (2020) as a valuable
discriminator between HC, MCI and AD classes. It is computed using the sum of angles method and is also being
considered in this study, to complement structural biomarkers. All morphological features were computed
using MATLAB 2020b, except for CT which was calculated with Fresurfer v 6.0.

2.4. Diffusion biomarkers

DWI data were processed using a combination of commands in MRtrix3 package (Tournier et al 2019) and the
FMRIB Software Library (Jenkinson et al 2012). Initial preprocessing steps included denoising (Veraart et al
2016), eddy-current and EPI distortion correction and motion correction (Andersson and Sotiropoulos 2016),
Gibbs ringing removal (Kellner et al 2016) and bias-field correction (Tustison et al 2010).
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Figure 2. Representative FA histogram of a HC, with the measurement of the peak height in red, peak’s location in green and median
in yellow color.

Preprocessed DWI data were aligned to b0 image, followed by removing the non-brain tissues using the
brain extraction tool (Smith 2002). WM segmentation was based on the subsequent TBSS procedures (Smith
etal2007). Eigenvalues of the diffusion tensor model were computed at each voxel to generate rotationally
invariant indices like the FA, MD and mode of anisotropy (MO). FA is computed as the normalized standard
deviation of the eigenvalues and measures the degree of water diffusion anisotropy, ranging from 0 (isotropic
diffusion) to 1 (completely anisotropic diffusion). MD is proportional to the trace of the diffusion tensor and
quantifies water molecules diffusivity independently of direction. MO is a measure of anisotropy type, ranging
from —1 to +1: negative MO values describe planar anisotropy whereas positive MO values indicate linear
anisotropy (Ennis and Kindlmann 2006, Kindlmann et al 2007).

Allindividual FA, MD and MO images were linearly and nonlinearly aligned to FMRIB58_FA template
(Douaud et al 2011) using the mean FA skeleton that served as the study-specific template and represents the
center of the common WM tracts. The FA skeleton was labeled to identify the 50 WM regions with reference to
the JHUICBM-DTI-81 WM atlas (Mori et al 2005) and to generate the binary masking images of thalamus,
hippocampus, and amygdala.

For each segmented VOI on both hemispheres, normalized histograms of FA, MD and MO were computed
and analyzed, following the methodology proposed in Mascalchi et al (2018). Normalization, obtained after
dividing each histogram by the number of voxels of each structure, allows to correct differences of the subject’s
brain size. Eight parameters were extracted from normalized histograms: mean (1, MEAN), standard deviation
(0, STD), as well as skewness (SKEW), kurtosis (KUR) and entropy (ENT) defined by:

SKEW = ——"—r M
o
KUR = —*— @
g
m
ENT = =) p(xj)log(p(xi)), 3)
i=0

where 7 is the number of voxels of each structure; x; is the voxel’s intensity for FA, MD and MO; and p(x;) is a
probability estimator of m bins. Additionally, histograms’ median value (MED), peak location (LOC) and peak
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Figure 3. Classification algorithms pipeline between HC and MCI subjects. Blue boxes represent feature extraction stage described in
sections 2.3 and 2.4. The steps of feature selection and classifiers’ parameters adjustment are shown in green (described in this section).
Finally, in red, the validation stages described in section 2.6 are shown.

Figure 4. Examples of the segmented structures for HC and MCI subjects: amygdala in yellow, hippocampus in red and thalamus in
green.

height (HEIGHT) were determined as shown in figure 2. The algorithm to measure these features was
implemented in MATLAB 2020b.

2.5. Classification and feature selection
Automatic classification between HC and MCI subjects was carried out with the help of a RF. Itis an algorithm
widely used for different medical applications due to its high adaptability to biological data. RF is based on
majority voting of multiple decision trees with optimal thresholds to separate classes contained on the training
dataset (Criminisi and Shotton 2013).

With the purpose of evaluating the discrimination capability of each data modality, features were fed to the
classifier either individually or combined, as follows: morphological biomarkers (sMRI); diffusion biomarkers
(DWI); sMRI4-DWI; and sMRI+DWI+Neuro-psychological scores (Neuropsy). Additionally, for each feature
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Figure 5. Histogram of DWI measurements on the left hemisphere.

set, the most relevant parameters were selected, and the dimensionality reduced by applying Extra Trees
Classifier (ETC), together with the mean decrease in impurity (MDI) index (Tuv et al 2009, Breiman 2001). ETC
is an ensemble algorithm based on a set of decision trees (500 in this case) with random separation thresholds
and bootstrap feature sampling.

