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Abstract
This paper describes a novel approach to extract cortical morphological abnormality patterns
from structural magnetic resonance imaging (MRI) data to improve the prediction accuracy of
Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI).
Conventional approaches extract cortical morphological information, such as regional mean
cortical thickness and regional cortical volumes, independently at different regions of interest
(ROIs) without considering the relationship between these regions. Our approach involves
constructing a similarity map where every element in thte map represents the correlation of
regional mean cortical thickness between a pair of ROIs. We will demonstrate in this paper that
this correlative morphological information gives significant improvement in classification
performance when compared to ROI-based morphological information. Classification
performance is further improved by integrating the correlative information with ROI-based
information via multi-kernel support vector machines. This integrated framework achieves an
accuracy of 92.35% for AD classification with an area of 0.9744 under the receiver operating
characteristic (ROC) curve, and an accuracy of 83.75% for MCI classification with an area of
0.9233. In differentiating MCI subjects who converted to AD within 36 months from non-
converters, an accuracy of 75.05% with an area of 0.8426 under ROC curve was achieved,
indicating excellent diagnostic power and generalizability. The current work provides an
alternative approach to extraction of high-order cortical information from structural MRI data for
prediction of neurodegerative diseases such as AD.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive, irreversible neurodegenerative disease
characterized by the decline of cognitive and memory functions, which are serious enough
to interfere daily life. This ultimately fatal brain dementia causes certain types of nerve cells
in particular areas of the brain to degenerate and die for currently unknown reasons. AD is
the most common type of dementia, which accounts for 50 to 80 percent of dementia cases.
Definitive diagnosis of AD can only be made with histopathological confirmation of
amyloid plaques and neurofibrillary tangles, usually at autopsy. It has been reported that the
incidence of AD doubles every five years after age of 65 (Bain, et al. 2008) and 1 in every
85 persons will be affected by the disease by year 2050 (Brookmeyer, et al. 2007). The
average life expectancy of AD patients varies between 3 to 10 years, depending on the age
they are diagnosed with AD. The median life span is as long as 7 to 10 years for AD patients
whose conditions are diagnosed when they are in their 60s and early 70s, to only about 3
years or less for patients whose conditions are diagnosed when they are in their 90s (Zanetti,
et al. 2009).

Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive
decline of normal aging and the more pronounced decline of dementia. It involves problems
with memory, language, thinking and judgment that are greater than typical age-related
changes. These problems are severe enough to be noticeable to other people and to show up
on tests, but are not serious enough to interfere with daily life. Since the problems do not
interfere daily life, the person does not meet the criteria for being diagnosed with dementia.
MCI increases the risk of developing dementia, including AD, especially when memory loss
is the predominant symptom. This type of MCI is commonly referred as “amnestic MCI”.
Recent studies show that individuals with MCI tend to progress to probable AD at a rate of
approximately 10% to 15% per year (Grundman, et al. 2004; Misra, et al. 2009), compared
with healthy controls who develop dementia at a rate of 1% to 2% per year (Bischkopf, et al.
2002). As life expectancy increases, there is a pressing need for accurate diagnosis of AD at
its early stage to enable possible delay of transition from MCI to AD via medications as well
as non-medication approaches.

The cerebral cortex is organized into a complex network of local circuits and long-range
fiber pathways such as visual network, language network, limbic system and default
network. Interregional interactions between specialized encephalic systems enable different
cortical networks to function complementarily. Some studies suggested that functional
specialization can also lead to related anatomical variation, such as enlargement of
hippocampus size (Maguire, et al. 2000; Maguire, et al. 2003), and enlargement of primary
motor and sensorimotor areas, premotor areas, anterior superior parietal areas, and the
inferior temporal gyrus (Gaser and Schlaug 2003a; Gaser and Schlaug 2003b; Schlaug
2001). In addition, a plethora of studies suggested that the anatomical and functional brain
structures experience significant alterations because of pathological attacks, including AD.
Specifically, evidence derived from neuropathological, electrophysiological, and
neuroimaging studies suggested that the decline of cognitive and memory functions in AD
patients was caused by the alterations in functional integration of distributed brain system or
structural disconnection between regions due to white matter damage (Delbeuck, et al.
2003). Neurophysiological and neuroimaging studies suggest that AD-associated
abnormalities involve not only the functional connection of several specific encephalic
regions such as the prefrontal (Grady, et al. 2001; Grady, et al. 2003; Horwitz, et al. 1987),
hippocampus (Celone, et al. 2006; Wang, et al. 2006), cingulate (Greicius, et al. 2004), and
visual regions (Bokde, et al. 2006; Horwitz, et al. 1995), but also the functional integration
of the entire brain network (Stam, et al. 2006; Stam, et al. 2007). There is also growing body
of evidence suggesting that AD is associated with the disruption of white matter integrity in
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regions such as corpus callosum, superior longitudinal fasciculus, and cingulum (Medina, et
al. 2006; Rose, et al. 2000), supramarginal gyrus and putamen (Bozzali, et al. 2010), insula
and rectue gyrus (Wee, et al. 2011).

