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Abstract

Motivation: The identification of quantitative trait loci (QTL) is critical to the study of causal rela-

tionships between genetic variations and disease abnormalities. We focus on identifying the QTLs

associated to the brain endophenotypes in imaging genomics study for Alzheimer’s Disease (AD).

Existing research works mainly depict the association between single nucleotide polymorphisms

(SNPs) and the brain endophenotypes via the linear methods, which may introduce high bias due

to the simplicity of the models. Since the influence of QTLs on brain endophenotypes is quite com-

plex, it is desired to design the appropriate non-linear models to investigate the associations of

genotypes and endophenotypes.

Results: In this paper, we propose a new additive model to learn the non-linear associations be-

tween SNPs and brain endophenotypes in Alzheimer’s disease. Our model can be flexibly

employed to explain the non-linear influence of QTLs, thus is more adaptive for the complex distri-

bution of the high-throughput biological data. Meanwhile, as an important computational learning

theory contribution, we provide the generalization error analysis for the proposed approach. Unlike

most previous theoretical analysis under independent and identically distributed samples assump-

tion, our error bound is based on m-dependent observations, which is more appropriate for the

high-throughput and noisy biological data. Experiments on the data from Alzheimer’s Disease

Neuroimaging Initiative (ADNI) cohort demonstrate the promising performance of our approach

for identifying biological meaningful SNPs.

Availability and implementation: An executable is available at https://github.com/littleq1991/addi

tive_FNNRW.

Contact: heng.huang@pitt.edu

1 Introduction

Alzheimer’s Disease (AD) is the most common form of dementia,

which triggers memory, thinking and behavior problems. The genet-

ic causal relationship of AD is complex (Avramopoulos, 2009) and

therefore presents difficulties in the prevention, diagnosis and treat-

ment of this disease. Recent advances in multimodal neuroimaging

and high throughput genotyping and sequencing techniques bring an

emerging research field, imaging genomics, which provides exciting

new opportunities to ultimately improve our understanding of brain

disease, their genetic architecture and their influences on cognition

and behavior.

The rapid progress in neuroimaging techniques has provided

insights into early detection and tracking of neurological disorders

(Weiner et al., 2013). Later research interest in imaging neurosci-

ence has focused on Genome Wide Association Studies (GWAS) to

examine the association between genetic markers, called Single

Nucleotide Polymorphisms (SNPs), and imaging phenotypes

(Cooper-Knock et al., 2014; Waring and Rosenberg, 2008), with the
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goal of finding explanations for the variability observed in brain

structures and functions. However, these research works typically

study associations between individual SNPs and individual pheno-

types and overlook interrelated structures among them. To better

understand the genetic causal factors of brain imaging abnormal-

ities, previous works have laid great emphasis on identifying rele-

vant QTL (Ryan et al., 2016; Vounou et al., 2010), which related

high-throughput SNPs to imaging data and enhanced the progress

and prosperity of neuroscience research.

Several machine learning models were established to depict the

relations between SNPs and brain endophenotypes (Huo et al.,

2018; Wang et al., 2012a; Wang et al., 2017; Yang et al., 2015; Zhu

et al., 2016). In Wang et al. (2012a), Zhu et al. (2016), Wang et al.

(2017) and Huo et al. (2018), the authors used the low-rank learn-

ing models or structured sparse learning models to select the imaging

features that share common effects in the regression analysis. Yang

et al. (2015) applied the LASSO regression model to discover the sig-

nificant SNPs that are associated with brain imaging features.

However, previous works use linear models to predict the relations

between genetic biomarkers and brain endophenotypes, which may

introduce high bias during the learning process. Since the influence

of QTL is complex, it is crucial to design appropriate non-linear

model to investigate the genetic biomarkers (due to the limited size

of biological data, deep learning models don’t work well for our

problem). Besides, most previous computational models on geno-

type and phenotype studies did not provide theoretical analysis on

the performance of the models, thus leaves uncertainty in the valid-

ity of the models.

