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Purpose: To evaluate differences in the structural connectome among 
patients with normal cognition (NC), mild cognitive impair-
ment (MCI), and Alzheimer disease (AD) and to determine 
associations between the structural connectome and corti-
cal amyloid deposition.

Materials and 
Methods:

Patients enrolled in a multicenter biomarker study (Alzheim-
er’s Disease Neuroimaging Initiative [ADNI] 2) who had both 
baseline diffusion-tensor (DT) and florbetapir positron emis-
sion tomography (PET) data at the time of data analyses in 
November 2012 were studied. All institutions received institu-
tional review board approval. There were 102 patients in ADNI 
2 who met criteria for analysis. Patients’ T1-weighted images 
were automatically parcellated into cortical regions of interest. 
Standardized uptake value ratio (SUVr) was calculated from 
florbetapir PET images for composite cortical regions (fron-
tal, cingulate, parietal, and temporal). Structural connectome 
graphs were created from DT images, and connectome topol-
ogy was analyzed in each region by using graph theoretical 
metrics. Analysis of variance of structural connectome metrics 
and florbetapir SUVr across diagnostic group was performed. 
Linear mixed-effects models were fit to analyze the effect of 
florbetapir SUVr on structural connectome metrics.

Results: Diagnostic group (NC, MCI, or AD) was associated with chang-
es in weighted structural connectome metrics, with decreases 
from the NC group to the MCI group to the AD group shown 
for (a) strength in the bilateral frontal, right parietal, and bilat-
eral temporal regions (P , .05); (b) weighted local efficiency in 
the left temporal region (P , .05); and (c) weighted clustering 
coefficient in the bilateral frontal and left temporal regions (P 
, .05). Increased cortical florbetapir SUVr was associated with 
decreases in weighted structural connectome metrics; namely, 
strength (P = .00001), weighted local efficiency (P = .00001), 
and weighted clustering coefficient (P = .0006), independent of 
brain region. For every 0.1-unit increase in florbetapir SUVr, 
there was a 14% decrease in strength, an 11% decrease in 
weighted local efficiency, and a 9% decrease in weighted clus-
tering coefficient, regardless of the analyzed cortical region or, 
in the case of weighted local efficiency and clustering coeffi-
cient, diagnostic group.

Conclusion: Increased amyloid burden, as measured with florbetapir 
PET imaging, is related to changes in the topology of the 
large-scale cortical network architecture of the brain, as 
measured with graph theoretical metrics of DTI tractogra-
phy, even in the preclinical stages of AD.
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progresses, both with clinical signs and 
symptoms and with pathologic changes, 
such as increased b-amyloid plaque for-
mation. Previous tractographic studies 
have shown decreased network com-
plexity in patients with MCI or AD as 
compared with healthy control patients, 
with differences in connectivity located 
predominantly in the frontal regions 
(14–17). To our knowledge, no prior 
study has been performed to examine 
the relationship between amyloid plaque 
disease and structural connectivity. The 
purpose of our study was to evaluate dif-
ferences in the structural connectome 
between patients with normal cognition 
(NC), patients with MCI, and patients 
with AD and to examine how struc-
tural connectivity might change with in-
creased cortical amyloid deposition.

Materials and Methods

We studied patients enrolled in a multi-
center biomarker study, the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) 
2, who had both DT imaging and flor-
betapir PET data at the start of data 
analyses in November 2012. Analyses 

than they can be understood by deficits 
in any one brain region (3). Thus, the 
study of how functional and structural 
brain networks are altered by AD might 
provide a critical link between our un-
derstanding of AD neuropathology and 
its cognitive manifestations. The advent 
of new imaging technologies with which 
to depict in vivo amyloid plaques and 
large-scale functional and structural 
brain networks is beginning to shed 
light on this critical question.

b-Amyloid positron emission to-
mography (PET) enables noninvasive 
assessment of the amyloid burden. Flo-
rbetapir is a fluorine 18–labeled radioli-
gand that recently was approved by the 
Food and Drug Administration for use 
in the assessment of b-amyloid plaques 
in the setting of progressive cognitive 
decline. Quantitative and qualitative 
measures of cortical florbetapir uptake 
have correlated with postmortem b-
amyloid burden and with longitudinal 
cognitive decline (4,5).

