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Abstract

We propose a method to adaptively select an optimal cortical segmentation for brain connectivity 

analysis that maximizes feature-based disease classification performance. In standard structural 

connectivity analysis, the cortex is typically subdivided (parcellated) into N anatomical regions. 

White matter fiber pathways from tractography are used to compute an N × N matrix, which 

represents the pairwise connectivity between those regions. We optimize this representation by 

sampling over the space of possible region combinations and represent each configuration as a set 

partition of the N anatomical regions. Each partition is assigned a score using accuracy from a 

support vector machine (SVM) classifier of connectivity matrices in a group of patients and 

controls. We then define a high-dimensional optimization problem using simulated annealing to 

identify an optimal partition for maximum classification accuracy. We evaluate the results 

separately on test data using cross-validation. Specifically, we demonstrate results on the ADNI-2 

dataset, where we optimally parcellate the cortex to yield an 85% classification accuracy using 

connectivity information alone. We refer to our method as evolving partitions to improve 

connectomics (EPIC).
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1. INTRODUCTION

Connectomics [1] – or the study of brain connectivity – has become popular in recent years, 

especially with advances in diffusion imaging and resting-state functional magnetic 

resonance imaging (rsfMRI), which reveal neural pathways and functional synchronization 

between pairs of brain regions. Brain connectivity is often characterized by determining 

connections among a set of N brain regions; usually the chosen regions are in the cortex. In a 

standard analysis of structural connectivity, tractography is applied to diffusion-weighted 

MRI data to extract fibers throughout the brain, and the density, number, or integrity of 

connections between all pairs of cortical regions can be represented as an N × N connectivity 

matrix for each subject in the study [2]. This representation of connectivity has been used to 

further our understanding of aging [3], brain development, left/right hemisphere differences 
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in connectivity, various diseases, psychiatric disorders, and even genetic variants associated 

with brain connectivity [4].

Network connectivity has largely been defined using a bottom-up approach, where one 

makes assumptions on the configuration of nodes, their properties, and the underlying 

covariance structure of their interconnections. For example, a structural connectivity 

network can be created by defining a set of N regions in an anatomical image [1, 5]. 

Alternately, a functional network may be defined based on a specific set of nodes belonging 

to functionally active regions in the gray matter. The choice of regions in the network may 

be based upon regions likely to be activated in specific cognitive tasks [6, 7] or they can be 

based on task-free (resting-state) oscillations of the blood oxygenation level-dependent 

(BOLD) signal [8].

Recently, departing from the conventional structural or functional connectivity paradigms, 

researchers have proposed several choices for refining network nodes in a brain connectivity 

analysis, including ones based on a cortical parcellation or partition, which subdivides the 

entire cortical surface into a set of non-overlapping regions, or patches, that jointly cover it. 

In [9], spectral clustering was used to compute a cortical parcellation based on functional 

connectivity. They demonstrated better ROI homogeneity with their new parcellation 

scheme, and showed better reproducibility of function connectivity when compared to 

anatomical atlases. However, their approach is biased to a configuration with equal sized 

regions. A combination of region growing and hierarchical clustering was used by [10], 

where coherent boundaries for functional connectivity were created. Their method relies on 

a set of stable seeds to generate and grow their regions. Tzourio-Mazoyer et al. defined a 

neurobiologically-informed cortical parcellation based on regions of interest that are known 

to house specific functional areas in the brain [11]. By contrast, Zalesky et al. [12] proposed 

a more exhaustive approach that treats each voxel as its own ROI, resulting in tens of 

thousands of ROIs on the cortex. An intermediate approach proposed by Wig [13] treats the 

elements of random parcellations of the cortex as nodes, but this approach may still fail to 

capture the borders of regions that make sense for capturing pathways.

Clearly, one could start by aggregating or clustering fibers into sets that have similar 

trajectories, and some clustering methods treat fibers as high-dimensional vectors and group 

them. Even so, if fiber sets were clustered into a set of bundles, the boundaries of the 

cortical regions they connect might not be easily inferred from the available data - the target 

regions for different bundles may be interleaved or overlap. Also, the meaning of 

connectivity may depend on the scale of the parcellation. An anatomically meaningful 

parcellation might cluster or bundle fibers with similar geometries or trajectories, but from a 

mathematical point of view there may be even better partitions that best address specific 

problems. It may be possible to define connectivity in a way that enhances our ability to 

differentiate patients from controls, predict decline, or identify genetic effects on brain 

connectivity.