To tackle with these challenging problems, in this paper, we

propose a novel and efficient nonlinear model for the identification

of QTL. We apply our model to the QTL identification of

Alzheimer’s disease (AD), the most common cause of dementia. By

means of feedforward neural networks, our model can be flexibly

employed to explain the non-linear associations between genetic

biomarkers and brain endophenotypes, which is more adaptive for

the complicated distribution of the high-throughput biological

data. We would like to emphasize the following contributions of

our work:

• We propose a novel additive model with generalization error

analysis. In particular, different from conventional analysis with

independent samples, our error bound is under m-dependent

observations, which is a more general assumption and more ap-

propriate for the high-throughput complex genotypes and

phenotypes.
• Our model is efficient in computation. The time complexity of

our model is linear to the number of samples and number of fea-

tures in the data. Experimentally we showed that it only takes a

few minutes to run our model on the ADNI data.
• Experimental results demonstrate that our model not only identi-

fies several well-established AD-associated genetic variants, but

also finds out new potential SNPs.

Notation: Throughout this paper, unless specified otherwise,

upper case letters denote matrices, e.g. X, Y. Bold lower case letters

denote vectors, e.g. w; b. Plain lower case letters denote scalars, e.g.

a, c. wi denotes the i-th element of vector w. wi denotes the i-th row

of matrix W. wj or w jð Þdenotes the j-th column of W. wij denotes

the ij-th element of matrix W. jjwjj2 or jjwjj denotes the ‘2-norm of

vector w:
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

iw
2
i

q
. kWkF denotes the Frobenius norm of matrix W:

kWkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j w2

ij

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i kwik2

q
. jjWjj1 denotes the ‘1 norm:

jjWjj1 ¼
P

i

P
jjwijj. jjWjj� denotes the trace norm (a.k.a. nuclear

norm): jjWjj� ¼
P

iri, where ri is the i-th singular value of W.

Specially, d denotes the dimension of the feature vector, i.e. num-

ber of SNPs. n denotes the number of patients. c represents the num-

ber of QTs. X ¼ x1; x2; . . . ; xn½ �T 2 R
n�d denotes the input SNP

matrix, where each row of X represents the genetic variants of each

patient. Y ¼ y1; y2; . . . ; yn½ �T 2 R
n�c represents the input imaging

feature matrix where each row of Y denotes the phenotype of one

patient. I stands for the identity matrix, and 1 stands for a vector

with all elements being 1.

2 Related work

In QTL identification of brain imaging abnormalities, the goal is to

learn a prediction function which estimates the imaging feature ma-

trix Y ¼ y1; y2; . . . ; yn½ �T 2 R
n�c given the genetic information

X ¼ x1; x2; . . . ; xn½ �T 2 R
n�d. Meanwhile, we want to weigh the

importance of each SNP in the prediction according to the learning

model. The most straightforward method is least square regression,

which learns a weight matrix W 2 R
d�c to study the relations

between SNPs and brain endophenotypes. W is an intuitive reflect

of the importance of each SNP for the prediction of each

endophenotype.

Based on least square regression, several models were proposed

for QTL identification. In Tibshirani (1996) and Yang et al. (2015),

the authors employed sparse regression models for the discovery of

predominant genetic features. In Fazel (2002) and Wang et al.

(2012a), low-rank constraint was imposed to uncover the group

structure among SNPs in the association study.

In the identification of QTL, previous works mainly use linear

models for the prediction. However, according to previous studies,

the biological impact of genetic variations is complex (Meyer-

Lindenberg et al., 2006) and the genetic influence on brain structure is

complicated (Peper et al., 2007). Thus, the relations between genetic

biomarkers and brain-imaging features may not be necessarily linear

and the prediction with linear models is likely to trigger large bias.