The term connectomics refers to 
mapping of the neural connections and 
networks in the brain, including struc-
tural and functional networks (6,7). The 
large-scale functional and structural net-
works of the brain can be mapped and 
analyzed by applying graph theoretical 
analyses to functional magnetic reso-
nance (MR) imaging time series data 
for functional networks and diffusion-
tensor imaging tractography data for 
structural networks. Specifically, by us-
ing the term node to define a particular 
cortical region of interest in a graph and 
by using interregion time series corre-
lations or tractography streamlines as 
edges, quantitative analysis of the orga-
nization or topology of the connectome 
can be performed (7,8).

Initial connectomics studies in pa-
tients with AD focused on the functional 
connectome (9–13). These works have 
shown that time-dependent interactions 
between brain regions are altered as AD 

A lzheimer disease (AD) is a progres-
sive neurodegenerative dementia  
that affects approximately 5.5 

million people in the United States and 
about 30 million people worldwide. It 
is believed to have a prolonged pro-
dromal and preclinical phase initially 
characterized by the development of 
silent pathologic changes (preclinical 
AD) and followed by mild cognitive 
impairment (MCI) and then dementia 
(1). b-Amyloid plaques and neurofibril-
lary tangles are pathologic hallmarks of 
AD, and there is great interest in elu-
cidating how these core disorders re-
late to changes in brain structure and 
function, and in turn, how they relate to 
deficits in cognition (2). There is grow-
ing evidence that the cognitive deficits 
in patients with AD can be understood 
in terms of abnormal interactions or 
connections among brain regions better 

Implication for Patient Care

 n These results suggest that struc-
tural network changes need to be 
a target for therapy early in the 
course of AD.

Advances in Knowledge

 n Increased cortical amyloid burden 
is associated with changes in the 
topology of the structural con-
nectome, as measured with 
graph theoretical metrics; 
namely, there are significant de-
creases in strength (P = .00001), 
weighted local efficiency (P = 
.00001), and weighted clustering 
coefficient (P = .0006) that are 
similar across all analyzed brain 
regions.

 n The degree of amyloid burden is 
more strongly associated with 
changes in the structural connec-
tome than with diagnostic group 
(normal cognition, mild cognitive 
impairment, or Alzheimer 
disease [AD]).

 n For every 0.1-unit increase in 
florbetapir standardized uptake 
value ratio, there was a 14% 
decrease in strength, an 11% 
decrease in weighted local effi-
ciency, and a 9% decrease in 
weighted clustering coefficient; 
thus, large-scale structural net-
work changes can be detected in 
the presence of amyloid pa-
thology, even in the preclinical 
stages of AD.
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The FreeSurfer parcellations were 
automatically registered to the florbeta-
pir PET images by using a transformation 
calculated with maximization of mutual 
information between the T1-weighted 
anatomic images and the florbetapir PET 
images. Four composite cortical regions 
were created in each cerebral hemisphere 
by combining regions from the FreeSurf-
er parcellation, as follows: (a) The lateral 
and medial frontal region (hereafter, 
frontal region) included the caudal middle 
frontal, lateral orbitofrontal, medial orbi-
tofrontal, pars opercularis, pars orbitalis, 
pars triangularis, rostral middle frontal, 
superior frontal, and frontal pole regions. 
(b) The anterior and posterior cingulate 
region (hereafter, cingulate region) in-
cluded the caudal anterior cingulate, isth-
mus cingulate, posterior cingulate, and 
rostral anterior cingulate regions. (c) The 
lateral parietal region (hereafter, parie-
tal region) included the inferior parietal, 
precuneus, superior parietal, and supra-
marginal regions. (d) The lateral tempo-
ral region (hereafter, temporal region) 
included the middle temporal and supe-
rior temporal regions. These regions are 
based on prior analyses that showed high 
test-retest reliability for average cortical 
standardized uptake value ratio (SUVr) 
quantitative analysis of florbetapir PET 
in patients with AD (18,21). It should be 
noted that these regions did not include 
the inferior temporal cortex, entorhinal 
cortex, amygdalae, or hippocampi, all of 
which are areas known to be affected in 
patients with AD.