Many neuroimaging techniques have been applied for AD and MCI detection, including
structural magnetic resonance imaging (MRI) (Fan, et al. 2008; McEvoy, et al. 2009),
diffusion tensor imaging (DTI) (Haller, et al. 2010; Wee, et al. 2011), functional MRI
(fMRI) (Machulda, et al. 2009; Pihlajamaki and Sperling 2008; Wee, et al. 2012a), positron
emission tomography (PET) (Grady, et al. 2003; Silveira, et al. 2010), and the combination
of DTI and resting-state fMRI (Wee, et al. 2012b). Recently, Jack Jr. et al. (Jack Jr., et al.
2010) reported that structural abnormalities can be observed in the human brain prior to
any clinical symptom, indicating that structural abnormalities can be utilized for early
detection of AD. Most existing MCI and AD classification frameworks that are based on
morphometric data essentially utilize one of the following features: hippocampus features
(Cuingnet, et al. 2011; Gerardin, et al. 2009; Li, et al. 2007; Wolf, et al. 2001), tissue
probability maps (Kloppel, et al. 2008; Magnin, et al. 2008), and cortical thickness data
(Cuingnet, et al. 2011; Desikan, et al. 2009; Querbes, et al. 2009). In (Cuingnet, et al. 2011),
Cuingnet et al. constructed a classifier by combining the cortical thickness values at all
vertices as a feature vector. In contrast, Desikan et al. (Desikan, et al. 2009) and Querbes et
al. (Querbes, et al. 2009) utilized the mean cortical thickness values of neuroanatomically
parcellated regions as a feature vector.

Cortical thickness estimation performed in-vivo via magnetic resonance imaging is an
important technique for the diagnosis and understanding of the progression of
neurodegenerative diseases, such as AD. In this study, we chose to employ gray matter
cortical thickness (from the baseline scans) as morphological features for AD prediction via
a less explored paradigm: Is the correlation of morphological abnormalities across different
cortical areas surrogate markers of pathological attacks, such as those caused AD? We
employ correlative morphological information extracted from structural MRI to provide a
new family of features for AD and MCI prediction. A similar idea of utilizing correlative
cortical thickness has also been introduced by Worsley et al., albeit using an approach that is
different from ours (i.e., they used statistical parametric map (SPM) and singular value
decomposition) (Worsley, et al. 2005). Furthermore, in their method the correlation between
two vertices is computed across subjects. ROI-based morphological information, i.e., gray
matter (GM) and white matter (WM) volumes, and regional mean cortical thickness, is
included in the proposed framework to provide extra information for better characterization
of anatomical abnormalities associated with AD. Correlative and ROI-based morphological
features are integrated via a multi-kernel support vector machine (SVM) to further improve
prediction capability.

The rest of the paper is organized as follows: Section Method and Materials furnishes
information on the image dataset and the post-processing pipeline. This is followed by a
comprehensive description on how the correlative features can be extracted from the mean
cortical thickness of different encephalic regions. Integration between correlative and ROI-
based morphological information using multi-kernel SVM is briefly described. Performance
of the proposed prediction framework is validated extensively in Section Experimental
Results using the ADNI dataset. Findings and methodological issues of the proposed
framework are discussed extensively in Section Discussion. Section Conclusion provides
some concluding remarks.
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METHOD AND MATERIALS
Materials

Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public-private partnership. The primary
goal of ADNI has been to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of
MCI and early AD. Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials. Readers are
referred to www.adni-info.org for more information.

The Principal Investigator of this initiative is Dr. Michael W. Weiner, MD, VA Medical
Center and University of California, San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal
of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research,
approximately 200 cognitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years and 200 people with early AD to be followed for
2 years. The key eligibility criteria used in ADNI were described at http://www.adni-
info.org/Scientists/ADNIGrant/ProtocolSummary. aspx. According to ADNI clinical
procedures, diagnosis of AD was made if the subject had a Mini Mental State Examination
(MMSE) (Folstein, et al. 1975) score between 24 - 26 (inclusive), a Clinical Dementia
Rating (CDR) (Morris 1993) of 0.5 or 1.0, and meets NINCDS/ADRDA criteria (McKhann,
et al. 1984) for probable AD. Individuals were categorized as amnestic MCI if they had a
MMSE score between 24 - 30 (inclusive), a memory complaint, objective memory loss
measured by education adjusted scores on Wechsler Memory Scale Logical Memory II
(Wechsler 1987), a CDR of 0.5, absence of significant levels of impairment in other
cognitive domains, while essentially preserved activities of daily living, and an absence of
dementia. On the other hand, all normal controls individuals met the following criteria: a
MMSE scores between 24 - 30 (inclusive), a CDR of 0, non-depressed, non MCI, and
nondemented. The age range of normal subjects will be roughly matched to that of MCI and
AD subjects with minimal enrollment under the age of 70. The delayed recall performance
in the Alzheimer’s Disease Assessment Scale score (ADAS-Cog) 10-Word list (Rosen, et al.
1984) was selected from the cognitive measures included in the ADNI database because
delayed recall has been shown to be a strong predictor of Alzheimer’s disease (Estevez-
Gonzalez, et al. 2003; Rountree, et al. 2007).