To depict the non-linear association between genetic variations

and endophenotypes, neural networks introduce a convenient and

popular framework. Schmidt et al. (1992) proposed feed forward

neural networks with random weights (FNNRW), which can be

formed as:

f xð Þ ¼
Xh

t¼1

at/ hvt;xi þ btð Þ; (1)

where x ¼ x1; x2; . . . ; xd½ � 2 R
d is the input data, h is the number

of hidden nodes, vtjht¼1 ¼ vt1; vt2; . . . ; vtd½ � 2 R
d is the parameter

in the hidden layer for t-th hidden node, bt 2 R is the corresponding

bias term, hvt; xi ¼
Pd

j¼1 vtjxj represents Euclidean inner product,

/ :ð Þ is the activation function and at 2 R is the weight for the t-th

hidden node.

As is analyzed in Igelnik and Pao (1995) and Rahimi and Recht

(2009), FNNRW enjoys an obvious advantage in computational ef-

ficiency over neural nets with back propagation. In Equation (1), vt

and bt are randomly and independently chosen before hand, and the

randomization in parameter largely relieves the computational bur-

den. FNNRW is aimed at estimating only the weight parameter

atjht¼1 thus is extremely efficient. Such property makes FNNRW

more appropriate for analysis of the high-throughput data in

Alzheimer’s research.
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Rahimi and Recht (2009) constructed a classifier using FNNRW

where they conduct classification on the featurized data as shown in

Equation (1). The classification model can be easily extended to the

regression scenario with the objective function formulated as:

min
at jht¼1

�����Y �
Xh

t¼1

/ XvT
t þ bt1

� �
at

�����
2

F

þ c
Xh

t¼1

katk2
2; (2)

where c is the hyper-parameter for the regularization term and

at ¼ a1; a2; . . . ; ac½ � 2 R
c is the weight parameter of the t-th hid-

den node for c different endophenotypes. As discussed above,

Problem (2) can be adopted to efficiently estimate the nonlinear

associations between genetic variations and brain endophenotypes.

However, since the parameters of hidden layer is randomly assigned,

traditional FNNRW model makes it hard to evaluate the importance

of each feature.

To tackle with these problems, we propose a novel additive

model in next section, which not only maintains the advantage of

computational efficiency of FNNRW but also integrates the flexibil-

ity and interpretability of additive models.

3 New additive model for identifying quantitative
trait loci of brain endophenotypes

We propose new Additive Model via Feedforward Neural networks

with random weights (FNAM) as:

fa Xð Þ ¼
Xh

t¼1

Xd

j¼1

/ vtjxj þ bt1
� �

at; (3)

where we distinguish the contribution of each feature xj and formulate

the model in an additive style for the prediction. Similar to that of

FNNRW, we propose to optimize the least square loss between the

ground truth endophenotype matrix Y and the estimation fa(X) with

‘2-norm penalization, then we propose the following objective function:

min
at jht¼1

�����Y �
Xh

t¼1

Xd

j¼1

/ vtjxj þ bt1
� �

at

�����
2

F

þ c
Xh

t¼1

katk2
2; (4)

For simplicity, if we define A ¼ a1; a2; . . . ; ah½ �T 2 R
h�c as the

weight parameter for hidden nodes, and G 2 R
n�h such that

G ¼

Xd

j¼1

/ v1jx1j þ b1

� �
. . .

Xd

j¼1

/ vhjx1j þ bh

� �

..

.
. . . ..

.

Xd

j¼1

/ v1jxnj þ b1

� �
. . .

Xd

j¼1

/ vhjxnj þ bh

� �

2
6666666664

3
7777777775
; (5)

then we could rewrite our objective function Problem (4) as:

min
A
kY �GAk2

F þ ckAk2
F: (6)

Take derivative w.r.t. A in Problem (6) and set it to 0, we get the

closed form solution of A as below:

A ¼ GTGþ cI
� ��1

GTY: (7)

As discussed in the previous section, one obvious advantage of

FNAM over FNNRW is that FNAM considers the role of each feature

independently in the prediction, thus makes it possible to interpret the

importance of each SNP in the identification QTL, which is a funda-

mental goal of jointly studying genetic and brain imaging features.