For each feature, the MDIs are determined through ETC and sorted in decreasing order. Afterwards, the area
under the receiver operating characteristic curve (AUROC) is calculated by gradually aggregating features and
the combination that maximizes the AUROC is finally selected.

RF’s performance was compared to other conventional classifiers: a support vector machine (SVM), an
artificial neural network (ANN) and a radial basis function Gaussian process classifier (GP-RBF). All classifiers’
hyper-parameters were optimized during the training stage through grid searching and were used afterwards
during the test stage. The list and final values of the tuned parameters are included as supplementary material
(available online at stacks.iop.org/PMB/66/155010/mmedia).

Extracted biomarkers were fed to the classification step in different combinations: only sMRI, only DWI,
sMRI + DWI and sMRI + DWI + Neuropsy, with and without feature selection, totalling eight tests for each
classifier. The most relevant features for each combination are also presented as supplementary material.

In all cases the procedure shown in figure 3 was followed.

2.6. Classifiers’ performance

To evaluate classification performance, a 20-times randomly repeated 5-fold cross validation with the training
datasets (see section 2.1.1) and a final test with the holdout datasets (see section 2.1.2) were carried out. As
described in the previous section, RF results were compared to SVM, ANN and GP-RBF, under the same
conditions (same feature vectors, with and without dimensionality reduction). All performances, either in
training and in final test stages, were determined with two parameters: AUROC and accuracy (Acc) with a 50%
cutoff threshold. Feature selection, classification, optimization and validation algorithms were programmed in
Python 3.7 using Scikit-learn 0.024.0 library, and the statistical analysis was performed in R 4.0.5.
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Figure 6. Box plots of the 20 (sMRI + DWI + Neuropsy) most relevant features, selected for classification. AMY = Amygdala,
HIPPO = Hippocampus and THAL = Thalamus.

Table 2. AUROC and accuracy (%, 1+ + o) of HC and MCI classification, obtained during the training step, for different biomarkers’
combinations, with and without feature selection (FS).

sMRI + DWI +
sMRI DWI sMRI+ DWI Neuropsy
Biomarkers’ combination
Classifier Without With Without With Without With Without With
ES FS ES FS ES FS ES FS
AUROC (%, i1 £ 0)
RF 89.6 + 8 921 +9 673+ 16 829 +12 845+ 13 935+ 8 92.5+ 8 999 +1
SVM 789 + 11 85 + 10 728 +13 731 +£12 815+ 11 919 + 4 86 £ 11 99.1 £2
ANN 80.1 £ 11 84 + 12 603+ 14 776 £13 778+ 15 88.6 £9 85.6 £ 10 98.7 +3
GP-RBF 83.3 £ 10 858 £ 9 71.7 £14 778 +12 799+ 11 89.6 £9 858 £ 11 984 +3
Accuracy (%, it £ o)
RF 84.1 £ 10 854 +9 655+ 13 757+11 763 + 13 88.8 =9 846 + 11 98.1+£5
SVM 71.1 £ 11 74 + 12 65 + 13 68.7 £ 11 77.7 £ 10 83.6 £ 8 803+ 10 944 +7
ANN 729 +12 7334+ 13 603+14 699+12 726+12 793 +11 759412 936+7
GP-RBF 734 +11 756+10 66.1+10 719+ 11 729 +£10 8244+10 7614+10 935+6

3. Results

Figure 4 shows examples of the segmented VOIs for control and MCI subjects, in coronal and saggital
projections: amygdala in yellow, hippocampus in red and thalamus in green.

In a first exploratory inter-group analysis, box plots and statistical significance levels were determined for
each individual biomarker (included as supplementary material). Although all features were considered for the
subsequent classification task, this analysis allowed us to depict biomarkers relevant for HC versus MCI
discrimination.

