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Abstract

Objective—To assess cerebrospinal fluid (CSF) β-site amyloid precursor protein (APP)-cleaving 

enzyme 1 (BACE1) activity in relation to Alzheimer’s disease (AD) and to correlate the enzyme 

activity with protein markers of APP metabolism and axonal degeneration.

Methods—BACE1 activity and protein concentrations were measured and analysed in 342 

participants of the AD Neuroimaging Initiative, including 99 normal controls, 75 stable mild 

cognitive impairment (MCI), 87 progressive MCI and 79 AD dementia cases. All statistical 

analyses were Bonferroni corrected for multiple comparisons.

Results—No significant differences between controls and any of the three patient groups were 

detected for BACE1 activity and soluble APP (sAPP)β concentrations in CSF. Significant 

correlations with BACE1 activity were found for CSF APPβ and total tau in all four groups; and 
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for CSF phosphorylated tau181 in all groups but the progressive MCI group. There were no 

correlations for CSF amyloid β (Aβ)1-42 nor for plasma Aβ1-42 and Aβ1-40.

Conclusions—The consistent correlation between BACE1 activity and sAPPβ supports their 

role as biomarkers of target engagement in clinical trials on BACE1 inhibition.
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1. Introduction

Alzheimer’s disease (AD) in neuropsychiatric tradition is a clinical diagnosis characterised 

by an amnestic type of progressive dementia and the exclusion of alternative causes. These 

simple clinical criteria are neither sufficiently sensitive for early changes nor specific 

enough for AD; major efforts of academia and the pharmaceutical industry to identify 

prodromal AD, i.e. the stage before full-blown dementia develops, and to treat 

pathophysiological processes rather than their end products are driving forward the search 

for potential biomarkers capable of identifying neurodegeneration independently of its 

clinical manifestations. Individuals with asymptomatic early AD would probably benefit 

most from interventions aiming to prevent further neural damage in order to maintain their 

independence, ability to work and fulfilment of social roles. Furthermore, 

pathophysiological markers may also offer the added benefit of directly assessing response 

to treatment options that target core processes of AD pathogenesis. The application of novel 

therapeutics with potentially significant side effects could thereby be restricted to patients 

with biological evidence of treatment response in line with the notion of personalised 

medicine.

A principal problem with current biomarkers is their insensitivity to initial, or upstream, 

pathophysiological events, which limits their value in identifying pre-clinical or early 

clinical AD and to monitor treatment response to novel compounds targeting the cerebral 

accumulation of amyloid β (Aβ). One feasible approach to improve the diagnostic and 

prognostic performance is to measure upstream events of amyloid precursor protein (APP) 

processing, which are at the core of AD pathogenesis according to the prevalent school of 

thought (1). The β-site APP-cleaving enzyme 1 (BACE1) is responsible for the first and 

rate-limiting APP processing step (2) and is therefore a major target in biomarker research. 

Previous studies indicate the suitability of BACE1 activity as diagnostic and prognostic 

marker in AD (3, 4). However, the evidence basis is still inconclusive, and partly 

contradictory, which warrants replication and validation of previous findings in a multi-

centric setting involving sufficient numbers of patients in different disease stages and 

matched healthy controls. The aim of the present study was therefore to explore BACE1 

activity differences between patients and controls and to characterise the stage-dependent 

correlations between BACE1 activity and protein biomarker concentrations in the AD 

Neuroimaging Initiative (ADNI). Multi-centre studies are an important part of the biomarker 

validation process since they provide important advantages over single-centre studies, such 

as larger sample size and the recruitment of participants from a wider population assuring a 
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more representative sample of the target population making it easier to generalise the 

findings of the study (5). In addition to the general benefits of a large multi-centre study, the 

ADNI offers the added benefit of uniform laboratory assessments, which help to overcome 

issues with differences across different immunoassay platforms and measurements in 

different laboratories (6).