Here, we discuss how to estimate the role of each feature in

FNAM. To separate the contribution of each feature, we rewrite

Equation (3) as below:

fa Xð Þ ¼
Xd

j¼1

Xh

t¼1

/ vtjxj þ bt1
� �

at

 !
; (8)

which indicates that the prediction function fa(X) can be regarded as

the summation of d terms, where the j-th term
Ph

t¼1 / vtjxj þ bt1
� �

at

denotes the contribution of the j-th feature.

Naturally, if we normalize the magnitude of the j-th term with

the ‘2-norm of xj, we could get a good estimation of the significance

of the j-th feature. As a consequence, we could define a weight ma-

trix W 2 R
d�c to show the importance of the d SNPs in the predic-

tion of the c imaging features, respectively, such that:

wjl ¼

����Xh

t¼1
/ vtjxj þ bt1
� �

atl

����
kxjk

; j ¼ 1; . . . d; l ¼ 1; . . . c; (9)

3.1 Time complexity analysis
We summarize the optimization steps of FNAM in Algorithm 1.

In Algorithm 1, the time complexity of Step 1 (computing G) is

O(ndh), the time complexity of Step 2 (computing A) is

O(h2nþhnc), and the time complexity of Step 3 (computing W)

is O(ndhc), where n is the number of patients, d denotes the number

of SNPs, and c represents the number of brain endophenotypes.

Typically, we have d>h and d> c in the identification of QTL, thus

the total time complexity of Algorithm 1 is O(ndhc).

4 Generalization ability analysis

In this section, based on the real situation of biological data,

we provide theoretical analysis on the approximation ability of

our FNAM model and derive the upper bound of generalization

error.

In most previous works, theoretical analysis is based on the

hypothesis of independent and identically distributed (i.i.d.)

samples. However, the i.i.d. sampling is a very restrictive concept

that occurs only in the ideal case. As we know, the acquisition of

Algorithm 1 Optimization Algorithm of FNAM for QTL

Identification.

Input:

SNP matrix X 2 R
n�d, endophenotype Y 2 R

n�c, number

of hidden nodes h, parameter c.
Output:

Weight matrix A 2 R
h�c for the hidden nodes. Weight ma-

trix W 2 R
d�c showing the relative importance of the d

SNPs in the prediction.

Initialize the weight matrix V 2 R
h�d randomly according

to uniform distribution U 0; 1ð Þ.
Initialize the bias term b 2 R

h randomly according to uni-

form distribution U 0; 1ð Þ.
1. Compute G matrix according to the definition in Equation (5).

2. Update A according to the solution in Equation (7)

3. Compute W according to the definition in Equation (9).
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high-throughput biological data involves complicated equipments,

reagents as well as precise operation of highly trained technicians,

which usually introduce variations to the data during the measure-

ment process (Leek et al., 2010). Thus, the i.i.d. sampling assump-

tion is not appropriate for the high-throughput biological data

analysis. In this section, we provide a learning rate estimate of our

model in a much general setting, i.e. m-dependent observations

(Modha and Masry, 1996).

For simplicity, here we consider the prediction of only one

brain endophenotype y ¼ y1; y2; . . . ; yn½ �T 2 R
n, which could be

easily extended to the case with multiple endophenotypes. Besides,

we incorporate the bias term b into the weight matrix V by

adding one feature valued 1 for all samples to the data matrix X.

For analysis feasibility, we reformulate the general FNAM model as

below.

Let Z ¼ X � Y, where X is a compact metric space and

Y � �k; k½ � for some constant k>0. For any given z ¼ xi;ðf yiÞgni¼1

2 Zn and each j 2 1; 2; . . . ; df g, we denote / jð Þ
i ¼ / v1j; xij

� �
; . . . ;

�
/ vhj;xij

� �
�T 2 R

h and v jð Þ ¼ v1j; v2j; . . . ; vhj

� �T 2 R
h, where each

vtj, 1� t�h, is generated i.i.d. from a distribution l on 0; 1½ �.
The FNN with random weights in FNAM can be formulated as

the following optimization problem:

az ¼ argmin
a2Rhd

1

n

Xn

i¼1

Xd

j¼1

a jð Þ
� 	T

/ jð Þ
i � yi

 !2

þ c
Xd

j¼1

����a jð Þ
����

2

2

8<
:

9=
;;

where a jð Þ ¼ a
jð Þ

1 ; a
jð Þ

2 ; :::; a
jð Þ

h

h iT
2 R

h.