Asindicated in section 2.4, the histograms of diffusion biomarkers for all structures and both hemispheres,
were computed to extract representative features from this modality. Figure 5 shows the distributions obtained
for FA, MO and MD of the studied brain structures, corresponding to the left hemisphere as an example.
Histograms for the right hemisphere show a similar distribution. Differences can be observed between HC and
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Table 3. AUROC and accuracy (%) of HC and MCI classification, obtained during testing with the holdout dataset, for different
biomarkers’ combinations, with and without feature selection (FS).

sMRI + DWI +
sMRI DWI sMRI + DWI Neuropsy
Biomarkers’ combination
Classifier Without With Without With Without With Without With
FS ES FS ES FS FS FS FS
AUROC (%)
RF 77.94 87.22 82.58 87.12 76.78 93.79 82.08 98.29
SVM 72.79 85.95 74.24 79.24 74.46 91.54 80.45 98.13
ANN 64.54 75.65 81.81 82.57 65.83 87.97 80.76 95.32
GP-RBF 66.57 78.34 71.21 84.09 73.15 88.76 81.1 97.41
Accuracy (%)
RF 69.57 82.61 82.61 86.96 86.96 91.30 82.61 100
SVM 69.57 73.91 60.87 78.26 73.91 86.96 78.26 100
ANN 60.87 65.22 73.91 82.61 69.57 82.61 73.91 91.30
GP-RBF 65.22 69.57 65.21 82.61 65.22 82.61 78.26 95.65

MCI, which suggests that parameters extracted from these histograms can be useful in the subsequent
classification step, as discussed later.

Results of the repetitive cross-validation, carried out during training, are shown in table 2. Final tests were
conducted with unseen data, as described in section 2.6. Table 3 shows the corresponding results. For both
tables, the eight tested combinations appear in columns, while the compared classifiers correspond to each row.
The highest performances for each biomarkers’ combination are highlighted in bold.

In order to identify those biomarkers that contribute the most in enhancing the AUROC, they were ordered
accordingly to their MD], as separate modalities (sSMRI and DWTI) and in combination (sMRI+-DWTI, sMRI
+DWI+Neuropsy). These rankings are included as supplementary material. As a particular case, figure 6 shows
the 20 most relevant parameters of sMRI4+-DWI combination, where it can be observed that both modalities
influence classification and that the proposed biomarkers appear as relevant features.

4. Discussion

The complete statistical analysis (see supplementary material), carried out to depict between-group changes in
the proposed biomarkers’ set, showed that thalamus suffers important morphological differences reflected by
the NVs of both hemispheres and DT of the left side. Also, the three diffusion biomarkers measured in this
structure were significantly different between control and MCI subjects. Regarding the amygdala, surface
tortuosity and MD show differences on both hemispheres, as does the hippocampus, that also presents changes
on tortuosity (only on the left side) and overall MD. These results concur with those obtained by Li et al (2013),
Lee eral (2017) and Coupé et al (2019) that have reported microstructural and diffusivity changes in these
structures, along the progression of the disease. Even though not all biomarkers indicate changes in the analyzed
structures, they were all included as a global feature vector, trying to maximally exploit the complementarity of
the morphological and diffusion information that they contain. Among the advantages of the proposed
morphological biomarkers, the translation, rotation and scaling invariance of DC, as well as the angle’s
normalization applied to DT, contribute to the adequate characterization of morphological changes of the
analyzed structures, regardless of subject’s brain size and position, such as reported by Perez-Gonzalez et al
(2014) and Barbara-Morales et al (2020).

A qualitative analysis carried out on FA, MO and MD histograms (figure 5) allows to appreciate differences
between the two populations’ distributions and suggests that all parameters that can synthesize these behaviors
are potential biomarkers to facilitate groups’ classification. In the research reported by Mascalchi et al (2018) the
authors had already demonstrated that histogram-derived indicators reflect microstructural changes in brain
degeneration for another clinical application. In our study, we have proposed an expanded set of biomarkers
that constitute an enhanced feature vector derived from DWI. Unlike voxel-based morphometry, the analysis
based on histogram-extracted parameters allows the comparison between structures, by only aligning the
reference atlas to each individual, without the need of inter-subject volumes’ registration.