Next, weighted SUVr of the four com-
posite cortical regions was determined by 
first calculating the volume-weighted av-
erage standardized uptake value (SUV) 
of the voxel values from the constituent 
FreeSurfer parcellations of each compos-
ite region with the following equation:
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where region represents the frontal, 
cingulate, parietal, or temporal region; 
r represents a subregion of the current 
region; I(i) is the standardized uptake 
value of the voxel i; V(i) is the volume 

Systems, Milwaukee, Wis). Most flo-
rbetapir PET images were acquired 
within 3 months of the T1-weighted 
and DT images, with a maximum of 8 
months between acquisitions. Analysis 
of variance revealed no significant dif-
ferences in time between examinations 
among the diagnostic groups (P = .86).

All image processing and analyses 
were performed by two authors (J.W.P., 
A.G.; each with 10 years of experience).

Anatomic T1-weighted MR Image 
Acquisition and Processing
Anatomic 3-T T1-weighted MR images 
were acquired. Because DT images 
were acquired only with the aforemen-
tioned imagers in the ADNI 2 study, the 
T1-weighted sequence used was that of 
the aforementioned imagers, namely 
the spoiled gradient-recalled sequence.

The T1-weighted images were seg-
mented by using the FreeSurfer (version 
5.1.0; surfer.nmr.mgh.harvard.edu) de-
fault automated gyral-based parcellation 
method, and this yielded 83 cortical and 
subcortical regions of interest (19,20).

Florbetapir (Amyloid) PET Image 
Acquisition and Processing
PET image acquisition was performed 
50–70 minutes after injection of 10 mCi 
(370 MBq) of florbetapir. The acquired 
images were centrally processed by 
ADNI, including spatial alignment, aver-
aging, interpolation to a standard voxel 
size, and smoothing by 8-mm full width 
at half maximum (described at adni.
loni.ucla.edu/methods/pet-analysis/
preprocessing/).

were performed from November 2012 
to November 2013. ADNI 2 was con-
ducted at more than 50 institutions in 
North America. Of these institutions, 15 
acquired DT images and were included 
in this study. All institutions received 
institutional review board approval for 
study participation. Patients enrolled in 
ADNI 2 were aged 55 to 90 years and 
had no other clinically important neuro-
logic condition. Although 550 patients 
were studied in ADNI 2, only a subset 
of those who underwent both DT imag-
ing and florbetapir PET met the criteria 
for inclusion in this analysis (Table 1). 
Patients included in this study were en-
rolled between April 2011 and August 
2012. There are four clinical diagnos-
tic arms in ADNI 2: patients with NC, 
patients with early MCI, patients with 
late MCI, and patients with AD. For 
the purpose of this study, patients with 
early MCI and those with late MCI were 
combined into one MCI group; patients 
with early MCI and those with late MCI 
had a Mini-Mental State Examination 
score of 24–30 and a Clinical Dementia 
Rating of 0.5 (18). Each patient under-
went baseline cognitive assessment, 
T1-weighted MR imaging, DT imaging, 
and florbetapir PET imaging. The ADNI 
2 protocol describes the acquisition 
methods in depth (www.adni-info.org). 
All data were anonymized and centrally 
housed by ADNI. In general, the ana-
tomic T1-weighted spoiled gradient-
recalled images and DT images were 
acquired during the same session with 
one of two MR imagers (Signa HDxt 
or Discovery MR 750; GE Medical 

Table 1

Patient Characteristics across Diagnostic Groups

Characteristic NC Group (n = 37) MCI Group (n = 44) AD Group (n = 21) P Value

Age (y) 73.8 6 6.1 7 1.8 6 12.8 75.0 6 9.8 .66
Sex* .36
 Male 20 (54) 29 (66) 15 (71) …
 Female 17 (46) 15 (34) 6 (29) …
Education (y) 16.5 6 2.7 15.3 6 2.9 15.3 6 3.2 .17
ADAS-cog 5.3 6 2.9 11.1 6 4.6 20.5 6 7.2 ,.001

Note.—Unless otherwise indicated, data are mean 6 standard deviation. P values are from analysis of variance of characteristic 

versus diagnostic group. ADAS-cog = Alzheimer’s Disease Assessment Scale-cognitive subscale.

* Data are number of patients, with percentages in parentheses.
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local efficiency and clustering coefficient,  
while random networks have a low local 
efficiency and clustering coefficient (7).