The predictor of FNAM is:

fz ¼
Xd

j¼1

Xh

t¼1

a
jð Þ

z;t/ vtj; �
� �

:

To investigate the generalization error bound of FNAM, we re-

write it from a function approximation viewpoint.

Define the hypothesis function space of FNAM as:

Mh ¼ f ¼
Xd

j¼1

f jð Þ : f jð Þ ¼
Xh

t¼1

atj/ vtj; �
� �

; atj 2 R

( )

and for any j 2 1; 2; . . . ; df g
����f jð Þ

����
2

‘2

¼ inf

����a jð Þ
����

2

2

: f ¼
Xh

t¼1

atj/ vtj; �
� �( )

:

Then, FNAM can be rewritten as the following optimization

problem:

fz ¼
Xd

j¼1

f jð Þ
z ¼ argmin

f 2Mh

Ez fð Þ þ c
Xd

j¼1

����f jð Þ
����

2

‘2

( )
;

where Ez fð Þ is the empirical risk defined by Ez fð Þ ¼ 1
n

Pn
i¼1 f xið Þ�ð

yiÞ2:
For the regression problem, the goal of learning is to find a pre-

diction function f : x! R such that the expected risk

E fð Þ ¼
ð
Z

�
y� f xð Þ

	2

dq x; yð Þ

is as small as possible. It is well known that the Bayes function

fq xð Þ ¼
ð
Y

ydq yjxð Þ

is the minimizer of E fð Þ over all measurable functions. Therefore,

the excess expected risk E fð Þ � E fq
� �

is used as the measure to evalu-

ate the performance of learning algorithm.

Since Y � �k;k½ � and kfqk1 �k, we introduce the clipping

operation

p fð Þ ¼ max �k;min f xð Þ; kð Þð Þ

to get tight estimate on the excess risk of FNAM. Recall that FNAM in

(4) depends on the additive structure and random weighted networks.

Indeed, theoretical analysis of standard random weighted networks

has been provided in Igelnik and Pao (1995) and Rahimi and Recht

(2009) to characterize its generalization error bound. However, the

previous works are restricted to the setting of i.i.d. samples, and do not

cover the additive models. Hence, it is necessary to establish the upper

bound of E p fzð Þð Þ � E fq
� �

with much general setting, e.g. m-dependent

observations (Modha and Masry, 1996; Vidyasagar, 2013).

Now, we introduce some necessary definitions and notations for

theoretical analysis.

Let Zi ¼ Xi;Yið Þf g1i¼1 be a stationary random process on a prob-

ability space X;A;Pð Þ. Denote Ai
1 and A1iþm as the r-algebras of

events generated by Z1; Z2; . . . ; Zið Þ and Ziþm; Ziþmþ1; . . .ð Þ,
respectively.

Definition: For m	0, if Ai
1 and A1iþm are independent, we call

Zif g1i¼1 m-dependent.

It is clear that m¼0 for i.i.d. observations.

It is a position to present the main result on the excess risk

E p fzð Þð Þ � E fq
� �

.

Theorem 1: Let fz be defined in (4) associated with m-dependent

observations z ¼ xi; yið Þf gn
i¼1. There holds

Eqn Elhkp fzð Þ � fqk2
L2

qX

� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn mð Þ � 1

2
logc

n mð Þ

vuut

þ inf
f 2Mh

����f � fq

����
2

LqX

þ c
Xd

j¼1

����f jð Þ
����

2

‘2

( )
;

where n mð Þ ¼ n
mþ1

j k
; jj � jjL2

qX
is norm of square integral function

space L2
qX

, and c is a positive constant independent of n mð Þ; c.

