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We compare a variety of different anatomic connectivity measures, including several novel ones, that
may help in distinguishing Alzheimer’s disease (AD) patients from controls. We studied diffusion-
weighted magnetic resonance imaging from 200 subjects scanned as part of the Alzheimer’s Disease
Neuroimaging Initiative. We first evaluated measures derived from connectivity matrices based on
whole-brain tractography; next, we studied additional network measures based on a novel flow-based
measure of brain connectivity, computed on a dense 3-dimensional lattice. Based on these 2 kinds of
connectivity matrices, we computed a variety of network measures. We evaluated the measures’ ability
to discriminate disease with a repeated, stratified 10-fold cross-validated classifier, using support vector
machines, a supervised learning algorithm. We tested the relative importance of different combinations
of features based on the accuracy, sensitivity, specificity, and feature ranking of the classification of 200
people into normal healthy controls and people with early or late mild cognitive impairment or AD.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Current approaches used to classify Alzheimer’s disease (AD)
(Klöppel et al., 2008; Kohannim et al., 2010) rely on features such as
volumetric measures from anatomic regions in magnetic resonance
imaging (MRI) of the brain, cerebrospinal fluid biomarkers, apoli-
poprotein E genotype, age, sex, body mass index, and, in some
cases, clinical and cognitive tests. Here, we attempted to improve
our understanding of the best features for AD classification by
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studying the utility of a variety of brain connectivity measures
derived from diffusion-weighted images (DWIs) of the brain. Some
of the features we chose came from standard tractography-based
maps of fiber connectivity (Rubinov and Sporns, 2010) between
brain regions; we supplemented these with more novel features
derived from a flow-based connectivity method (Prasad et al.,
2013b). We aimed to understand the information contained in the
raw connectivity matrices versus network measures derived from
them; we used all the resulting features to differentiate diagnostic
categories related to AD (e.g., mild cognitive impairment [MCI]). To
do this, we employed support vector machines (SVMs), a machine
learning algorithm for classification, to learn from training data and
then classify a separate test set.

Cui et al. (2012) used SVMs to classify amnestic MCI based on
features indexing anatomic atrophy through segmentations of T1-
weighted MRI and fraction anisotropy values from diffusion im-
ages using tract-based spatial statistics. They ranked the features
using Fisher scores and selected the best-performing subset using
cross-validation. They achieved an accuracy of 71.09%, sensitivity of
51.96%, and specificity of 78.40% for the classification of amnestic
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Table 1
The demographic details for our age- and sex-matched sample

All NC EMCI LMCI AD

N 200 50 74 38 38
Sex 115 M/85 F 23 M/27 F 46 M/28 F 24 M/14 F 22 M/16 F
Age 73.1 � 7.5 72.4 � 6.2 72.5 � 8.0 72.6 � 5.6 75.8 � 9.1

The number of subjects (N), sex, and age are given for the full sample (all), elderly
NCs, EMCI and LMCI subcategories, and AD patients. We carried out 2-sample t tests
comparing age and sex between all pairs of subcategories and found no significant
differences that passed the multiple comparison threshold.
Key: AD, Alzheimer’s disease; EMCI, early mild cognitive impairment; F, female;
LMCI, late MCI; M, male; NC, normal controls.

Table 2
List of the 34 regions that are segmented in the cortex by FreeSurfer in each
hemisphere, making a total of 64 regions

Cortical regions

1. Banks of the superior
temporal sulcus

18. Pars orbitalis

2. Caudal anterior cingulate 19. Pars triangularis
3. Caudal middle frontal 20. Peri calcarine
4. Cuneus 21. Postcentral
5. Entorhinal 22. Posterior cingulate
6. Fusiform 23. Precentral
7. Inferior parietal 24. Precuneus
8. Inferior temporal 25. Rostral anterior cingulate
9. Isthmus of the cingulate 26. Rostral middle frontal
10. Lateral occipital 27. Superior frontal
11. Lateral orbitofrontal 28. Superior parietal
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MCI. Our method differs in that we use only measures of connec-
tivity from diffusion images for our feature set, and the ranking is
computed within a set of features we are interested in evaluating.
Laplacian regularized least squares was used to classify AD in Zhang
and Shen (2011) where they tried to incorporate structural MRI, PET
imaging data, and cerebrospinal fluid biomarker features from MCI
into an AD classifier, which achieved a performance of almost 95%
accuracy. In our case, we explore classification of both MCI and AD
and focus on the information contained in different types of con-
nectivity features. Cortical thickness features from structural MRI
were evaluated by Eskildsen et al. (2012) using classification
although they focused on conversion from MCI to AD and achieved
accuracies ranging from 70% to 76% depending on the time to
conversion, in contrast we used classification as a means to un-
derstand the information captured in measures of connectivity. The
emphasis in the present study is to explore and understand which
diffusion-based network measures are predictive of AD in contrast
to the goal of optimizing the accuracy of classification in previous
studies.