In the case of calculation of weighted 
local efficiency, the number of stream-
lines were normalized to a range of 0–1 
by dividing the number of streamlines 
between each node by the maximum 
number of streamlines between any two 
nodes in the graph. Subsequent statis-
tical analysis was performed on only 
the 38 cortical regions (nodes) (19 per 
hemisphere) that were included in the 
composite regions, as described pervi-
ously (ie, frontal, cingulate, parietal, and 
temporal). For the regional structural 
connectome metrics, the metrics of the 
nodes in each composite region were av-
eraged together without adjustment for 
volume to produce an average network 
metric value.

Statistical Analysis
Summary statistics were computed for 
demographics and clinical characteris-
tics. Differences in regional structural 
connectome metrics and florbetapir 
SUVr were examined by using one-way 
analysis of variance across diagnos-
tic group (NC, MCI, or AD). These 
analyses were exploratory and were not 
adjusted for multiple comparisons.

A linear mixed-effects model was 
used to analyze the relationship be-
tween regional florbetapir SUVr and 
the network metrics. The following 
model was used:

The outcome Mik is the structural metric 
computed at region k for patient i. The 
model explains variation in this metric 
in terms of a baseline average m, which 
represents the expected metric value 
in the left frontal region of a healthy 
74-year-old man with 16 years of edu-
cation. Thus, the baseline corresponds 
to a patient possessing average values 

streamline volumes were visually as-
sessed for patient motion and distortion 
artifacts. No images were excluded from 
analysis because of excessive patient mo-
tion or distortion artifacts.

Structural Connectome Graph Theoretical 
Analysis
The Brain Connectome Toolbox was used 
to calculate graph theoretical metrics for 
the connectome graphs (8). The metrics 
calculated included both unweighted (bi-
nary) and weighted (number of stream-
lines) forms. In general, binary networks 
are easier to characterize; however, there 
is loss of information on the strength of 
connections, which may prove critical in 
the precise characterization of network 
organization (8).

The unweighted metrics were calcu-
lated by setting an edge with a value of 
1 if there was any connection between 
two nodes and setting an edge with a 
value of 0 if there was no connection. 
The weighted metrics were calculated by 
setting the edge weights as the number 
of streamlines connecting two nodes. The 
metrics calculated were degree (number 
of nodes connected to a node; un-
weighted), strength (number of stream-
lines connected to a node; weighted), 
local efficiency (average inverse shortest 
path length in a node neighborhood; both 
unweighted and weighted), and cluster-
ing coefficient (the fraction of a node’s 
neighbors that are neighbors of each 
other; both unweighted and weighted).

Graph theoretical measures of net-
work topology can be classified broadly 
into those that measure integration and 
those that measure segregation (7,8). 
Both local efficiency and clustering coef-
ficient can be taken as measures of seg-
regation, which quantify the presence 
of densely interconnected groups, or 
clusters, of brain regions. Structural net-
works have been shown to be both highly 
segregated and highly integrated, form-
ing a so-called small-world network (24). 
High segregation is a marker for com-
plexity in a network, and a decrease in 
segregation can be taken as a represen-
tation of change toward a more random 
topologic organization. In terms of the 
measures of segregation analyzed in this 
article, complex networks have a high 

of the voxel i. The SUVr of each region 
was calculated by dividing standardized 
uptake value of the region by the average 
standardized uptake value of the whole 
cerebellum ( whole cerebellumSUV ).

DT Image Acquisition
The DT images were acquired with the 
aforementioned MR imagers. Acquisi-
tion parameters were as follows: spin-
echo echo-planar imaging sequence; b 
value, 1000 sec/mm2; b0 = 0 (five signal 
averages), with 41 isotropically distrib-
uted diffusion-sensitizing gradients; and 
acquisition image size, 2.7 3 2.7 3 2.7 
mm, with an applied reduction factor of 
two. For the Signa HDxt imager, repe-
tition time was 12 500 msec and echo 
time was 68 msec. For the Discovery 
MR 750 imager, repetition time was 
9050 msec and echo time was 63 msec. 
All DT images were visually assessed for 
patient motion and distortion artifacts. 
No images were excluded from analysis 
because of excessive patient motion or 
distortion artifacts.