Theorem 1 demonstrates that FNAM can achieve the learning

rate O
ffiffiffiffiffiffiffiffiffiffiffiffi
log n mð Þ

n mð Þ

q
 �
as the hypothesis space satisfies

inf
f 2Mh

����f � fq

����
2

L2
qX

þ c
Xd

j¼1

����f jð Þ
����

2

‘2

( )
¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n mð Þ

n mð Þ

r !
:

When fq 2 Mh, we have

lim
n!1

Eqn Elhkp fzð Þ � fqk2
L2

qX
¼ 0;

which means the proposed algorithm is consistency. The current re-

sult extends the previous theoretical analysis with i.i.d samples

(Igelnik and Pao, 1995; Rahimi and Recht, 2009) to the m-depend-

ent observations. Indeed, we can also obtain the error bound for

strong mixing samples by the current analysis framework.

The following Bernstein inequality for m-dependent observations

[Theorem 4.2 in Modha and Masry (1996)] is used for our theoretic-

al analysis.

Lemma 2: Let Zif g1i¼1 be a stationary m-dependent process on

probability space X;A;Pð Þ. Let w : R! R be some measurable
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function and Ui ¼ w Zið Þ;1� i�1. Assume that jU1j �d1 and

EU1 ¼ 0. Then, for all n	mþ 1 and � > 0,

P
1

n

Xn

i¼1

Ui	�
( )

� exp � n mð Þ�2

2 EjU1j2 þ �d1

3

� 	
8<
:

9=
;;

where n mð Þ ¼ n
mþ1

j k
is the number of ‘effective observations’.

The covering number is introduced to measure the capacity

of hypothesis space, which has been studied extensively in

(Cucker and Smale, 2001; Cucker and Zhou, 2007; Zou et al.,

2009).

Definition: The covering number N F ; �ð Þ of a function set F is

the minimal integer l such that there exists l disks with radius �

covering F .

Considering the hypothesis spaceMh in Section 4, we define its

subset

BR ¼ f 2 Mh :
Xd

j¼1

kf jð Þk2
‘2

:¼
Xd

j¼1

Xh

t¼1

jatjj2�R2

( )
:

Now we present the uniform concentration estimate for f 2 BR

Lemma 3: Let z ¼ zif gn
i¼1 :¼ xi; yið Þf gn

i¼1 2 Zn be m-dependent

observations. Then

P sup f 2BR
E p fð Þð Þ � E fq

� �
� Ez p fð Þð Þ � Ez fq

� �� �� �
	�

n o

�N BR;
�

16k

� 	
� exp � n mð Þ�2

512k2 þ 22k�

� 

:

Proof: Set Ui ¼ wf zið Þ ¼ E p fð Þð Þ � E fq
� �
� yi � p fð Þ xið Þð Þ2 � yi � fq xið Þ

� �2
� 	

.

It is easy to verify that jUij �8k2 and EUi¼0. From Lemma 1 we

obtain, for any given m-dependent samples z ¼ xi; yið Þf gn
i¼1 2 Zn

and measurable function f,

P
1

n

Xn

i¼1

wf zið Þ	�
( )

¼ P E p fð Þð Þ � E fq
� �
� Ez p fð Þð Þ � Ez fq

� �� �
	�

� �
� exp � n mð Þ�2

128k2 þ 16k�=3

� 

:

Let J ¼ N BR;
�

16k

� �
and fj

� �J

j¼1
be the centers of disks Dj such

that BR � [J
j¼1Dj. Observe that, for all f 2 Dj and z 2 Zn,

1

n

Xn

i¼1

wf zið Þ � wfj
zið Þ

� 	

¼ jE p fð Þð Þ � E fq
� �
� Ez p fð Þð Þ � Ez fq

� �� �
� E p fj

� �� �
� E fq
� �
� Ez p fj

� �� �
� Ez fq

� �� �� �
j

¼ jE p fð Þð Þ � E fj

� �
� Ez p fð Þð Þ � Ez fj

� �� �
j

�8kkf � fjk1 �
�

2
:

It means that

sup f 2Dj
E p fð Þð Þ � E fq

� �
� Ez p fð Þð Þ � Ez fq

� �� �
	�

) E p fj

� �� �
� E fq

� �
� Ez p fj

� �� �
� Ez fq

� �� �
	 �

2
:

Then

P sup
f 2BR

E p fð Þð Þ � E fq
� �
� Ez p fð Þð Þ � Ez fq

� �� �� �
	�

( )

�
XJ

j¼1

P sup
f 2Dj

E p fj

� �� �
� E fq
� �
� Ez p fj

� �� �
� Ez fq

� �� �� �( )

�N BR;
�

16k

� 	
exp � n mð Þ�2

4 128k2 þ 16k�=3ð Þ

� 

:

This completes the proof. u

Proof of Theorem 1: According to the definition of E fð Þ and fq, we

deduce that

E p fzð Þð Þ � E fq
� �
¼ kp fzð Þ � fqk2

LqX
¼ E1 þ E2; (10)

where E1 ¼ E p fzð Þð Þ � E fq
� �
� Ez p fzð Þð Þ � Ez fq

� �� �
and E2 ¼ Ez p fzð Þð Þ�

Ez fq
� �
þ c
Xd

j¼1
kf jð Þ

z k
2
‘2
:

Now we turn to bound E1 in terms of Lemma 2. According to

the definition of fz, we get

c
Xd

j¼1

kf jð Þ
z k

2
‘2
�Ez 0ð Þ�k2:

It means that fz 2 BR with R ¼ kffiffi
c
p . By proposition 5 in Cucker

and Smale (2001), we know that:

logN BR; �ð Þ�hdlog
4R

�


 �
:

Integrating these facts into Lemma 2, we obtain:

P E1	�f g

�P sup
f 2BR

E p fð Þð Þ � E fq
� �
� Ez p fð Þð Þ � Ez fq

� �� �� �
	�

( )

� exp hdlog
64kR

�


 �
� n mð Þ�2

512k2 þ 22k�

� 

:

Then, for any g	 64k2

n mð Þ ,

Eqn E1ð Þ ¼
ð1

0

P E1	�f gd�

� gþ
ð1

g
exp hdlog

64k2

�
ffiffiffi
c
p


 �
� n mð Þ�2

512k2 þ 22k�

� 

d�

� gþ c
�

hd

2 exp
n mð Þ�2

512k2 þ 22k�

� 

�
ð1

g

64k2

�


 �hd

d�

� gþ c
�

hd

2 exp
n mð Þ�2

512k2 þ 22k�

� 

� 64k2

�


 �hd

g � 1

hd � 1

� gþ c
�

hd

2 exp
n mð Þ�2

512k2 þ 22k�

� 

� n mð Þ� �hd � g

hd � 1
:

Setting g ¼ c�
hd
2 exp � n mð Þg2

512k2þ22kg

n o
n mð Þ� �hd g

hd�1, we get:

ffiffiffi
c
p

n mð Þ


 �hd

hd � 1ð Þ ¼ exp � n mð Þg2

512k2 þ 22kg

( )
:

From this equation, we can deduce that

g�
khd log n mð Þ� �

� log
ffiffiffi
c
p� �

n mð Þ þ 50k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hd log n mð Þ � log

ffiffiffi
c
p� �

n mð Þ

s
:

Hence,
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Eqn ðE1Þ� 2g

� 2khdðlog ðnðmÞ � log
ffiffiffi
c
p Þ

nðmÞ
þ 100k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hdðlog ðnðmÞ � log

ffiffiffi
c
p Þ

nðmÞ

s
:

On the other hand, the definition fz tells us that

Eqn E2ð Þ

¼ Eqn inf
f 2Mh

Ez fð Þ � Ez fq
� �
þ c
Xd

j¼1

����f jð Þ
����

2

‘2

( ) !