Our results and experiments seek to characterize the information
contained in different features used to represent connectivity in the
brain. This is related to the problem of feature selection methods
(Guyon and Elisseeff, 2003), which rank features in a meaningful
way to understand the ones that are important and those that can be
discarded because theyare redundant or irrelevant. One approach to
select the best features (Peng et al., 2005) is to use mutual infor-
mation to find the most relevant features for a target class. Another
popular approach is the least absolute shrinkage and selection
operator (Tibshirani, 1996) that uses a linear model and its regres-
sion coefficients to choose the best subset of features. De Martino
et al. (2008) chose the most informative voxels in functional MR
images using a recursive feature elimination approach that repeat-
edly trains an SVM model to remove features contributing a small
amount to the trainingmodel. In our technique, we use the accuracy
from classification to evaluate different types of brain connectivity
features and to understand which ones may have an advantage to
classifying MCI or AD. In addition, we used the SVMs to rank the
features within the different feature sets to get a better description
of what features were driving the classifier.

Our connectivity measure computation, classification frame-
work, and ranking were applied to publicly available structural and
diffusionMRI from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Mueller et al., 2005). We studied neuroimaging data from
200 subjects: 50 normal healthy controls, 38 people with late MCI
(LMCI), 74 with early MCI (EMCI), and 38 AD patients.

We extracted measures of connectivity between 68 automatically
parcellated regions of interest on the cortex using both fiber and flow
connectivity methods and organized the information into connec-
tivity matrices. From these connectivity matrices, we computed a
variety of widely used network measures. These features were then
fed into a repeated, stratified 10-fold cross-validation design, using
SVMs to classify controls versus AD, controls versus EMCI, controls
versus LMCI, and EMCI versus LMCI. Our results show a significant
difference in the accuracy of various combinations of features that
were used to distinguish between the various diagnostic groups.
12. Lingual 29. Superior temporal
13. Medial orbitofrontal 30. Supramarginal
14. Middle temporal 31. Frontal pole
15. Parahippocampal 32. Temporal pole
16. Paracentral 33. Transverse temporal
17. Pars opercularis 34. Insula

These regions represent the nodes in the connectivity network for both the fiber and
flow connectivity methods. In the network, each method calculated the connectivity
strength between all pairs of regions. For fiber connectivity, this is computed as the
number of tractography fibers that connect the 2 regions and for the flow connec-
tivity it is computed using an approximate maximum-flow algorithm between the
regions.
2. Methods

2.1. Data

Our data were from 200 subjects scanned as part of ADNI-2, a
continuation of the ADNI project in which diffusion imaging
(among other scans) was added to the standard MRI protocol.
The dataset included diffusion MRI data from 50 cognitively
normal controls (C), 74 EMCI and 38 LMCI subjects, and 38
people with AD.

Subjects were scanned on 3-T GE Medical Systems scanners,
which collected both T1-weighted 3-dimensional anatomic spoiled
gradient-echo sequences (256� 256matrix, voxel size¼ 1.2�1.0�
1.0 mm3, inversion time ¼ 400 ms, repetition time ¼ 6.98 ms, echo
time ¼ 2.85 ms, and flip angle ¼ 11�) and DWIs (256 � 256 matrix,
voxel size 2.7 � 2.7 � 2.7 mm3, scan time ¼ 9 minutes). Per subject,
the DWIs consisted of 41 diffusion images with b ¼ 1000 seconds/
mm2 and 5 T2-weighted b0 images. This protocol was chosen after
an effort to study trade-offs between spatial and angular resolu-
tions in a tolerable scan time (Jahanshad et al., 2011).

The groupswerematched in both age and sex that we confirmed
using 2-sample t tests andmultiple comparison correction. Detailed
demographic information for each subgroup of subjects is listed in
Table 1.

2.1.1. Image preprocessing
Weprocessed the T1-WIs to parcellate them into 68 cortical regions.

We first automatically removed extracerebral tissues from the
anatomic images using ROBEX (Iglesias et al., 2011a), a method that
learned from manual segmentations of hundreds of healthy young
adults. Skull-stripped brains were inhomogeneity corrected using the
N3 tool of the Montreal Neurologic Institute (Sled et al., 1998) and
aligned to the Colin27 template (Holmes et al., 1998) with the Oxford
Centre for Functional Magnetic Resonance Imaging of the Brain
(FMRIB)’s Linear Image RegistrationTool (FLIRT) (Jenkinson et al., 2002).



Fig. 1. We present an example 68 � 68 flow-connectivity matrix from our data. This
matrix was derived using a flow-connectivity method that computed the maximum
amount of flow between pairs of regions of interest on the cortex. In this subject, the
connections within each hemisphere are far more extensive than those across the
hemispheres. A brighter color means there is a stronger connectivity (in the sense of
greater normalized fiber counts) between the 2 areas. We use this matrix, along with the
standard fiber connectivity matrix, to compute network topology measures. These are
then used in a machine-learning model to classify different disease states in our data.

Fig. 2. A summary of how we select features of brain connectivity and classify them
using support vector machines (SVMs). Our framework begins by computing hundreds
of thousands of network measures from both fiber and flow connectivity matrices. We
created 9 different subsets of features that are combinations of the network measures
and raw connectivity matrices from a fiber and flow-based connectivity method. Each
subset is evaluated by understanding their performance in classification problems
based on the 4 different groups of subjects. These problems include control versus
Alzheimer’s disease (AD), control versus early mild cognitive impairment (EMCI),
control versus late MCI (LMCI), and EMCI versus LMCI. For each problem, we used a
stratified 10-fold cross-validated SVM classifier to understand how well the feature
subset was able to discriminate between the 2 classes. The metrics used to evaluate the
classifier performance were accuracy, sensitivity, and specificity.
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The resulting images were segmented into 34 cortical regions (in
each hemisphere) using FreeSurfer (Fischl et al., 2004) and are listed
in Table 2. These segmentations were then dilated with an isotropic
box kernel of 5 � 5 � 5 voxels to make sure they intersected with the
white matter for subsequent connectivity analysis.