In this paper, we formulate a top-down data-driven approach, and ask the question: what 

kinds of cortical parcellations lead to better detection of disease effects on brain 

connectivity? The answer depends upon the statistical method used to detect significant 
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effects of disease, and the disease itself, as different diseases may affect some connections 

more than others. Fronto-temporal dementia, for example, preferentially erodes connectivity 

of frontal and temporal lobes to the rest of the brain, whereas Alzheimer’s disease typically 

has a more dynamic trajectory with connections lost first in temporal, limbic, and parietal 

association areas, and then in frontal and eventually primary cortical areas. Arguably, it 

makes sense to adopt a data-driven approach to estimate the optimal parcellation 

corresponding to a given disease effect that we intend to detect. We define the criteria to 

optimize the nodes in the connectivity network, by favoring a parcellation that improves the 

classification rate in discriminating disease. By coupling the network definition and the 

problem we aim to solve, our adaptive method optimizes the nodes in the network for the 

problem at hand. The type of networks that we study here are similar to the inference-based 

networks [14] that rely on the effective connectivity derived from the statistical 

dependencies of various nodes (regions) on each other, but whose nodes are optimally 

chosen to improve the classification performance of brain disease.

2. METHODS

2.1 Subject Data

Our data was collected from 87 subjects scanned as part of the ADNI-2 [15] project in 

which diffusion imaging was added to the standard MRI protocol. The dataset included 50 

normal controls and 37 Alzheimer’s disease (AD) patients. Subjects were scanned on 3-

Tesla GE Medical Systems scanners, which acquired both T1-weighted 3D anatomical 

spoiled gradient echo (SPGR) image volumes, and diffusion-weighted images (DWI; 256 × 

256 matrix; voxel size: 2.7 × 2.7 × 2.7 mm3; scan time = 9 min). For each subject, the DWI 

consisted of 41 diffusion-weighted images with b = 1000 s/mm2 and 5 T2-weighted b0 

images. The ADNI data would not be considered high angular resolution, but the protocol 

was optimized to avoid long scan times.

2.2 Connectivity Matrices

The T1-weighted images were processed as follows. We first removed extra-cerebral tissues 

from the anatomical images, corrected the images for inhomogeneity, aligned them to the 

Colin27 template with FSL Flirt [16], and used FreeSurfer [17] for cortical extraction and 

labeling. The cortical segmentation was dilated with a 5 mm isotropic box kernel to ensure 

intersection with the white matter. For the diffusion-weighted images (DWI), we corrected 

for head motion and eddy current distortion in each subject by aligning the images to the 

average b0 image with FSL’s eddy correct tool. The images were EPI corrected with an 

elastic registration algorithm using mutual information that aligned the DWI images to the 

T1-weighted scans. We used an optimized global probabilistic tractography method based 

on the Hough transform [18] to generate 35,000 fibers per subject.
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ALGORITHM I

Optimization of Partitions

Inputs: connectivity_matrices, labels

1 current_partition = AnatomicPartition()

2 pca_matrices = PCA(connectivity_matrices, current_partition)

3 current_accuracy = LOOSVM(pca_matrices, labels)

4 best_partition = current_partition

5 best_accuracy = current_accuracy

6 for i in 1 to max_step do

7  T = (max_step − i + 1)/max_step

8  new_partition = GeneratePartition(current_partition, T)

9  pca_matrices = PCA(connectivity_matrices, new_partition)

10  new_accuracy = LOOSVM(pca_matrices, labels)

11  if P(new_accuracy, current_accuracy, T) > random() then

12   current_partition = new_partition

13   current_accuracy = new_accuracy

14  if new_accuracy > best_accuracy then

15   best_partition = new_partition

16   best_accuracy = new_accuracy

Output: best_partition, best_accuracy

Pseudocode for our simulated annealing setup to find the optimal connectivity matrix partition that maximizes the accuracy 
of leave-one-out cross-validated support vector machine (LOOSVM) classification of control subjects vs. Alzheimer’s 
disease. The algorithm is initialized to the anatomical parcellation from Freesurfer and uses principal components analysis 
(PCA) to reduce the matrices dimension for efficient classification. The input is a set of connectivity matrices based on the 
anatomical segmentation and labels distinguishing the two classes and the output is the best partition and its corresponding 
accuracy. This optimization was on the training data for each fold and the best partition applied to the test subject.