Five hundred and ninety-eight subjects who belong to one of the AD, MCI or normal control
(NC) groups were analyzed in this study. These subjects were selected randomly for a ratio
of AD vs. MCI vs. NC roughly as 1:1:1. All subjects received the baseline clinical/cognitive
examinations including 1.5T structural MRI scan, and were re-evaluated at specified
intervals (6 or 12 months). The baseline scans were used as the input data in our
experiments. The follow-up examination results were used to separate MCI subjects into two
sub-categories, stable MCI (sMCI) and progressive MCI (pMCI). Subjects who converted to
AD within 36 months were classified as pMCI, and those not converted to AD within the
same period were classified as sMCI. Table I shows the demographic information of the
participants involved in this study. The conversion from MCI to AD up to 36 months before
clinical criteria of AD are met is provided in Figure 1.
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Overview of Methodology
An overview of the proposed AD/MCI classification framework is summarized
schematically in Figure 2.

The proposed framework can essentially be divided into two parts: training and testing. For
training, two types of features were extracted from the MR volume of every subject based
on the Desikan-Killiany Cortical Atlas (Desikan, et al. 2006), which contains 68 gyral-based
ROIs, 34 for each hemisphere. The first feature type is the ROI-based morphological
features, which consist of the regional mean cortical thickness values, and the cerebral
cortical GM, and the cortical associated WM volumes. The second feature type is the
correlative features, which are obtained by the similarity of cortical thickness between pairs
of ROIs. The Desikan-Killiany Cortical Atlas and the names of ROIs are provided in Figure
3.

To select the discriminative features that are helpful for classification, a hybrid feature
selection method was applied separately to the correlative and ROI-based features.
Individual kernel matrices were then constructed based on the selected optimal features of
each feature type before they were integrated to form a single mixed-kernel matrix via
multi-kernel SVM. The constructed mixed-kernel matrix was finally employed to train a
SVM classifier via 10-fold cross-validation.

To classify a new test subject, we first extracted the ROI-based features from the subject’s
MR volumes. We then constructed the correlative features from the regional mean cortical
thickness. Individual kernel matrices were constructed for each feature type based on the
optimal features selected in the training process. These individual kernel matrices were then
integrated to form a mixed-kernel matrix that will act as the input to the previously trained
SVM classifier to determine the class to which the new test subject should belong.

ROI-based Morphological Features
ROI-based morphological features, i.e., regional mean cortical thickness, and cerebral
cortical GM and cortical associated WM volumes, were extracted in an automated manner
via FreeSurfer software suite (http://surfer.nmr.mgh.harvard.edu/, Version 4.5.0). FreeSurfer
is a free, popular cortical surface analysis software that can perform effective volumetric
segmentation and cortical surface reconstruction (Desikan, et al. 2006; Fischl and Dale
2000; Fischl, et al. 2002; Fischl, et al. 1999a; Fischl, et al. 1999b). Once the cortical models
were completed, a number of deformable procedures were performed for further data
processing and analysis (Fischl, et al. 1999b) (Desikan, et al. 2006; Fischl, et al. 2004). Both
intensity and continuity information from the entire three dimensional MR volume are used
in segmentation and deformation procedures to produce representations of cortical thickness
(Dale, et al. 1999; Fischl, et al. 1999a). Procedures for the measurement of cortical thickness
have been thoroughly validated against histological analysis (Rosas, et al. 2002) and manual
measurements (Kuperberg, et al. 2003; Salat, et al. 2004) and demonstrated good test-retest
reliability across different scanners and field strengths (Dickerson, et al. 2008; Han, et al.
2006). Readers are referred to (Dickerson, et al. 2008) for detailed explanations regarding
cortical surface reconstruction and cortical thickness measurement.

In addition to the regional mean cortical thickness, standard deviation for cortical thickness
of each ROI was also computed during the construction of cortical models. In this study,
normalized regional mean cortical thickness features were used in the proposed framework
by dividing the regional mean cortical thickness of each ROI with its respective standard
deviation. To provide additional morphological description, we also included the regional
cortical volumetric information into our proposed framework. We utilized the same ROIs
defined in Desikan-Killiany cortical atlas to extract the cerebral cortical GM and cortical
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associated WM volumes. The intracranial volume (ICV) of every individual was also
extracted. Since ICV is unaltered by the disease, normalizing total or regional volumes of
each subject by their respective ICV value provides better estimate of brain volume and
makes them more comparable (Whitwell, et al. 2001). Therefore, we used the normalized
GM and WM volumes of each ROI in this study to provide a more appropriate volumetric
representation.

Correlative Morphological Features
It is well known that AD and similar dementias exhibit subtle, spatially and temporally
diffuse pathology, where the brain is damaged as a large-scale, highly connected network,
rather than in one single isolated region (He, et al. 2008; Stam, et al. 2007). In view of this,
we designed an interregional description, which might be more sensitive in conveying the
pathological information for accurate diagnosis of neurological diseases. In this study, we
proposed the application of correlative cortical thickness information between pairs of ROIs
for AD/MCI prediction. Using the Desikan-Killiany cortical atlas, a (68×68) matrix map
was constructed with every element representing the similarity of regional mean cortical
thicknesses between a pair of ROIs. The similarity map is symmetric with ones along its
diagonal.