We corrected head motion and eddy current distortion in each
subject by aligning the DWIs to the average b0 image with FSL’s eddy
correct tool. The brain extraction tool (Smith, 2002) was then used to
skull strip the brains. We corrected echoplanar imaging (EPI) distor-
tion in these images with an elastic mutual information registration
algorithm (Leowet al., 2007) that aligned theDWIs to the T1-weighted
scans. Preprocessing steps are further detailed in Nir et al. (2012).

We used a global probabilistic tractography method based on
the Hough transform (Aganj et al., 2011). Although ADNI scans are
not high angular resolution, because of the need for a fast scan, this
method takes advantage of all the diffusion information provided at
each voxel, parametrized by the orientation distribution function
(ODF). The Hough method generates curves in the fiber space and
scores them based on fractional anisotropy and the ODF at each
point along the curve. Fractional anisotropywas computed from the
single-tensor model of diffusion (Basser and Pierpaoli, 1996). ODFs
at each voxel were computed with a normalized dimensionless
estimator derived from Q-ball imaging (Aganj et al., 2010). This
model is more accurate and outperforms the previous Q-ball im-
aging definition (Tuch, 2004), offering better detection of multiple
fiber orientations (Aganj et al., 2010; Fritzsche et al., 2010) and
additional information for the scoring function.

To generate close to 50,000 fibers per subject, we used an accel-
erated form of this tractography method (Prasad et al., 2013c). Our
optimizations included an ODF look-up table and a randomized search
of the parameter space, to generate fibers in<1/60 of the original time.

2.2. Connectivity features

We used features derived from brain connectivity matrices that
categorize connections between different regions of interest on the
cortex. From these matrices, we computed a set of network mea-
sures that quantify different network characteristics. We chose
different subsets of these features in our experiments. We used the
classification accuracy as a metric to understand the utility of the
connectivity information captured, in the context of diagnostic
classification of AD.

2.2.1. Connectivity matrix
We computed connectivity matrices using 2 methods. The first

quantifies pairwise connectivity strength as the relative proportion
of fibers connecting the 2 brain regions. The second is a novel
method that computes the maximum flow between regions by
interpreting the diffusion image as a network of pipes or a flow
graph (these terms are defined further subsequently).

Our first method takes fibers computed using the accelerated
Hough tractography method and computes the number that
intersect pairs of regions from the 68 cortical areas. We used these



Fig. 3. We present the results from the stratified 10-fold cross-validated (CV) support vector machine classification of controls versus Alzheimer’s disease (AD) using 9 subsets of
connectivity features. These features come from both a fiber connectivity method (FI) and flow connectivity method (FL) and include a variety of graph-based network measures (N)
along with the raw connectivity matrices (M). We evaluated the performance of each subset’s ability to classify using accuracy, sensitivity, and specificity. The CV was repeated 30
times for each feature set using corresponding CV folds, and we evaluated differences using paired-sample t tests. The bar plot shows the mean accuracy, sensitivity, and specificity
over the 30 CV results along with 95% confidence intervals. FI(N) þ FL(N) had the highest accuracy of 78.2% and was not significantly different (p > 0.05) in performance from FI(N)
and FI(N þ M).
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frequencies to populate a 68 � 68 connectivity matrix (with no
normalization).

The second method we used is a flow-based measure of
anatomic connectivity between all region pairs (Prasad et al.,
2013a). In short, we first created a lattice network by con-
necting all lattice points (voxel centers) to all their immediate
Fig. 4. We present the results from the stratified 10-fold cross-validated (CV) support vector
(EMCI) using 9 subsets of connectivity features. These features come from both a fiber conn
based network measures (N) along with the raw connectivity matrices (M). We evaluate
specificity. The CV was repeated 30 times for each feature set using corresponding CV folds,
accuracy, sensitivity, and specificity over the 30 CV results along with 95% confidence interva
0.05) in performance from FI(N þ M) þ FL (N þ M).
neighbors in 3 dimension. Edge weights were based on the ODF
value in the direction of the edge. These edges were inter-
preted as pipes and their weight as the capacity of the pipe. In
contrast with counting fibers between ROIs, we computed the
maximum flow or capacity between each ROI pair, by following
connecting tractography fibers projected onto the flow network
machine classification of controls versus subject with early mild cognitive impairment
ectivity method (FI) and flow connectivity method (FL) and include a variety of graph-
d the performance of each subset’s ability to classify using accuracy, sensitivity, and
and we evaluated differences using paired-sample t tests. The bar plot shows the mean
ls. FI(N þ M) had the highest accuracy of 59.2% and was not significantly different (p >