We generated connectivity matrices for the subject by combining the fibers and dilated 

cortical segmentation for each subject. For all pairs of cortical regions, we find the number 

of fibers that connect them to create an N × N connectivity matrix (Fig. 2) where N=68 for 

the 34 anatomical regions segmented in each hemisphere by Freesurfer. We normalized the 

matrix by the number of fibers. The nodes of this matrix represent the basic building blocks 

of the connectivity network and our method tries to combine subsets of these regions into 

super-regions to find a better representation of brain connectivity.

2.3 Partition Representation

We represent a possible combination of the anatomical regions as a set partition of the set of 

N elements. A partition of a set composed of N regions is a set of nonempty subsets such 

that each element is in only one of the subsets. This definition means a partition can specify 

one to N super-regions.

Our definition of distance between partitions is borrowed from an application in 

computational genetics [19]. The distance between two partitions, a and b, is defined as the 

number of elements in a that need to be re-assigned to other super-regions to make it 
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equivalent to b. This convention allows us to specify our search range when computing an 

optimal partition.

The total number of partitions of a set of N-elements is the Bell number [20]. When N=68, 

the Bell number is 3.66 × 1070 making an exhaustive search of the space for the best 

partition for connectivity based classification infeasible. Instead we opt for an approximate 

search using simulated annealing to generate samples from this space.

2.4 Dimensionality Reduction

We used principal components analysis (PCA) [21] to reduce the dimensionality of the 

connectivity matrices specified by a partition. PCA uses orthogonal transformation to 

generate an orthogonal basis to span the data space. We projected our data onto a subset of 

these basis vectors that accounted for greater than 95% of variance from our data. For 

example, this projection reduces the number of points for a single subject from 4624 to 

around 20 points in the case of a 68 × 68 connectivity matrix and allows more efficient 

classification.

2.5 Classification

We use support vector machines (SVMs) [22] to classify the dimensionality reduced 

connectivity matrices when comparing the groups of healthy controls and patients with 

Alzheimer’s disease. An SVM is a supervised machine-learning algorithm that classifies 

two-class data by training (tuning the free parameters of a classification function) to find the 

best hyperplane between the two classes. Our classification design tests the information 

provided by the connectivity configuration in a leave-one-out cross-validation setting. We 

evaluate the results based on accuracy, sensitivity, and specificity.

In our design, this cross-validation is used to find the optimal partition based on training 

data and is nested within another leave-one-out cross-validation that evaluates the partition 

on separate, disjoint test dataset.

2.6 Simulated Annealing

To find the optimal partition efficiently in such a large search space we used a generic 

probabilistic metaheuristic to approximate a global maximum called simulated annealing 

[23]. Simulated annealing is inspired by annealing from metallurgy and works by using a 

temperature parameter to begin a search that encompasses a large range of values and is 

slowly constrained as the temperature is lowered. We provide the pseudocode for finding the 

partition that maximizes classification accuracy using the simulated annealing algorithm in 

Algorithm 1.

The procedure begins with the basic anatomical connectivity matrices and evaluates their 

ability to classify controls vs. AD based on accuracy. This is used as the first state in the 

simulated annealing chain. The algorithm carries out a set number of iterations (max_step, 

set to 1000 in our experiments) where a new partition is generated and evaluated to see if it 

has better performance. We generate the new partition by randomly reassigning k anatomical 

regions to super-regions, where k is proportional to the current temperature, T, which 
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decreases proportional to the iteration count. We use the new partition to generate the 

corresponding connectivity matrix configuration for each subject, reduce its dimension using 

PCA, and evaluate its performance with leave-one-out cross-validated SVM (LOOSVM). If 

the new partition has a higher accuracy it is chosen as the next state, but if it is a lower 

accuracy it is selected based on the acceptance probability [23]

(1)

where Δ is the difference between the current and new partition accuracies. This allows the 

algorithm to search a greater range by moving to points that may not improve the accuracy, 

but could help avoid getting trapped in a local maximum.

Throughout the algorithm we keep track of the best partition and its corresponding accuracy, 

and both are retained as the final output.

2.7 Experiments

We compared the accuracy, sensitivity, and specificity from classification of control subjects 

vs. AD patients based on their connectivity matrices derived from the anatomical 

segmentation from Freesurfer and the best partition from our method. Our design used 

leave-one-out cross-validation with PCA for dimensionality reduction on the subject 

matrices to represent them efficiently.