Structural Connectome Construction
Structural connectome graphs were con-
structed from the DT images by using the 
Connectome Mapping Toolkit (version 
1.2.0; Ecole Polytechnique Fédérale de 
Lausanne and Hospital Center and Uni-
versity of Lausanne, Lausanne, Switzer-
land), with 32 random seeds per voxel, 
an angular threshold of 60°, and a step 
size of 0.5 mm (22). The B0 images from 
the DT images were registered to the T1-
weighted anatomic images by using the 
Functional Magnetic Resonance Imaging 
of the Brain linear image registration tool 
(FLIRT) with the maximization of mutual 
information method (23). The transfor-
mation from this registration was then 
used to register the FreeSurfer parcel-
lation to the connectome graph. Each 
FreeSurfer cortical and subcortical gray 
matter region was set as a node, exclud-
ing the brain stem, for a total of 82 nodes 
(41 per hemisphere). This was done to 
assess the association between the flo-
rbetapir SUVr of a region and all of its 
tractographic connections, not only the 
connections between the analyzed flor-
betapir PET regions (frontal, cingulate, 
parietal, and temporal). Tractographic 
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AD groups respectively, while aF,i denotes 
the additional effects of sex in female 
patients. The variable aR,k denotes the 
additional effects of region other than 
left frontal. The coefficient bP denotes 
the baseline effect of every additional 
unit of standardized uptake value in the 
left frontal region (SUVrLF), while the 
coefficients bp,MCI and bp,AD denote the 
differential effect of every additional 
unit of standardized uptake value in the 
left frontal region for patients with MCI 
and those with AD. The coefficient bP,k 
denotes the differential effect of every 
additional unit of standardized uptake 
value in region k, other than left fron-
tal. Finally, the terms ba and be denote 
the effect of every additional unit of age 
and education. Time between acquisi-
tion of DT images and florbetapir PET 
images was not included in the model.

Note that the model specified in 
Equation (2) enables simultaneous 
analysis of data across all brain regions 
from each patient. The random effect 
of patient is used to model the result-
ing correlation in measurements. Joint 
modeling ensures that the estimates are 
statistically efficient and that P values 
do not need to be subsequently cor-
rected for multiple comparisons.

All statistical analyses were imple-
mented by using R software, version 
3.0.1 (www.r-project.org). All statis-
tical analyses were performed by two 
authors (J.W.P., K.R.C.; 5 and 20 years 
of experience, respectively).

Results

There were 102 patients (64 male, 38 fe-
male) in this study: 37 with NC, 44 with 

a zero mean normal distribution. The 
variables aMCI,i and aAD,i denote the ad-
ditional effects of disease in the MCI and 

of these demographic variables in our 
sample. The variable ai denotes the ran-
dom effect for patient i, assumed to have 

Figure 1

Figure 1: (a) Bar plots of weighted network met-
rics in each composite cortical region, separated 
by diagnostic group. Bar height represents the 
mean metric value, and error bar represents one 
standard deviation from the mean. ∗ P , .05 for 
analysis of variance. (b) Bar plots show network 
metrics for florbetapir SUVr in each composite 
cortical region, separated by diagnostic group. Bar 
height represents the mean metric value, and error 
bar represents one standard deviation from the 
mean. ∗ P , .05 for analysis of variance.
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significant differences across the diag-
nostic groups for node degree (left and 
right parietal regions: P = .03 and P = 
.003, respectively), node strength (left 
frontal, right frontal, right parietal, left 
temporal, and right temporal regions: 
P = .03, P = .04, P = .04, P = .007, 
and P = .03, respectively), weighted 
local efficiency (left temporal region: P 
= .05), and weighted clustering coeffi-
cient (left frontal, right frontal, and left 
temporal regions: P = .04, P = .05, and 
P = .02, respectively). There were no 
significant differences for unweighted 
local efficiency or unweighted clustering 
coefficient.

Analysis of Amyloid Burden across 
Diagnostic Groups
There was a significant increase in the 
amyloid burden across the diagnostic 
groups in all cortical regions, as ex-
pected (P , .001 for all regions) (Fig 
1b). There was no significant difference 
in florbetapir SUVr between regions 
among the same diagnostic group.