Fig. 5. We present the results from the stratified 10-fold cross-validated (CV) support vector machine classification of controls versus subject with late mild cognitive impairment
(LMCI) subject using 9 subsets of connectivity features. These features come from both a fiber connectivity method (FI) and flow connectivity method (FL) and include a variety of
graph-based network measures (N) along with the raw connectivity matrices (M). We evaluated the performance of each subset’s ability to classify using accuracy, sensitivity, and
specificity. The CV was repeated 30 times for each feature set using corresponding CV folds, and we evaluated differences using paired-sample t tests. The bar plot shows the mean
accuracy, sensitivity, and specificity over the 30 CV results along with 95% confidence intervals. FL(N) had the highest accuracy of 62.8% and was significantly different (p > 0.05) in
performance from all other subsets.
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edges. We used a modified maximum-flow algorithm that is
robust to noise in the diffusion data guided by biologically
viable pathways and structure of the brain. The resulting flow
is used to create a distinct 68 � 68 flow-connectivity matrix.
Figure 1 gives an example flow-connectivity matrix using this
method from our data. The lack of detected interhemispheric
connections could be because most of them travel through the
Fig. 6. We present the results from the stratified 10-fold cross-validated (CV) support vector
late MCI (LMCI) using 9 subsets of connectivity features. These features come from both a fib
graph-based network measures (N) along with the raw connectivity matrices (M). We evalu
specificity. The CV was repeated 30 times for each feature set using corresponding CV folds,
accuracy, sensitivity, and specificity over the 30 CV results along with 95% confidence interv
0.05) in performance from all other subsets.
corpus callosum; so, it is difficult to detect fibers, for example,
that connect frontal regions in the left hemisphere to the
temporal regions in the right hemisphere. Additional research
(Gong et al., 2009; Hagmann et al., 2008; Ingalhalikar et al.,
2013) gives more examples of connectivity matrices that have
similar interhemispheric and intrahemispheric distributions of
connections.
machine classification of subjects with early mild cognitive impairment (EMCI) versus
er connectivity method (FI) and flow connectivity method (FL) and include a variety of
ated the performance of each subset’s ability to classify using accuracy, sensitivity, and
and we evaluated differences using paired-sample t tests. The bar plot shows the mean
als. FI(N) þ FL(N) had the highest accuracy of 63.4% and was significantly different (p >



Table 3
The top 5 ranked features from each of the 9 feature subsets in the controls versus AD classification problem

Controls vs. AD

Feature set Rank 1/Th. Rank 2/Th. Rank 3/Th. Rank 4/Th. Rank 5/Th.

FI(N) Binary nodal
Betweenness
Centrality

0.5 Binary nodal
Betweenness
Centrality

0.6 Binary nodal
Betweenness
Centrality

0.7 Binary nodal
Betweenness
Centrality

0.8 Binary nodal
Betweenness
Centrality

0.9

FI(M) R-entorhinal <->L-
pars opercularis

0.2 R-fusiform <->L-
pars opercularis

0.2 R-inferior parietal
<->L-pars
opercularis

0.2 R-inferior temporal
<->L-pars
opercularis

0.2 R-isthmus of the
cingulate <->L-
pars opercularis

0.2

FI(N þ M) Binary nodal
Betweenness
Centrality

0.5 Binary nodal
Betweenness
Centrality

0.6 Binary nodal
Betweenness
Centrality

0.7 Binary nodal
Betweenness
Centrality

0.8 Binary nodal
Betweenness
Centrality

0.9

FL(N) Edge Neighborhood
overlap

0.2 Edge Neighborhood
overlap

0.2 Edge Neighborhood
overlap

0.3 Matching index 0.2 Edge Neighborhood
overlap

0.3

FL(M) R-posterior
cingulate <->L-
parahippocampal

0.3 R-precentral <->L-
parahippocampal

0.3 R-precuneus
<->L-
parahippocampal

0.3 R-rostral anterior
cingulate
<->L-
parahippocampal

0.3 R-rostral middle
frontal <->L-
parahippocampal

0.3

FL(N þ M) Edge Neighborhood
overlap

0.2 Edge Neighborhood
overlap

0.2 Matching index 0.2 Edge Neighborhood
overlap

0.3 Edge Neighborhood
overlap

0.3

FI(N) þ FL(N) FL(N): strengths 0.1 FL(N): edge
Neighborhood
overlap

0.3 FL(N): edge
Neighborhood
overlap

0.3 FI(N): binary
nodal Betweenness
Centrality

0.5 FI(N): binary nodal
Betweenness
Centrality

0.6

FI(M) þ FL(M) FL(M): R-posterior
cingulate <->L-
parahippocampal

0.3 FL(M): R-precentral
<->L-
parahippocampal

0.3 FL(M): R-precuneus
<->L-
parahippocampal

0.3 FL(M): R-rostral
anterior cingulate
<->L-
parahippocampal

0.3 FL(M): R-rostral
middle frontal
<->L-
parahippocampal

0.3

FI(N þ M) þ FL(N þ
M)

FL(N): strengths 0.1 FL(N): edge
Neighborhood
overlap

0.3 FL(N): edge
Neighborhood
overlap

0.3 FI(N): binary
nodal Betweenness
Centrality

0.5 FI(N): binary nodal
Betweenness
Centrality

0.6

The featureswere computed using a fiber connectivity (FI) andflow connectivity (FL)methods using a variety of graph-based networkmeasures (N) and the raw connectivitymatrices
(M). The network measures were computed from binary and weighted connectivity matrices that were filtered using a proportional threshold ranking from 0.1 to 1.0 (meaning all
edges are retained) at intervals of 0.1. The features are shown along with their corresponding threshold (Th.). The ranking is derived from the support vector machine classification
boundary and is averagedover eachof the 10 cross-validated folds and30 repeat runs. In cases thatuse features including the rawconnectivitymatrices at different thresholds, the label
includes the 2 regions from the FreeSurfer segmentation that an edge connects. The symbol “<->” represents theundirected edge connecting the 2 regions in the connectivity network.
Key: AD, Alzheimer’s disease; L, left; R, right.
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2.2.2. Network measures
We represent the 2 types of connectivity matrices with network