To compute statistics for each approach, we used two cross-validation runs. In the first, we 

used the connectivity matrices based on the 68 Freesurfer regions to represent each subject 

and learned an SVM based on the training subjects. We tested the resulting SVM on the left 

out subjects and repeated this for each fold. Our second run involved running our simulated 

annealing optimization on the training subjects to learn the best partition and best 

connectivity matrices to represent connectivity. We then tested the resulting connectivity 

matrix configuration on the left out subjects and repeated for each fold.

3. RESULTS

In Fig. 2 we show a sample connectivity matrix created using the Freesurfer anatomical 

parcellation and a visualization of the cortical regions. Its data is from an AD patient and 

creates a 68 × 68 connectivity matrix where the regions are randomly colored and displayed 

on the right side.

An example matrix computed from our method based on training data in one of the folds 

from our cross-validation setup is shown in Fig. 3. This is also from an AD subject and is 36 

× 36 in dimension. On the right side of the figure we show the 36 super-regions that are 

created by grouping the original 68 regions into larger areas of the cortex.

The results of the leave-one-out cross-validated classification using the full 68 × 68 

anatomical parcellation were 82.7% accuracy, 78.3% specificity, and 86% sensitivity. Our 
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method produced an optimal cortical parcellation at each fold during classification and gave 

results of 85.0% accuracy, 81.0% specificity, and 88% sensitivity.

4. DISCUSSION

The cross-validation results showed that our method was able to improve the accuracy, 

specificity, and sensitivity of the classification by choosing a different cortical segmentation 

and nodes for representing connectivity. As shown in Fig. 3, the configuration from our 

method reduced the number of distinct regions on the cortex and may emphasize cortical 

regions that are critical to brain connectivity in Alzheimer’s disease. In contrast to the 

approach by [24], where features of grey matter integrity on the cortical surface are used 

exclusively for discriminatory purposes, our method uses classification of disease as the 

energy function to search for the best cortical parcellation.

Our method was able to find a segmentation of the cortex that improved the accuracy of the 

classification. We were able to represent, quantify, and search the space of partitions based 

on their classification accuracy. In contrast to the approach by Zalesky et al. [25], which 

focused on node selection based on both node resolution and parcellation for connectivity 

analysis, our method optimizes an objective function on the space of parcellations and 

nodes. One could potentially use different methods to select nodes: for example, one could 

allow a diffeomorphic flow of the cortical parcellation, and use the iterative flow to optimize 

the classification performance. We could also consider starting with the anatomic 

parcellation, and use the merge-split operation to improve the performance.

Future work could explore using different cooling schedules and acceptance probabilities or 

using training data to learn possible regimes that are closer to the distribution of the 

underlying data. Other connectivity measures such as functional connectivity could be used 

to determine the changes in the nodes of connectivity matrix based on multi-modal 

information. Here, we chose the classification rate as our objective function, but the 

framework allows other measures to be used such as the detection of genetic effects, age 

effects, sex or hemispheric differences, or changes in development.
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Figure 1. 
An overview of our framework to evaluate the brain connectivity represented by a cortical 

segmentation in a cohort of controls and patients. For an arbitrary segmentation we create a 

connectivity matrix of the fiber connectivity between regions. We reduce the dimension of 

the fiber connectivity using principal components analysis (PCA) and use the features in 

support vector machine (SVM) classification between the two groups. The resulting 

accuracy is an assessment of the quality of the segmentation.
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Figure 2. 
The 68 × 68 connectivity matrix (left) where the rows and columns correspond to the 68 (34 

in each hemisphere) anatomical regions (right) segmented with Freesurfer. Together the 

regions provide a base set of nodes as the building blocks of our algorithm that seeks to find 

the configuration of these nodes into groups of regions or super-regions that best represents 

brain connectivity for classifying Alzheimer’s disease vs. controls.
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Figure 3. 
This 36 × 36 connectivity matrix (left) represents the optimal partition computed by our 

algorithm from the training subject for a single leave-one-out cross-validated support vector 

machine (SVM) classification fold. It is the result from the simulated annealing process for 

the best combination of anatomical regions for our sample. In this case it was 36 super-

regions (right) that is able to represent brain connectivity in a way to maximize the accuracy 

of classification.
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