Analysis of Structural Connectome 
Metrics and Amyloid Burden
There were significant associations be-
tween florbetapir SUVr and each of the 
weighted connection metrics (strength, 
P = .00001; weighted local efficiency, 
P = .00001; and weighted clustering 
coefficient, P = .0006) (Tables 2–4).  
For every 0.1-unit increase in flor-
betapir SUVr, there was a decrease of  
14% in strength, 11% in weighted local 
efficiency, and 9% in weighted cluster-
ing coefficient, regardless of the ana-
lyzed cortical region or, in the case of 
weighted local efficiency and clustering 
coefficient, diagnostic group. There 
were no significant associations be-
tween florbetapir SUVr and any of the 
unweighted network metrics. There 
was a significant interaction between 
florbetapir SUVr and diagnostic group 
for strength, with the NC group having 
the greatest effect of SUVr.

Estimated standard deviations for 
the random effect due to patient were 
higher than the estimated standard de-
viations of residuals for all three clus-
tering metrics, suggesting a high de-
gree of interpatient variability (Table 

the AD group and corresponded to a de-
crease in cognitive performance.

Analysis of Structural Connectome 
Metrics across Diagnostic Groups

The regional average of node degree, 
strength, local efficiency (weighted 
and unweighted), and clustering coef-
ficient (weighted and unweighted) and 
their associations with diagnostic group 
are shown in Figure 1a. There were 

MCI, and 21 with AD (Table 1). The 
ages were similar across groups. There 
were more men than women in each 
diagnostic group. Patients in the NC 
group tended to have more years of ed-
ucation than did patients in the MCI or 
AD group. As expected, the Alzheimer’s 
Disease Assessment Scale-cognitive sub-
scale (or ADAS-cog, a clinical measure 
of cognitive performance) increased 
from the NC group to the MCI group to 

Table 2

Results of Fitting Linear Mixed-Effects Model to Strength Network Connectivity Metric

Model Term Estimated Effect* Standard Error P Value

Baseline† 8.29 0.38 ,.00001‡

Amyloid SUVr§ 21.55 0.34 .00001‡

MCI group|| 21.26 0.40 .002‡

AD group|| 21.05 0.52 .05‡

Age# 20.02 0.01 .06
Female sex# 20.20 0.13 .13
Education# 20.02 0.02 .44
Cortical region**
 Left parietal 20.09 0.26 .73
 Left temporal 20.73 0.26 .005‡

 Right cingulate 21.47 0.27 ,.00001‡

 Left cingulate 21.72 0.27 ,.00001‡

 Right frontal 0.01 0.25 .97
 Right parietal 0.18 0.26 .49
 Right temporal 20.42 0.26 .10
Amyloid SUVr
 MCI group†† 1.03 0.34 .003‡

 AD group†† 0.92 0.41 .02‡

 Cortical region‡‡

  Left parietal 0.10 0.21 .65
  Left temporal 20.07 0.22 .76
  Right cingulate 0.09 0.21 .68
  Left cingulate 0.29 0.21 .18
  Right frontal 0.07 0.21 .75
  Right parietal 20.02 0.21 .92
  Right temporal 20.10 0.22 .65

Note.—Refer to Equation 2 for full model definition.

* Effect (either additive or differential) of each row on the network metric value.
† Network metric value in the left frontal region of a 74-year-old man with 16 years of education and a left frontal florbetapir 

SUVr of 0.
‡ P value indicates a significant difference.
§ Differential effect (slope) of each unit of florbetapir SUVr in the left frontal region.
|| Additive effect of the diagnostic group (MCI or AD).
# Additive effects of each of the demographic variables.

** Additive effect of modeling the network metric in a region other than the left frontal region.
†† Interaction effect that modifies the differential effect (slope) of each unit of amyloid SUVr based on the diagnostic group  

(MCI or AD).
‡‡ Interaction effect that modifies the differential effect (slope) of each unit of amyloid SUVr when modeling the network metric 

in a region other than the left frontal region.
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of diffusion streamlines carries critical 
information related to amyloid burden. 
It should be noted that the variabil-
ity of some of the weighted metrics is 
high, particularly the strength metric 
in the bilateral parietal and temporal 
lobes. This may be due to inherent pa-
tient-level differences in the structural 
connectome manifested by the tracto-
graphic reconstruction algorithm. The 
inclusion of a patient-level random ef-
fect in the linear mixed-effects statis-
tical model, as was used in this study, 
is one method of adjusting for possi-
ble inherent patient-level differences 
across all regions analyzed. The rela-
tively large standard deviation of this 
random effect suggests that this is an 
important term for all three metrics 
analyzed in this study.

viable connections to undergo degen-
eration in symptomatic patients, thus 
decreasing the effects of accumulating 
amyloid burden. Indeed, although an 
increase in amyloid deposition is seen 
in patients with preclinical AD and 
those with milder stages of AD, longi-
tudinal biomarker studies have shown 
that degenerative changes and cognitive 
decline accelerate in patients with mod-
erate stages of AD (2,25,26).