measures described in Rubinov and Sporns (2010) and computed
them with the Brain Connectivity Toolbox. We derived these mea-
sures from both weighted and binary connectivity matrices: global
efficiency, transitivity, path length, modularity, small world, radius,
diameter, participation, local efficiency, optimal community struc-
ture, eigenvector centrality, and eccentricity. In addition, we
computed density, number of vertices, number of edges, subgraph
centrality, assortativity, nodal flow coefficient, average flow coeffi-
cient, total flow across central node, degree, matching index, edge
neighborhood overlap, node pairs degree, and connected compo-
nent sizes from only binary matrices and strengths from only
weighted matrices. As is standard, 10 different thresholds were
applied to each connectivity matrix, to preserve a fixed fraction of
the weights ranging from 0.1 to 1, in intervals of 0.1.

In some cases, a network measure was computed for each node
in the connectivity network, and this was the case for participation,
local efficiency, and eigenvector centrality among others. This
resulted in a vector of 68 values for a single network measure. For
matching index or edge neighborhood overlap, the output was a
68� 68matrix of values. If a featurewasmultidimensional, we took
the mean value in addition to its raw values. The results from each
network measure were vectorized, and the entire set contained
14,930 features per threshold, making a total of 149,300 network
measures per connectivity method. In addition, there are 2278
unique values from each connectivity matrix. These values repre-
sent the lower diagonal elements (not including the actual diago-
nal) and when factoring in the 10 thresholds make 22,780
connectivity matrix features per connectivity method. In total,
there are (149,300 networkmeasure featuresþ 22,780 connectivity
matrix features) � (2 connectivity methods: fiber and flow) ¼
344,160 possible features per subject.
2.3. Classification

SVMs (Cortes and Vapnik, 1995) are supervised learning models
that we used to classify our connectivity features, to differentiate
between disease states. SVMs classify 2-class data by training a
model, or classification function, to find the best hyperplane be-
tween the 2 classes in the data. Let xi ˛Rd represent the connec-
tivity feature vectors, where d is the dimension of the feature set of
interest and Yi ¼ � be their label with �1 and 1 representing 2
different disease states that could include controls, EMCI, LMCI, or
AD. Our target hyperplane is as follows:

hw; xi þ b ¼ 0;

where w˛Rd should separate as many data points as possible. We
find it by solving the L2-norm problem:

arg min
w;b;v

 
1
2
hw;wi þ D

X
i

v2i

!
;

such that

yiðhw; xii þ bÞ � 1� vi;

vi � 0;

where vi are slack variables and D is a penalty parameter. In many
instances, a hyperplane cannot be found to completely separate the



Table 4
The top 5 ranked features from each of the 9 feature subsets in the controls versus EMCI classification problem

Controls vs. EMCI

Feature set Rank 1/Th. Rank 2/Th. Rank 3/Th. Rank 4/Th. Rank 5/Th.

FI(N) Binary edge
betweenness
centrality

0.4 Binary edge
betweenness
centrality

0.5 Binary edge
betweenness
centrality

0.4 Binary edge
betweenness
centrality

0.6 Binary edge
betweenness
centrality

0.7

FI(M) R-transverse
temporal
<->R-banks of
the superior
temporal sulcus

1.0 R-inferior parietal
<->L-temporal
pole

1.0 R-inferior temporal
<->L-temporal
pole

1.0 R-isthmus of the
cingulate <->L-
temporal pole

1.0 R-lateral occipital
<->L-temporal
pole

1.0

FI(N þ M) Binary edge
betweenness
centrality

0.3 Binary edge
betweenness
centrality

0.3 Edge neighborhood
overlap

0.3 Edge neighborhood
overlap

0.3 Binary edge
betweenness
centrality

0.4

FL(N) Community
structure

0.4 Matching index 0.1 Binary edge
betweenness
centrality

0.3 Binary edge
betweenness
centrality

0.3 Edge neighborhood
overlap

0.1

FL(M) R-peri calcarine
<->L-pars
opercularis

0.5 R-lateral
orbitofrontal <->L-
lateral orbitofrontal

1.0 R-medial
orbitofrontal <->L-
insula

0.8 R-pars opercularis
<->L-lateral
orbitofrontal

0.3 R-pars orbitalis
<->L-lateral
orbitofrontal

0.3

FL(N þ M) Binary edge
betweenness
centrality

0.3 Binary edge
betweenness
centrality

0.3 Matching index 0.1 R-Transverse
temporal <->R-
superior temporal

0.3 Community
structure

0.4

FI(N)þFL(N) FL(N): strengths 0.1 FI(N): binary edge
betweenness
centrality

0.4 FI(N): binary edge
betweenness
centrality

0.5 FI(N): Binary edge
betweenness
centrality

0.6 FI(N): binary edge
betweenness
centrality

0.7

FI(M) þ FL(M) FL(M): R-pars
opercularis ->L-
lateral orbitofrontal

0.3 FL(M): R-pars
orbitalis <->L-
lateral orbitofrontal

0.3 FL(M): R-pars
triangularis <->L-
lateral orbitofrontal

0.3 FL(M): R-peri
calcarine <->L-
lateral orbitofrontal

0.3 FL(M): R-
postcentral <->L-
lateral orbitofrontal

0.3

FI(N þ M) þ FL(N þ
M)