As previously indicated, the contribution of the proposed biomarkers, either in individual or combined
modalities, can be seen in table 2 for the training step. A first observation indicates that, compared to other
classifiers, RFs provide the best performance for HC/MCI discrimination, given the biomarker’s vector
proposed in this research. RF and SVM classifiers had already been demonstrated to be suitable for this task, as
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reported in several studies, using other feature sets (Tanveer et al 2020). A second finding indicates that the
application of a feature selection step prior to classification, considerably improves its performance, as
concluded by Sivapriya et al (2015) and by Wen et al (2021) who also reported that with proper dimensionality
reduction, the performance of diffusion MRI features is comparable to that of sMRI. The analysis of individual
modalities seems to indicate that morphological biomarkers (1st and 2nd columns in table 2) contribute the
most to identify both groups, in comparison to DWI-extracted parameters (3rd and 4th columns). However, the
combination of the two modalities (5th and 6th columns) improves classification performance, up to

93.5 &+ 8% AUROC and 88.8 =+ 9% accuracy in our study, using RF. This is consistent with findings reported by
Guptaetal (2020) (AUROC = 0.96) and Zhang et al (2013) (AUROC = 94.9%). Finally, in the two last columns
of table 2 it can be observed that, when incorporating neuro-psychological scores into the feature vector,
classification performances substantially improve. This is expected, due to the contribution of limbic structures
in patients’ cognitive decline. Also, MMSE and CDR scores are considered as determinant criteria to diagnose
cases in the ADNI database. Again, it can be appreciated that a previous selection of features provides the best RF
performance.

A similar behavior was observed during classifiers’ final testing with unseen data (table 3), obtaining 93.79%
AUROC and 91.3% accuracies, when structural and diffusion biomarkers were combined (6th column). These
results outperform those obtained by Marzban et al (2020), who use deep learning for the same task
(AUROC = 0.84, accuracy of 79.6%); by Sheelakumari et al (2018) (AUROC = 0.89) that also consider
spectroscopy indicators; and by Jung et al (2015) that attain an accuracy of 84.4% in HC/MCI classification. This
demonstrates that a previous feature selection (ETC) and an adequate classification strategy (RF) are necessary
for this application.

Features that resulted more relevant for classification (figure 6) include parameters extracted from both
modalities, such as right-amygdala and left-hippocampus DT peak’s height of the MD for the right-
hippocampus. Moreover, it can be seen that all the analyzed structures (amygdala, hippocampus and thalamus)
resulted relevant in structural parameters (DT and volumes) as well as in diffusion biomarkers (MD, MO and
FA). This corroborates the previous statistical analysis and concours with findings of Zarei et al (2010), Lee et al
(2017) and Li et al (2013) that report that diffusivity is strongly correlated with the cognitive performance.

5. Conclusions

In this study, a robust method for the automatic classification of HC and MCI subjects, using anatomical (sMRI)
and diffusion (DWTI) magnetic resonance volumes was presented. An enhanced feature set was proposed, that
includes shape-invariant morphological biomarkers, such as DC and tortuosity. Also, a strategy to extract
biomarkers from DWT histograms is incorporated, that proved to be useful to recover microstructural brain
changes between studied populations. The analysis focused on specific limbic structures, that are involved in
MCI, such as amygdala, hippocampus and thalamus.

The combination of an adequate classifier, together with a previous feature selection step provided the best
performance. In this study, given the proposed feature set, RF turned out to be the most adequate for
populations’ separation. The discrimination between MCI and HC subjects reached a high accuracy when the
combination of sSMRI and DWI biomarkers for specific brain regions (amygdala, thalamus and hippocampus) of
both brain hemispheres, and further when neuro-psychological scores were included. These results imply that
multimodal analysis gives better results than unimodal analysis and hence may be a useful tool to assist in early
MCI diagnosis, attaining an AUROC of 93.79% and an accuracy of 91.3% during final testing with the
holdout set.

As a future work, a more detailed analysis of MCI’s involved substructures, the proposal of other more
specific biomarkers, as well as the application of deep learning methods to improve diagnosis, would be
necessary. Also, the incorporation of other diagnostic modalities, such as biochemical or functional biomarkers
can help to better identify MCI condition in an early stage.
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