We also showed significant differ-
ences in multiple measures of the struc-
tural connectome among patients with 
NC, patients with MCI, and patients 
with AD. Interestingly, the weighted 
versions of the structural connectome 
metrics had the most significant dif-
ferences across diagnostic group, sug-
gesting that information on the number 

E1 [online]). The distribution of re-
siduals had an approximately normal 
distribution for all three metrics; this 
justified use of the log transformation 
of the response (Figs E1–E3 [online]). 
There was no strong evidence of het-
eroscedasticity in the model for any of 
the metrics (Figs E1–E3 [online]).

Discussion

Our results show that increased cor-
tical amyloid deposition, as measured 
with florbetapir PET, is significantly as-
sociated with changes in the topology 
of the structural connectome, as mea-
sured with graph theoretical metrics. 
Specifically, there were significant in-
verse associations between florbetapir 
SUVr and each of the weighted struc-
tural connectome metrics: strength, 
weighted local efficiency, and weighted 
clustering coefficient. The degree of 
amyloid burden was an additional and 
more significant factor associated with 
decreased network metrics than was 
diagnostic group, in which the MCI and 
AD groups showed decreased network 
metrics when compared with the NC 
group. Increased amyloid deposition 
did not affect the metric values of any 
particular region more than others. 
This is evidenced by the lack of a sig-
nificant florbetapir SUVr by region in-
teraction. Most importantly, these re-
sults show that large-scale structural 
network changes can be detected in the 
presence of amyloid pathology, even in 
the preclinical stages of AD.

It is interesting to note that the 
differential effect (slope) of every unit 
increase of florbetapir SUVr on the 
strength metric was significantly less 
in the AD and MCI groups than in the 
NC group. This is supported by a sig-
nificant florbetapir SUVr by group in-
teraction for the AD and MCI groups. 
We speculate that this result suggests 
that damage to the structural connec-
tome may represent an early event in 
the pathophysiology of AD, paralleling 
or closely following amyloid deposition. 
We hypothesize that increased amyloid 
burden may be associated with a slower 
rate of decline in network metrics in 
the MCI or AD groups because of fewer 

Table 3

Results of Fitting Linear Mixed-Effects Model to Weighted Local Efficiency Network 
Connectivity Metric

Model Term Estimated Effect Standard Error P Value

Baseline 22.97 0.28 ,.00001*
Amyloid SUVr 21.13 0.25 .00001*
MCI group 20.45 0.30 .13
AD group 20.32 0.38 .40
Age 20.01 0.01 .06*
Female sex 0.02 0.10 .82
Education 20.00 0.02 .86
Cortical region
 Left parietal 20.26 0.19 .18
 Left temporal 20.64 0.19 .001*
 Right cingulate 20.75 0.19 .0001*
 Left cingulate 20.86 0.20 .00002*
 Right frontal 0.11 0.19 .56
 Right parietal 20.03 0.19 .87
 Right temporal 20.50 0.19 .01*
Amyloid SUVr
 MCI group 0.39 0.25 .12
 AD group 0.39 0.30 .19
 Cortical region
  Left parietal 0.15 0.16 .32
  Left temporal 20.02 0.16 .92
  Right cingulate 0.16 0.15 .29
  Left cingulate 0.16 0.16 .31
  Right frontal 20.00 0.15 ..99
  Right parietal 0.11 0.16 .46
  Right temporal 0.04 0.16 .78

Note.—Refer to Table 2 for a description of the meaning of each row.