FL(N): strengths 0.1 FL(M): R-pars
opercularis <->L-
lateral orbitofrontal

0.3 FL(M): R-pars
orbitalis <->L-
lateral orbitofrontal

0.3 FL(M): R-pars
triangularis <->L-
lateral orbitofrontal

0.3 FL(M): R-peri
calcarine <->L-
lateral orbitofrontal

0.3

The features were computed using fiber connectivity (FI) and flow connectivity (FL) methods using a variety of graph-based network measures (N) and the raw connectivity
matrices (M). The network measures were computed from binary and weighted connectivity matrices that were filtered using a proportional threshold ranking from 0.1 to 1.0
(meaning all edges are retained) at intervals of 0.1. The features are shown along with their corresponding threshold (Th.). The ranking is derived from the support vector
machine classification boundary and is averaged over each of the 10 cross-validated folds and 30 repeat runs. In cases that use features including the raw connectivity matrices
at different thresholds, the label includes the 2 regions from the FreeSurfer segmentation that an edge connects. The symbol “<->” represents the undirected edge connecting
the 2 regions in the connectivity network.
Key: EMCI, early mild cognitive impairment; L, left; R, right.
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2 classes of data, and the slack variables are added to create soft
margins to separate most of the points.

Our classification design was to test the information provided
by the connectivity features with repeated stratified 10-fold cross-
validation as recommended by Kohavi (1995). For the results in
the cross-validation, our performance metrics were accuracy,
sensitivity, and specificity. We repeated the cross-validation 30
times, which allows us to use paired-sample t tests to statistically
compare different feature subsets based on their classification
performance.

For each classifier, we learned that the features were ranked by
their relationship to the hyperplane (De Martino et al., 2008). The
ranking was computed by sorting in decreasing order the jwj values
from the hyperplane. Features with high values mean they
contribute the most to the final boundary between the classes. In
our experiments, we averaged the feature ranking across all folds
within repeated cross-validation instances. These rankings will tell
what network measure or what element of a connectivity matrix
was most important to the classifier in the context of all other
features in a feature set of interest.
2.4. Experiments

We designed experiments to test the utility of different subsets of
features to identify differences between sets of 2 disease states from
our data. Our metrics were the accuracy, sensitivity, and specificity
from stratified 10-fold cross-validation that was repeated 30 times
comparing controls versus AD, controls versus EMCI, controls versus
LMCI, and EMCI versus LMCI. In each of these classification problems,
we used 9 different sets of features: the fiber connectivity matrix,
(FI(M)), the flow connectivity matrix (FL(M)), the fiber network
measures (FI(N)), the flow network measures (FL(M)), and the
combinations of these sets as FI(N þ M), FL(N þ M), FI(N) þ FL(N),
FI(M) þ FL(M), and FI(N þ M) þ FL(N þ M). Each of these sets of
features was organized into a matrix and then fed into the SVM al-
gorithm using a repeated, stratified 10-fold cross-validation design. A
summary of our experimental design is in Fig. 2.
3. Results

Figures 3e6 show bar charts of the results for each of our 4
classification problems using the 9 different subsets of features.
These include controls versus AD (Fig. 3), controls versus EMCI
(Fig. 4), controls versus LMCI (Fig. 5), and EMCI versus LMCI (Fig. 6).
It shows the accuracy, sensitivity, and specificity as percentages for
each of the 9 feature sets including FI(N), FI(M), FI(N þ M), FL(N),
FL(M), FL(N þ M), FI(N) þ FL(N), FI(M) þ FI(M), and FI(N þ M) þ
FL(N þ M) along with their 95% confidence intervals over the
stratified 10-fold cross-validated results that were repeated 30
times. For controls versus AD, we found feature set FI(N) þ FL(N)
had the highest accuracy of 78.2%, and using paired-sample t tests
(p> 0.05), we found it was not statistically different in performance
from FI(N) and FI(N þ M). FI(N þ M) had the highest accuracy of
59.2% for the controls versus EMCI classifier and was not



Table 5
The top 5 ranked features from each of the 9 feature subsets in the controls versus LMCI classification problem

Controls vs. LMCI

Feature set Rank 1/Th. Rank 2/Th. Rank 3/Th. Rank 4/Th. Rank 5/Th.