2. Materials and Methods

2.1 Study design and sample

The data used in this study were obtained from the ADNI database at www.loni.ucla.edu/

ADNI on 29 April 2013. Information from 402 samples with BACE1 activity measurements 

and CSF concentrations of its main cleavage product soluble APP (sAPP)β were available, 

including 106 elderly normal controls (NL), 92 patients with stable mild cognitive 

impairment (sMCI), 92 patients who had progressed to AD dementia during the follow-up 

period (pMCI), 92 patients with AD dementia and 20 technical replications (repeated 

measurements for quality control purposes, not included in the analyses). Fourty-two 

participants were excluded because of missing biomarker data, resulting in a final dataset of 

342 individuals including 99 NL, 75 sMCI, 87 pMCI and 79 AD. The study was approved 

by the institutional review boards of all participating centres and written informed consent 

was obtained from all participants or authorised representatives after extensive description 

of the ADNI according to the 1975 Declaration of Helsinki. The study is registered at 

www.ClinicalTrials.gov (identifier, NCT00106899). BACE1 activity and sAPPβ 

concentration in CSF were measured simultaneously, using aliquots obtained from the same 

vial at the same thaw using analytically validated assays and according to published 

protocols (7, 8). More information on the ADNI including CSF sampling and analysis is 

provided in the supplementary material.

2.2 Statistical analysis

Data were analysed in IBM SPSS, v21. Normal distribution was checked using the 

Kolmogorov–Smirnov test; non-parametric comparisons between groups were performed 

using the Kruskal-Wallis test, followed by the Mann-Whitney test since some of the 

biomarker data were skewed. The correlations between CSF BACE1 activity and other 

variables of interest including biomarker concentrations, age, gender and APOE (binarised 

as carriers vs non-carriers) were assessed using Spearman rank correlation coefficients. The 

correlations were assessed separately for each of the four diagnostic groups. Bonferroni 

correction (separately for the group comparisons and for each of the group-wise correlation 

analyses) was applied with α = 0.05 in order to minimise the likelihood of false positive 

findings due to multiple testing. All tests were two-sided.

3. Results

All reported p values are after Bonferroni correction. As expected, in contrast to the NL 

group, CSF Aβ1-42 concentrations were decreased in all three patient groups (sMCI, p=0.05; 

pMCI, p<0.001; AD, p<0.001), CSF tTau was increased in all three patient groups (sMCI, 

p<0.001; pMCI, p<0.001; AD, p<0.001) and pTau181 was increased in the pMCI and AD 

groups (sMCI, p=0.07; pMCI, p<0.001; AD, p<0.001); all three patient groups showed 
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lower MMSE scores than the NL group (sMCI, p<0.001; pMCI, p<0.001; AD, p<0.001). 

The pMCI group had lower CSF Aβ1-42 and higher pTau181 concentrations than the sMCI 

group (both p<0.01). No other significant biomarker differences were detected between the 

NL group and the four patient groups as well as between the sMCI and the pMCI groups. 

The distribution of the APOE ε4 allele followed the previously reported pattern, with 70 % 

carriers in the AD group and only 25 % carriers in the NL group (Table 1).

Significant correlations with BACE1 activity in all four study groups were found for APPβ 

(NL, r=0.30, p=0.02; sMCI, r=0.37, p=0.01; pMCI, r=0.33, p=0.02; AD, r=0.33, p=0.02) 

and tTau (NL, r=0.57, p<0.001; sMCI, r=0.56, p<0.001; pMCI, r=0.31, p=0.04; AD, r=0.44, 

p<0.001). BACE1 activity was also significantly correlated with pTau181 in all groups with 

the exception of the pMCI group (NL, r=0.32, p=0.02; sMCI, r=0.40, p<0.01; pMCI, r=0.11, 

p=0.31; AD, r=0.40, p<0.01) (Figure 1). There were no correlations with BACE1 activity in 

any of the four study groups for CSF Aβ1-42, plasma Aβ1-40 and Aβ1-42, age, gender or 

APOE (r range, -0.10 to 0.24; p>0.17).

4. Discussion

The findings of this multicentre study confirm and extend some earlier results, while they 

contradict others. We did not find any CSF BACE1 activity differences between the control 

group and any of the patient groups. This aspect of our research is in line with one study (6), 

but in contrast to other previous studies with partly contradictory findings, showing 

increased BACE1 activity in MCI but not AD (7, 8); increased activity in both MCI and AD 

(9); or even decreased activity in AD (5). Part of the discrepancy may be explained by the 

different properties of the applied laboratory assays, the characteristics of the study samples 

and the definitions of patient groups, but the wide range of BACE1 activity measurements 

and the large overlap between the groups may also have a significant impact.

Some earlier studies found increased sAPPβ CSF levels in AD vs controls (11, 12) and 

stable vs progressive MCI (13). Other published reports do not support these results (3, 9, 

14, 15), which is in line with the findings of the present study. Our negative findings in 

relation to the influence of demographic and genetic factors on BACE1 activity confirm 

previous reports on age (3), gender (3, 4, 10) and APOE (3). However, increased BACE1 

activity has also been shown in relation to older age (8) and the APOE ε4 allele (10) before.