* P value indicates a significant difference.
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The main limitations of this study 
are its cross-sectional nature and the 
relatively small sample. We focused 
on four brain regions highly affected 
by b-amyloid that previously have 
been shown to have high test-retest 
reliability in quantitative analysis of 
the florbetapir PET images. Hence, 
our correlations were driven by only 
these regions. Specifically, the analyzed 
regions did not include the inferior 
temporal cortex, entorhinal cortex, 
amygdalae, or hippocampi, which are 
areas known to be affected early in the 
course of AD. Also, while comparison 
of DT imaging tractography with histo-
logic tractography has shown good vi-
sual agreement between collections of 
DT imaging streamlines and histologic 
fiber tracts (28,29), to our knowledge, 
there is no quantitative validation that 
the number of streamlines has any 
direct physiologic meaning (30). The 
number of streamlines is instead de-
pendent on the parameters used in the 
construction of the streamlines them-
selves. DT imaging tractography was 
performed by using a standardized pro-
tocol for all patients. Thus, within this 
analysis, the number of streamlines 
can be reasonably taken to have consis-
tent meaning between patients. Finally, 
no atrophy correction was undertaken 
in this study. It is reasonable to assume 
that, in the setting of brain atrophy, the 
strength metric might decrease. How-
ever, the largest effect of amyloid on 
the strength metric in our statistical 
model was in patients with NC, who 
would not be expected to have measur-
able cortical atrophy. Also, it is not ap-
parent if atrophy would preferentially 
affect particular cortical connections, 
thereby changing the complexity of the 
structural connectome and consequent 
measures, such as local efficiency and 
clustering coefficient.

In summary, our cross-sectional 
study of baseline data from a national 
cohort of patients with AD, MCI, or 
NC shows that increased cortical amy-
loid deposition is significantly associated 
with alterations in the topology of the 
structural connectome. The prominence 
of these changes in patients with NC 
raises the possibility that damage to the 

connections to a common driver, de-
coupling driven by abnormal changes 
involving one or both regions, or re-
modeling elsewhere in the network. 
Our analysis was not designed to de-
termine which structural connections 
might be involved in the loss of dy-
namic coupling in functional analyses. 
Such connections could be both long- 
and short-ranged because the pos-
terior cingulate region is highly con-
nected both locally (to the precuneus 
and retrosplenial cortex) and globally 
(particularly to the medial temporal 
lobe but also to the frontal and parie-
tal regions). Further analyses focusing 
on specific connections may help eluci-
date important links between structure 
and function.

Interestingly, visual inspection of con-
nectome maps revealed no discernible 
systematic differences among groups in 
the nodal connections, suggesting that 
structural connectome metrics are crit-
ical in this regard (Fig 2).

Previous studies in which re-
searchers examined the functional con-
nectome with functional MR imaging 
have shown the strongest group- and 
amyloid-related effects in the posterior 
cingulate regions (11–13,27). In these 
studies, functional connectivity refers 
to correlations of time series between 
regions, that is, dynamic coupling. 
Loss of coupling of time-dependent 
neuronal activity can be driven by dis-
ruption of direct neural connections or 
by some other cause, such as loss of 

Table 4

Results of Fitting Linear Mixed-Effects Model to Weighted Clustering Coefficient 
Network Connectivity Metric

Model Term Estimated Effect Standard Error P Value

Baseline 4.05 0.29 ,.00001*
Amyloid SUVr 20.92 0.27 .0006*
MCI group 20.65 0.31 .04*
AD group 20.19 0.41 .63
Age 20.01 0.01 .29
Female sex 20.17 0.10 .10
Education 20.01 0.02 .77
Cortical region
 Left parietal 20.39 0.20 .06
 Left temporal 20.78 0.20 .0001*
 Right cingulate 20.59 0.21 .005*
 Left cingulate 20.68 0.21 .001*
 Right frontal 0.17 0.20 .39
 Right parietal 20.16 0.20 .45
 Right temporal 20.70 0.20 .0005*
Amyloid SUVr
 MCI group 0.50 0.27 .06
 AD group 0.21 0.32 .52
 Cortical region
  Left parietal 0.20 0.17 .23
  Left temporal 20.06 0.17 .74
  Right cingulate 0.08 0.16 .61
  Left cingulate 0.07 0.17 .68
  Right frontal 20.06 0.16 .72
  Right parietal 0.16 0.17 .34
  Right temporal 0.05 0.17 .78

Note.—Refer to Table 2 for a description of the meaning of each row.

* P value indicates a significant difference.
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