Specifically, for the i-th and j-th regions, the dissimilarity of the cortical thicknesses is
defined as

(1)

where t(i) and t(j) denote the regional mean cortical thickness of regions i-th and j-th,
respectively. The similarity between regions i-th and j-th was computed as

(2)

where  with σi and σj denoting the standard deviation of regional cortical
thickness of regions i-th and j-th. This new feature type measures the relative morphological
abnormalities across different encephalic regions, instead of morphological abnormalities
in isolated regions as in conventional methods. It is worth noting that the dissimilarity
measure (1) and the similarity measure (2) can be replaced by other functions for similarity
map construction. Due to symmetry, only the upper (or lower) triangular of the similarity
map was used. For each subject, all similarity values of the upper triangular part of the
similarity map were concatenated to form a long feature vector with 2278 elements (N × (N
– 1)/ 2, with N = 68).

The population average similarity map for NC, MCI and AD groups are shown in Figure 4.
Significant topological differences can be observed between the similarity map of NC and
AD groups, particularly in the central and boundary regions of the maps as highlighted by
black circles. These regions correspond to ROIs such as bankssts, caudal anterior cingulate
cortex, caudal middle frontal gyrus, cuneus cortex, entorhinal cortex, superior temporal
sulcus, supramarginal gyrus, frontal pole, temporal pole, transverse temporal and insula.
However, topology structure of similarity map between NC and MCI groups are similar and
only subtle variations can be observed. These observations are in line with the abnormalities
caused by neuropathology, i.e., AD patients experience more significant brain atrophies
when compared with NC and MCI groups while the brain atrophies in MCI individuals are
subtle and are very similar to NC. The population average similarity maps for pMCI and
sMCI subgroups are provided in Figure 5, with no significant difference visually. Also, they
are very similar to the MCI and NC groups. Based on two-sample t-test performed on every
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element in the similarity maps, only 11.85% of the total elements show significant
differences (p<0.05) between pMCI and sMCI subgroups. This value is much lower than
other between-group comparisons, i.e., AD vs. NC (64.14%), MCI vs. NC (41.09%), and
AD vs. MCI (48.07%). This might explain why the classification of pMCI from sMCI is
much more challenging than other classification tasks.

Feature Selection
Solving pattern recognition or classification problems with data of high dimensionality is a
challenging task due to the curse of dimensionality. This is particularly true for
neuroimaging classification problems. With the presence of irrelevant or redundant features,
learning models tend to overfit and become less generalizable. Feature selection is a useful
and important means to identify relevant features for dimensionality reduction and
improving generalization performance (Guyon and Elisseeff 2003; Liu and Yu 2005). Due
to high dimensionality of the correlative morphological features, we utilized a hybrid feature
selection method to select the most relevant features for AD and MCI prediction.
Essentially, the feature selection algorithms used in this study comprised two categories, i.e.,
filter-based and wrapper-based approaches. Filter-based approaches rely on the general
characteristics of data to evaluate the features without any learning algorithm, while
wrapper-based approaches normally involve a predefined learning algorithm where its
performance is used as evaluation criterion for selecting a subset of most discriminative
features. In our hybrid approach, two filter-based approaches were initially used to reduce
the number of features, followed by a wrapper-based approach to further select a subset of
features that was favorable to AD and MCI prediction.

Specifically, in the first filter-based approach, only those features with their p-values is
smaller than the predefined threshold, measured via between-group t-test, will be retained
for subsequent feature selection. Despite the reduction in dimensionality, the features
retained by this simple approach may still inevitably be inter-correlated. Therefore, we
employed another filter-based approach, called minimum redundancy and maximum
relevance (mRMR) (Ding and Peng 2005; Peng, et al. 2005), to further reduce the feature
dimensionality. The mRMR model provides a balance between two aspects of feature
selection, i.e., efficiency and broadness. Efficiency ensures that characteristics can be
represented with a minimal number of features without significant reduction in prediction
performance. Broadness ensures that the selected feature subset can be the maximally
representative of original space covered by the entire dataset. In mRMR, mutual information
is used to measure the relevance of every feature pair and between features and classes.
Specifically, we minimize the total relevance of each feature pairs to achieve minimum
redundancy, while simultaneously maximize the total relevance of each feature-class pairs to
achieve maximum relevance.