We show that BACE1 activity positively correlates with sAPPβ, tTau and pTau181 in CSF 

across the spectrum from physiological ageing to clinically diagnosable AD (the lacking 

correlation with pTau181 in pMCI is probably a spurious finding). On the other hand, we 

also show that BACE1 activity is not associated with Aβ1-42 in CSF nor with Aβ1-42 and 

Aβ1-40 in blood. Our findings confirm the consistent correlation of BACE1 activity with 

markers of upstream events of APP metabolism and markers of neurodegeneration (3, 16, 

17). The absence of an association between BACE1 activity and CSF Aβ1-42 underlines the 

notion that CSF levels of Aβ1-42 most likely reflect its deposition in senile plaques, which is 

determined by decreased clearance from brain rather than increased production in sporadic 

AD (18); this may also explain the missing correlation between central BACE1 and 

peripheral Aβ levels.
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The large sample size, the recruitment at multiple sites and the availability of plasma 

markers are the advantages of our study compared to previous efforts in this field. Testing 

the relationship of the Aβ burden measured by biomarkers in different biological 

compartments is needed in order to characterise the complex dynamic balance between 

blood and CSF biomarkers (19). The usual limitations of clinical cohorts recruited at 

specialised centres apply, including the lack of histopathological verification of the clinical 

diagnoses and the limited generalisability of the findings to the population of interest. To 

sum up, two key conclusions emerge from our study and the literature review. Firstly, 

BACE1 activity and sAPPβ concentration changes in CSF due to AD do not seem to follow 

a consistent pattern, which limits their utility as diagnostic markers. Encouraging results in 

blood (11, 20) need replication and validation before further conclusions can be drawn. 

Secondly, correlations between BACE1 activity and upstream markers of APP cleavage and 

axonal degeneration are highly consistent. Even though correlations are moderate in most 

studies, including the present report, these markers may be candidates for target engagement 

measures in on-going and future trials of BACE1 inhibitors (21).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatterplots showing the correlations between BACE1 activity and the concentrations of 

cerebrospinal fluid proteins (rows) in the different study groups (columns)

NL: normal controls; sMCI: stable mild cognitive impairment; pMCI: progressive mild 

cognitive impairment; AD: Alzheimer’s disease; BACE1: beta-site amyloid precursor 

protein cleaving enzyme 1; sAPPβ: soluble amyloid precursor protein β; tTau: total-Tau; 

pTau181: phosphorylated Tau181.
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Table 1

Characteristics of the study population

Variable NL group sMCI group pMCI group AD group

N 99 75 87 79

Age, years 76 (28) 74 (33) 74 (34) 77 (32)

MMSE, points 29 (5) 28 (6)* 27 (6)* 24 (7)*

Men : women 50 : 49 52 : 23 56 : 33 42 : 38

APOE ε4, %carriers 24.24 45.33 59.77 69.62

CSF BACE1, pM 42 (80) 48 (85) 45 (64) 43 (71)

CSF Aβ1-42, ng/L 222 (225) 178 (211)* 141 (272)* 138 (213)*

CSF tTau, ng/L 61 (152) 72 (226)* 93 (301)* 115 (328)*

CSF pTau181, ng/L 21 (71) 25 (62) 37 (70)* 36 (105)*

CSF sAPPβ, pM 3964 (6439) 3510 (7384) 4260 (7781) 3695 (5608)

Plasma Aβ1-42, pg/mL 150 (228) 161 (323) 155.80 (238.30) 158 (250)

Plasma Aβ1-40, pg/mL 37 (74) 37 (56) 35 (52) 39 (55)

Data presented as median (range) where appropriate.

*
significant difference compared to the NL group at α = 5% (Bonferroni corrected).

NL: normal controls; sMCI: stable mild cognitive impairment; pMCI: progressive mild cognitive impairment; AD: Alzheimer’s disease; MMSE: 
Mini-Mental-State Examination; APOE: Apolipoprotein E; CSF: cerebrospinal fluid; BACE1: beta-site amyloid precursor protein cleaving enzyme 
1; tTau: total-Tau; pTau181: phosphorylated Tau181; sAPPβ: soluble amyloid precursor protein β; Aβ1-40: amyloid β1-40; Aβ1-42: amyloid 

β1-42.
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