FI(N) Matching index 0.1 Matching index 0.2 Binary edge
betweenness
centrality

0.4 Binary edge
betweenness
centrality

0.4 Binary edge
betweenness
centrality

0.5

FI(M) R-inferior parietal
<->L-temporal
pole

1.0 R-inferior temporal
<->L-temporal
pole

1.0 R-isthmus of the
cingulate <->L-
temporal pole

1.0 R-lateral occipital
<->L-temporal
pole

1.0 R-lateral
orbitofrontal <->L-
temporal pole

1.0

FI(N þ M) Binary edge
betweenness
centrality

0.4 Matching index 0.1 Binary edge
betweenness
centrality

0.4 Binary edge
betweenness
centrality

0.5 Binary edge
betweenness
centrality

0.6

FL(N) Binary local
efficiency

0.2 Matching index 0.1 Matching index 0.1 Edge neighborhood
overlap

0.4 Edge neighborhood
overlap

0.4

FL(M) R-supramarginal
<->L-medial
orbitofrontal

1.0 L-pars opercularis
<->L-lingual

0.9 L-supramarginal
<->L-inferior
parietal

0.9 L-frontal pole
<->L-inferior
parietal

0.9 L-temporal pole
<->L-inferior
parietal

0.9

FL(N þ M) Binary local
efficiency

0.2 Matching index 0.1 Edge neighborhood
overlap

0.4 Edge neighborhood
overlap

0.4 Edge neighborhood
overlap

0.5

FI(N) þ FL(N) FI(N): edge
neighborhood
overlap

0.5 FI(N): edge
neighborhood
overlap

0.6 FI(N): edge
neighborhood
overlap

0.7 FI(N): edge
neighborhood
overlap

0.8 FI(N): edge
neighborhood
overlap

0.5

FI(M) þ FL(M) FL(M): R-pars
opercularis <->L-
banks of the
superior temporal
sulcus

0.4 FL(M): R-pars
orbitalis <->L-
banks of the
superior temporal
sulcus

0.4 FL(M): L-
supramarginal
<->L-inferior
parietal

0.9 FL(M): R-pars
triangularis <->L-
banks of the
superior temporal
sulcus

0.4 FL(M): L-frontal
pole <->L-inferior
parietal

0.9

FI(N þ M) þ FL(N þ
M)

FI(N): binary edge
betweenness
centrality

0.5 FI(N): binary edge
betweenness
centrality

0.6 FI(N): binary edge
betweenness
centrality

0.7 FI(N): binary edge
betweenness
centrality

0.8 FI(N): binary edge
betweenness
centrality

0.9

The features were computed using fiber connectivity (FI) and flow connectivity (FL) methods using a variety of graph-based network measures (N) and the raw connectivity
matrices (M). The network measures were computed from binary and weighted connectivity matrices that were filtered using a proportional threshold ranking from 0.1 to 1.0
(meaning all edges are retained) at intervals of 0.1. The features are shown along with their corresponding threshold (Th.). The ranking is derived from the support vector
machine classification boundary and is averaged over each of the 10 cross-validated folds and 30 repeat runs. In cases that use features including the raw connectivity matrices
at different thresholds, the label includes the 2 regions from the FreeSurfer segmentation that an edge connects. The symbol “<->” represents the undirected edge connecting
the 2 regions in the connectivity network.
Key: LMCI, late mild cognitive impairment; L, left; R, right.
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significantly different in performance from FI(N þ M) þ FL(N þ M).
In the case of controls versus LMCI, FL(N) had the highest accuracy
of 62.8% and was significantly better in performance than all other
feature sets. EMCI versus LMCI performed best with FI(N) þ FL(N)
reaching an accuracy of 63.4% and was significantly different than
all other feature sets.

In addition to the bar charts, we ranked the top 5 features for
each classification problem and feature set in Tables 3e6. Each of
the top features is also listed with its corresponding threshold
value. A multidimensional feature such as “edge neighborhood
overlap” may be listed multiple times at the same threshold for a
single feature set and classification problem because the ranking is
differentiating between parts of the feature vector for that single
network measure. We also include the specific labels for elements
in the connectivity matrices that were highly ranked, and the
symbol “<->” represents the undirected edge between the 2 re-
gions on the cortex.

4. Discussion

For classification of normal elderly controls relative to people
with AD, Table 1 shows that FI(N) þ FL(N) has the highest classi-
fication accuracy. Even so, when these features combined with
additional features, the accuracy does go down in some instances.
FI(N þ M) was able to distinguish controls versus EMCI the best,
and FL(N) was the best for distinguishing healthy controls versus
LMCI. In the EMCI versus LMCI classification experiments, we
again saw a combination of network measures FI(N) þ FL(N) that
produced the best results. The results show that when studying
LMCI including flow-based network measures can have an
advantage in distinguishing class differences andmay be useful for
studying other aspects of LMCI. In the case of EMCI and AD, the
performance of classification could be optimal based on fiber
measures alone, although the addition of flow in AD may have
slightly higher accuracy.

In addition to offering a principled approach to select or rank the
importance of connectivity features for this kind of classification
problem, we provided a proof of concept and framework for using
SVMs as a metric for use with brain connectivity data. We recently
used it to choose the architecture of the connectivity matrix by
selecting the best nodes or regions of the cortex. This adaptive
cortical parcellation was created based on a framework to evaluate
different cortical parcellations by their accuracy from diagnostic
classifiers, such as SVMs (Prasad et al., 2014).

Learning algorithms, such as SVM, Adaboost, and random forest
classification, can be sensitive to the feature set used. We note that
other schemes may be used, and their effects could also be useful to
categorize this dataset and other related data or even filter out
features in each of the feature sets we studied. Other classification
techniques that may be effective include a variation of manifold
learning used by Iglesias et al. (2011b) to classify AD using regis-
tration- and overlap-based similarity measures. Alternatively, we
could organize the features into a tensor representation for multi-
linear subspace learning (Tao et al., 2007).

These other algorithms may be particularly adept at classifi-
cation of AD because of how well they can build a model with the
relatively limited number of subjects in these studies, by contrast
with the large number of features for each subject. New subjects
are continually being added to the ADNI dataset, and more
training data would give us a stronger and more secure



Table 6
The top 5 ranked features from each of the 9 feature subsets in the EMCI versus LMCI classification problem

EMCI vs. LMCI

Feature set Rank 1/Th. Rank 2/Th. Rank 3/Th. Rank 4/Th. Rank 5/Th.