An effective wrapper-based model, called the support vector machine recursive feature
elimination (SVM-RFE) (Guyon, et al. 2004; Rakotomamonjy 2003), was utilized to further
reduce the number of selected features. The selected subset contains features that are most
favorable to AD and MCI prediction. The goal of SVM-RFE is to find a subset of size l
among d features (l < d) which optimizes the performance of the SVM classifier. The basic
principle of SVM-RFE is to ensure that the removal of a particular feature will make the
classification error smallest. In this study, we employed SVM with linear kernel to evaluate
the discriminative power of the selected features. It is noteworthy that the hybrid feature
selection was performed separately on each feature type (i.e., correlative and ROI-based
features) as shown in Figure 2. Finally, for each feature type we have an individual optimal
feature subset. Before performing feature selection on each feature type, the raw features
were firstly scaled individually to range [−1, +1]. Then, every scaled feature was normalized
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across all training subjects to obtain its standard score (z-value). These steps ensured that the
regional mean cortical thickness and ICV normalized volumetric measures were within the
same scale, minimizing possible bias that may occur when performing selection on features
with different dynamic ranges.

Classification Using Multi-Kernel SVM
A multiple-kernel learning framework was applied to construct a set of descriptors from the
previously selected feature vectors for improving prediction performance. Specifically, we
utilized a multi-kernel SVM with radial basis function (RBF) kernel to integrate information
from the correlative and ROI-based morphological features. A kernel matrix was first
constructed for each feature type based on RBF kernel before they were integrated using
multi-kernel SVM to form a mixed-kernel matrix with the most appropriate weighting
factors. Specifically, given n training samples with xi = {xi

(1) ,…, xi
(x)} denoting the feature

vector of the i-th sample which contains M types of features and yi ∈ {–1,1} the
corresponding labels, the multi-kernel SVM of dual form that integrates information from M
feature types and forms a mixed-kernel matrix can be given as

(3)

where Φ(•) denotes the kernel-induced mapping function, k(m)(xi
(m) , xj(m)) denotes the

kernel matrix for training samples xi and xj of the m-th feature type, (•,•) denotes the inner
product, βm ≥ 0 denotes the weighting factor on the m-th feature type, α denotes the
Lagrange multiplier, and C denotes the model parameter that controls the amount of
constraint violations. Given a new test sample x = {x(1),…,x(M)}, the decision function for
label prediction is

(4)

The optimal SVM model, as well as an unbiased estimation of the generalization
performance of the complete framework, was obtained via a nested cross-validation scheme.
Specifically, two nested cross-validation loops were employed to accomplish these goals.
The inner cross-validation loop was used to determine the hyperparameter of the SVM
models from a training set while the outer cross-validation loop was used to evaluate the
generalizability of SVM models using an independent validation set. This procedure was
performed via a 10-fold cross-validation. SVM model that performed the best during the
nested cross-validation stage was considered the optimal model and its hyperparameter will
be used to classify new test subjects.

EXPERIMENTAL RESULTS
The discriminative power of the proposed integrated and correlative morphological features
were compared with three ROI-based features, i.e., regional mean cortical thickness,
regional cortical volumes, and combined ROI-based features. The combined ROI-based
features were constructed by concatenating all the regional mean cortical thickness and
regional cortical volumes into a long feature vector. The performance of the multi-kernel
SVM using the integrated features was compared with the single kernel SVMs using other
feature types. For each comparison, performance of every compared method was validated
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through three different classification tasks: AD vs. NC, MCI vs. NC, and AD vs. MCI. The
MCI dataset used was the combination of all the pMCI and sMCI subjects shown in Table I.

As the MCI subjects are well-known for their heterogeneity, it is important to categorize
MCI subjects into different subgroups for better characterizing cognitive and neural changes
during disease progression. We performed the validation based on two MCI subgroups, i.e.,
pMCI and sMCI. In every experiment, we randomly partitioned the data into two sets, one
for training and one for testing, with similar number of subjects from each class in each set.
The experiment was repeated 20 times to evaluate the performance of all compared methods
by determining their mean classification accuracy, area under receiver operating
characteristic curve (ROC), sensitivity and specificity. The average classification
performance estimated using this approach tends to be more conservative than the traditional
leave-one-out approach. It also ensures that the trained SVM models are validated with
independent test sets for more precise estimation on how accurately they will perform in
practice. Details of each experiment are described in the following subsections.

Comparison Between Integrated, Correlative, and ROI-Based Features
In this experiment, performance of the proposed correlative features was compared with the
ROI-based features (the regional mean cortical thickness, regional cortical volumes, and
hippocampus volumes). The mean classification accuracy, sensitivity, specificity and area
under ROC curve (AUC) values of each compared feature type were summarized in Table
II. We also performed paired t-test on the classification accuracy between the integrated
features and all other feature types, and the computed p values are provided in Table II.

It can be observed that the hippocampus volumes (left and right volume) performed the
worst among all compared feature types in all classification tasks due to the insufficient
information conveyed by the hippocampus volumes alone. The performance given by the
regional mean cortical thickness was also not satisfactory. However, when the correlative
features were used, classification performance improved significantly. The proposed
integrated morphological approach shows significantly better performance than all other
feature types in all statistical measures used for comparison. The small p-values for
classification accuracy indicate the superiority of the integrated morphological features over
the other feature types. For difficult classification tasks such as MCI vs. NC and AD vs.
MCI, the proposed framework always shows an area larger than 0.88 under the ROC curve
(AUC), indicating excellent diagnostic power. The proposed approach always exhibits much
better correct prediction on patients as reflected by its significantly higher sensitivity value.

Classification Between pMCI And sMCI
Separation of MCI individuals into subgroups, i.e., the pMCI and sMCI, is crucial for
possibly early treatment and possibly delay of transition of the pMCI subjects to AD. Hence,
a good AD/MCI prediction framework must be able to perform this task efficiently. We
evaluated the performance of our proposed framework based on the categorized MCI
subgroups provided in Table I. The proposed framework was compared with all the methods
in the previous subsection and the results are summarized in Table III. Note that the
structural images used for discriminating the pMCI and sMCI subjects in this study are the
baseline scans.

It can be clearly observed that the proposed framework using the integrated morphological
information performs the best in identifying MCI subjects who convert to clinical AD within
36 months. The regional mean cortical thickness performed the worst particularly for the
sensitivity and AUC values. However, significant improvement can be observed when the
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correlative features were used. The classification performance is significantly improved by
multi-kernel SVM based integration of the features.

To further evaluate the robustness of our proposed method for prediction of pMCI subjects
at different conversion times, we performed the same classification procedures for pMCI
subjects who converted to clinical AD within 36, 24, 18 and 12 months. In the experiments,
we used the same number of sMCI as the pMCI subjects at each conversion time to
minimize the effects of unbalanced data. The classification performance of pMCI subjects at
different conversion time is summarized in Table IV. It can be observed that the proposed
method performs reasonably well for earlier conversion prediction. The classification
accuracy is greater than 70.0% with AUC values greater than 0.8 for all cases, indicating
good generalization performance. It is noteworthy that the sensitivity is always larger than
0.70, while the specificity is around 0.70, indicating relatively robust and balanced
classification performance.

The Most Discriminative Regions
The discriminative regions that were selected from the proposed classification framework
for identifying the MCI converters from non-converters are reported in Table V. The
selected regions for other classification tasks are quite similar and thus not reported due to
space limit. The table lists the top twenty selected ROI-based and correlative morphological
features.

It is found that the selected ROI-based features are from both the regional mean cortical
thickness and the regional cortical volumes, indicating the existence of complementary
information between these two morphological features. It is also found that the selected
features are from both brain hemispheres and all four lobes, indicating the spread of
morphological abnormalities over whole brain. Based on the selected features, the ROIs that
contribute for good classification performance in the pMCI classification task include the
middle temporal gyrus, enthohinal cortex, superior and inferior parietal cortices, fusiform
gyrus, bankssts (banks of the superior temporal sulcus), supramarginal gyrus, precuneus
cortex, parahippocampal, posterior cingulate cortex, insula, medial orbitofrontal cortex, and
pars orbitalis (parts of inferior frontal gyrus).

Based on the selected correlative features, pairs of regions that contribute for classification
are not only within the same hemisphere and same lobe but also across different
hemispheres and lobes. This indicates that the morphological relation between different
areas of the brain, either adjacent or distant, might provide some meaningful information for
describing different stages of neurodegenerative disease. Most of the regions that were
selected from the correlative features are similar to the regions selected from the ROI-based
features. The regions that are selected by both feature types include the middle temporal
gyrus, enthohinal cortex, inferior parietal cortex, fusiform gyrus, bankssts, precuneus cortex,
insula, and medial orbitofrontal cortex. Other regions that were only selected from the
correlative features include the precentral and postcentral gyri, lateral occipital cortex, rostal
and caudal middle frontal gyri, caudal anterior cingulate cortex, temporal pole, pars
opercularis and pars tringularis (the first and second gyri from the precentral gyrus), isthmus
of cingulate cortex, paracentral lobule, pericalcarine cortex, lateral orbitofrontal cortex,
cuneus cortex and superior frontal gyrus.

DISCUSSION
In the present study, we introduced a new approach of feature extraction method that
extracts correlative morphological information using the regional mean cortical thickness.
This information was used to effectively discriminate the MCI and AD patients from normal
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controls, as well as between the MCI and AD patients. The correlative features give better
classification performance than the ROI-based features, such as regional mean cortical
thickness and regional volume, in all classification tasks when validated using a large cohort
of patients from the ADNI dataset.

To further improve the classification performance, we integrated the correlative and ROI-
based features via the multi-kernel SVM. Promising classification results was achieved
using the integrated features: 92.35% (AUC = 0.9744), 83.75% (AUC = 0.9233), and
79.24% (AUC = 0.8882) for AD classification, MCI classification, and AD-MCI
classification respectively. High AUC value achieved indicates excellent diagnostic power
and generalizability of the proposed framework to unseen dataset. In addition, our
framework substantially improves the classification performance, particularly the sensitivity
rate, compared to ROI-based morphological feature based classifiers. These results indicate
that the proposed framework can be used to provide additional diagnostic information for
early treatment of the disease.