FI(N) Edge neighborhood
overlap

0.3 Edge neighborhood
overlap

0.3 Matching index 0.1 Binary Edge
betweenness
centrality

0.4 Binary Edge
betweenness
centrality

0.4

FI(M) L-frontal pole
<->L-
supramarginal

0.8 L-temporal pole
<->L-
supramarginal

0.8 L-pars orbitalis
<->L-lateral
occipital

0.3 L-transverse
temporal <->L-
supramarginal

0.8 L-insula <->L-
supramarginal

0.8

FI(N þ M) Edge neighborhood
overlap

0.3 Edge neighborhood
overlap

0.3 Matching index 0.1 R-transverse
temporal <->R-
lingual

0.8 Edge neighborhood
overlap

0.4

FL(N) Matching index 0.1 Community
structure

0.3 Matching index 0.1 Binary Nodal
betweenness
centrality

0.1 Community
structure

0.3

FL(M) R-parahippocampal
<->R-lingual

0.9 R-cuneus <->L-
frontal pole

0.1 R-paracentral
<->R-inferior
parietal

0.1 R-inferior parietal
<->R-entorhinal

0.3 R-isthmus of the
cingulate <->L-
superior temporal

0.6

FL(N þ M) Community
structure

0.3 Matching index 0.1 Matching index 0.1 Community
structure

0.3 Binary Nodal
betweenness
centrality

0.1

FI(N) þ FL(N) FL(N): community
structure

0.3 FL(N): community
structure

0.3 FL(N): community
structure

0.3 FL(N): community
structure

0.3 FL(N): binary
community
structure

0.3

FI(M) þ FL(M) FL(M): R-superior
frontal <->L-peri
calcarine

0.1 FL(M): R-superior
parietal <->L-peri
calcarine

0.1 FL(M): R-superior
temporal <->L-
peri calcarine

0.1 FL(M): R-
supramarginal
<->L-peri calcarine

0.1 FL(M): R-frontal
pole <->L-peri
calcarine

0.1

FI(N þ M) þ FL(N þ
M)

FL(N): community
structure

0.3 FL(N): community
structure

0.3 FL(N): community
structure

0.3 FL(N): community
structure

0.3 FL(N): community
structure

0.3

The features were computed using fiber connectivity (FI) and flow connectivity (FL) methods using a variety of graph-based network measures (N) and the raw connectivity
matrices (M). The network measures were computed from binary and weighted connectivity matrices that were filtered using a proportional threshold ranking from 0.1 to 1.0
(meaning all edges are retained) at intervals of 0.1. The features are shown along with their corresponding threshold (Th.). The ranking is derived from the support vector
machine classification boundary and is averaged over each of the 10 cross-validated folds and 30 repeat runs. In cases that use features including the raw connectivity matrices
at different thresholds, the label includes the 2 regions from the FreeSurfer segmentation that an edge connects. The symbol “<->” represents the undirected edge connecting
the two regions in the connectivity network.
Key: EMCI, early mild cognitive impairment; LMCI, late MCI; L, left; R, right.
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understanding of these relationships. With larger datasets, we can
explore the absolute and relative performance of different fea-
tures and biomarkers using deep learning (Hinton et al., 2006) or
artificial neural networks that allow for a great deal of freedom
and a richer model when there are multiple layers included
(Bengio, 2009) and massive amounts of data available. Here, we
chose SVM as it works well with relatively small samples and a
larger number of features without having to apply regularization
(Hastie et al., 2001).

The feature ranking approach we used leveraged the hyperplane
from the SVM and gives a ranking of a feature in the context of all
other features in the set we are studying. Other approaches such as
univariate ranking by using t tests on a single feature (Chu et al.,
2012) or by using regression on each feature (Polyn et al., 2005)
give the importance of a single measure by itself but maymiss cases
when a feature by itself is weak, but in the context of other features,
the feature set becomes highly discriminatory. There are also a
variety of multivariate feature selection approaches being proposed
in the literature. One method by Liu et al. (2013) addresses the
geometric relationship of the target classes in AD structural MRI
training data by using graphmatching. Another approach combines
univariate feature selection and multivariate recursive feature se-
lection by using correlation-based ranking of single features. It then
uses recursive and forward sequential feature selection to select a
set of features that will include mostly the top-ranked features (Fan
et al., 2007). In Cuingnet et al. (2011), the authors study 10 algo-
rithms that classify AD using T1-weighted MRI and conclude that
different feature selection methods did not greatly affect perfor-
mance. In our case, we used the feature selection to evaluate a
classifier and its features without removing or selecting features
based on training data.
Different sets of features may uncover detail in the connectivity
structure of the brain that is better for representing important
changes in networks across the various phases or stages of AD. We
can extend the framework in the present study to use different
features such as those from dynamic simulations of connectivity
(Prasad et al., 2013a) or connectivity measures that summarize the
fibers from tractography using maximum density paths (Prasad
et al., 2011a) that are registered (Prasad et al., 2011b) into the
same space.We can then use the subset of features that best predict
or classify a category in our data that could include effects of aging,
severity of the disorder, or even those that emphasize parts of the
network that are associated with the effects of risk genes for AD.
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