The identification of individuals in the transitional phase is critical for testing disease-
modifying therapies and for the development of novel medications to prevent or delay AD,
particularly from a clinical and financial perspective, since consistent and frequent follow-
up of healthy individuals that might or might not be at risk for AD is extremely difficult,
especially in a typical clinical setting. We applied the integrated morphological feature
based SVM classifier to a large number of MCI patients from the ADNI dataset. Our
findings demonstrate that the proposed framework can detect subtle structural changes either
at individual-region level or across-region level that help to identify those MCI individuals
who converted to AD up to 36 months before clinical diagnosis. The predicted accuracy of
the conversion of MCI to AD within 36 months is 75.05% with a high AUC value of 0.8426.
The classification procedure employed in this study gives a conservative but possibly more
accurate estimate of the classification generalizability. The classification between pMCI and
sMCI subgroups at different conversion time demonstrated a relatively robust and balanced
performance of the proposed framework by providing consistently classification accuracy,
AUC, sensitivity and specificity values.

The brain regions that were selected for accurate detection of AD and MCI patients, as well
as the conversion from pMCI to AD have already been extensively reported in previous
studies, either in changes of volume or cortical thickness. These included the precuneus
cortex and insula (Fan, et al. 2008; Misra, et al. 2009), orbitofrontal cortex, precuneus cortex
and insula (Misra, et al. 2009), posterior cingulate gyrus, precuneus cortex and insula
(Davatzikos, et al. 2010), parahippocampal gyrus (Celone, et al. 2006; Machulda, et al.
2009; Pihlajamaki and Sperling 2008), inferior temporal gyrus and precentral gyrus (Lenzi,
et al. 2009), inferior temporal gyrus, inferior frontal gyrus and insula (Han, et al. 2010),
enthohinal cortex (Devanand, et al. 2007; Du, et al. 2001; Pennanen, et al. 2004), middle
temporal gyrus (Risacher, et al. 2009), entorhinal cortex and supramarginal gyrus (Desikan,
et al. 2009), bankssts, entorhinal cortex, fusiform gyrus, middle temporal gyrus,
parahippocampal gyrus, pars orbitalis, pars triangularis, paracentral lobule, postcentral
gyrus, rostral middle frontal gyrus and superior parietal cortex (Wang, et al. 2009),
enthorhinal gyrus, parahippocampal gyrus, middle and inferior temporal gyri, precuneus
cortex, isthmus of cingulate cortex, posterior cingulate cortex, bankssts, medial and lateral
orbitofrontal cortices, rostal and caudal middle gyri, superior frontal gyrus, precentral gyrus,
fusiform gyrus, superior and inferior parietal cortices, and supramarginal gyrus (Liu, et al.
2011), precuneus and cuneus cortices (Niskanen, et al. 2011), temporal gyrus, inferior and
superior parietal gyri, and lateral occipital cortex (Liu, et al. 2012). The fact that our findings
are consistent with results reported in previous studies demonstrates the efficacy of our
proposed framework in identifying correct biomarkers for classification purposes.
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An interesting finding in present study is that the most selected correlative feature in the
sMCI and pMCI classification task is between the left precentral gyrus and right lateral
occipital cortex as given in Table V. It is well-known that significant anomalies in the left
precentral gyrus and right lateral occipital cortex can only be observed in the brain of AD
patients, but not in its early stage (MCI). However, the results provided in Table V are for
the classification task between sMCI and pMCI subjects. As we know that pMCI subjects
have higher tendency of progression to AD, selection of some regions that only experience
significant alterations in AD (later stage), but not in MCI (early stage), might favor the
classification between sMCI and pMCI. Furthermore, there is more than 40% of pMCI
subjects used in the experiment have converted to AD within a relatively short period of
time (less than 12 months). This might suggest that some of these pMCI subjects already
showed certain degree of anomalies in regions with alterations that can only be observed in
AD patients, such as left precentral gyrus and right lateral occipital cortex, as indicated by
the present study.

Although the majority of the neuroimaging literature of AD and MCI has focus on
measuring morphological abnormalities in individual ROIs, our study suggests that the
baseline cortical morphological abnormality patterns between different ROIs across the
whole brain can be utilized to increase the prediction accuracy on an individual basis. These
correlative morphological abnormality patterns are complex and include regions that are
located either adjacent or distant. The methodology presented herein is built around this
concept, that is, the morphological alterations caused by AD and MCI pathological attacks
are not restricted to certain brain areas, but widely spread over the whole brain, and the
relative changes between pairs of ROIs might convey useful discriminative information. The
proposed approach is significantly different from the ROI-based approach, which examine
the brain region-by-region independently, without integrating the entire pattern of atrophy
(Davatzikos, et al. 2005a; Davatzikos, et al. 2005b) throughout all brain regions together.
This is very important, because although many regions generally display significant group
differences, they might also significantly overlap between groups (Fan, et al. 2008), and
therefore do not provide sufficient sensitivity and specificity for diagnostic purposes. The
integration of ROI-based and correlative morphological information provided the best
results, suggesting that the correlative features convey additional and somewhat
complementary information to the ROI-based features. This fully multivariate approach
herein provides a more general and comprehensive way of examining the data.

CONCLUSIONS
In this paper, we proposed a new approach of extracting morphological information from
structural MRI images. We constructed a regional cortical thickness similarity map for each
subject to describe the correlative changes in cortical thicknesses between pairs of ROIs. We
demonstrated that this correlative information gives better characterization of structural
changes in MCI and AD patients. By integrating the proposed correlated morphological
features with the ROI-based morphological features via multi-kernel SVM, significant
improvement in classification performance can be achieved. When applied to discriminate
pMCI subjects from sMCI subjects, our proposed classification framework outperformed
other methods by providing higher values for all statistical measures used for comparison.
The promising results give supportive evidence on the effectiveness of applying correlative
cortical information for diagnosis and prediction of progressive neurodegenerative diseases,
such as AD.
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Figure 1.
Conversion from MCI to AD up to 36 months in pMCI sub-group.
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Figure 2.
Schematic overview of the proposed AD/MCI classification framework.
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Figure 3.
Desikan-Killiany Cortical Atlas used for brain space parcellation. The medial and lateral
views of the atlas are obtained from http://web.mit.edu/mwaskom/pyroi/freesurfer\_ref.html.
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Figure 4.
Population average similarity maps for the NC, MCI and AD groups. NC and MCI maps are
similar, but they are both different from AD map.
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Figure 5.
Population average similarity maps for the pMCI and sMCI subgroups, which look similar
to each other.
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Table 1
Demographic information of the participants involved in this study. (NC = normal
controls; sMCI = static MCI; pMCI = progressive MCI; AD = Alzheimer’s disease)

Variables Diagnosis Group

NC sMCI pMCI AD

No. of subjects (n) 200 111 89 198

Gender (M/F) 103M/97F 83M/28F 60M/29F 103M/95F

Age (mean ± SD) 75.8 ± 5.0 75.3 ± 7.3 74.8 ± 6.9 75.7 ± 7.7

Education years (mean ± SD) 15.9 ± 2.9 15.9 ± 3.2 15.9 ± 3.0 14.7 ± 3.1

Cognitive scores

ADAS-Cog (mean ± SD) 6.1 ± 3.0 10.3 ± 5.0 12.6 ± 3.7 17.3 ± 8.0

MMSE (mean ± SD) 28.6 ± 3.8 25.9 ± 6.1 26.7 ± 1.6 21.8 ± 6.1

CDR (mean ± SD) 0 ± 0.1 0.4 ± 0.3 0.5 ± 0.0 0.6 ± 0.5
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TABLE IV
Classification of pMCI subjects at different conversion time. (ACC = ACCuracy; SEN =
SENsitivity; SPE = SPEcificity)

Conversion
Time (Months)

pMCI vs. sMCI

ACC SEN SPE AUC

12 71.67 0.7028 0.7306 0.8036

18 70.18 0.7036 0.7000 0.8358

24 71.01 0.7135 0.7068 0.8184

36 71.76 0.7364 0.6989 0.8228
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TABLE V
Top twenty most discriminative ROI-based and correlated morphological features that
were selected during multi-kernel SVM training in the pMCI vs. sMCI classification task.
(L = Left; R = Right; G = Gray matter; W = White matter; T = Thickness; Freq =
Frequency)

No. ROI-based Features Freq Correlative Features Freq

1 Entorhinal_R_G 15 Precentral_L - LateralOccipital_R 7

2 Bankssts_L_T 12 SuperiorTemporal_L - Fusiform_R 6

3 MiddleTemporal_L_G 11 RostralMiddleFrontal_L - Paracentral_R 5

4 SuperiorP arietal_R_G 11 CaudalAnteriorCingulate_L - TemporalPole_R 5

5 InferiorParietal_L_G 10 LateralOccipital_R - ParsTriangularis_R 4

6 Entorhinal_L_G 10 CaudalAnteriorCingulate_R - IsthmusCingulate_R 4

7 Supramarginal_R_G 9 InferiorParietal_L - Supramarginal_L 4

8 Precuneus_R_G 8 Pericalcarine_L - Precuneus_R 4

9 Precuneus_L_G 7 ParsTriangularis_R - RostralMiddleFrontal_R 4

10 InferiorTemporal_L_G 6 Paracentral_L - LateralOccipital_R 4

11 Bankssts_L_G 6 SuperiorParietal_L - Cuneus_R 4

12 Insula_L_G 5 Pericalcarine_L - Entorhinal_R 4

13 InferiorTemporal_L_T 5 MiddleTemporal_L - Insula_R 4

14 MedialOrbitofrontal_R_G 5 Bankssts_L - ParsOpercularis_R 4

15 Fusiform_R_G 5 LateralOrbitofrontal_L - LateralOrbitofrontal_R 3

16 PosteriorCingulate_R_T 5 Precentral_L - RostralMiddleFrontal_L 3

17 Entorhinal_L_T 5 CaudalAnteriorCingulate_L - MedialOrbitofrontal_R 3

18 ParaHippocampal_R_T 5 SuperiorTemporal_L - Postcentral_R 3

19 ParsOrbitalis_L_G 5 MiddleTemporal_L - Postcentral_R 3

20 Fusiform_R_T 5 Bankssts_R - SuperiorFrontal_R 3
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