� inf
f 2Mh

Eqn Ez fð Þ � Ez fq
� �� �

þ c
Xd

j¼1

����f jð Þ
����

2

‘2

( )

� inf
f 2Mh

ð
X
ðf xð Þ � fq xð ÞÞ

2

dqX xð Þ þ c
Xd

j¼1

����f jð Þ
����

2

‘2

( )
:

(11)

Combining Equations (10) and (11), we get the desired result in

Theorem 1. u

5 Experimental results

In this section, we conduct experiments on the ADNI cohort. The

goal of QTL identification is to predict brain imaging features given

the SNP data. Meanwhile, we expect the model to show the import-

ance of different SNPs, which is fundamental to understanding the

role of each genetic variant in Alzheimer’s disease.

5.1 Data description
The data used in this work were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.us-

c.edu). One of the goals of ADNI is to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological as-

sessment can be combined to measure the progression of mild cogni-

tive impairment (MCI) and early AD. For the latest information, see

www.adni-info.org. The genotype data (Saykin et al., 2010) for all

non-Hispanic Caucasian participants from the ADNI Phase 1 cohort

were used here. They were genotyped using the Human 610-Quad

BeadChip. Among all the SNPs, only SNPs within the boundary of

620K base pairs of the 153 AD candidate genes listed on the

AlzGene database (www.alzgene.org) as of April 18, 2011 (Bertram

et al., 2007), were selected after the standard quality control (QC)

and imputation steps. The QC criteria for the SNP data include (i)

call rate check per subject and per SNP marker, (ii) gender check,

(iii) sibling pair identification, (iv) the Hardy–Weinberg equilibrium

test, (v) marker removal by the minor allele frequency and (vi) popu-

lation stratification. As the second pre-processing step, the QC’ed

SNPs were imputed using the MaCH software (Li et al., 2010) to esti-

mate the missing genotypes. As a result, our analyses included 3123

SNPs extracted from 153 genes (boundary: 620KB) using the

ANNOVAR annotation (http://www.openbioinformatics.org/annovar/).

As described previously, two widely employed automated MRI

analysis techniques were used to process and extract imaging pheno-

types from scans of ADNI participants (Shen et al., 2010). First,

Voxel-Based Morphometry (VBM) (Ashburner and Friston, 2000)

was performed to define global gray matter (GM) density maps and

extract local GM density values for 90 target regions. Second, auto-

mated parcellation via FreeSurfer V4 (Fischl et al., 2002) was con-

ducted to define volumetric and cortical thickness values for 90

regions of interest (ROIs) and to extract total intracranial volume

(ICV). Further details are available in (Shen et al., 2010). All these

measures were adjusted for the baseline ICV using the regression

weights derived from the healthy control (HC) participants. All 749

participants with no missing MRI measurements were included in

this study, including 330 AD samples, and 210 MCI samples and

209 health control (HC) samples. In this study, we focus on a subset

of these 90 imaging features which are reported to be related with

AD. We extract these QTs from roughly matching regions of interest

(ROIs) with VBM and FreeSurfer. Please see (Wang et al., 2012b)

for details. We select 26 measures for FreeSurfer, 36 measures for

VBM and summarize these measures in Tables 1 and 2.

5.2 Experimental setting
To evaluate the performance of our FNAM model, we compare

with the following related methods: LSR (Least square regression),

RR (Ridge regression), Lasso (LSR with ‘1-norm regularization),

Trace (LSR with trace norm regularization) and FNNRW

(Feedforward neural network with random weights), where we con-

sider the Frobenius norm loss in the Remp term of Rahimi and Recht

(2009) for regression problem. We add a comparing method,

FNNRW-Linear (FNNRW using linear activation function), which

use linear activation function / xð Þ ¼ x to illustrate the contribution

of the nonlinearity of activation function.

As for evaluation metric, we calculate root mean square error

(RMSE) and correlation coefficient (CorCoe) between the predicted

value and ground truth in out-of-sample prediction. We normalize

the RMSE value via Frobenius norm of the ground truth matrix. In

comparison, we adopt 5-fold cross validation and report the average

performance on these five trials for each method.

We tune the hyper-parameter of all models in the range of

10�4; 10�3:5; . . . ; 104
� �

via nested 5-fold cross validation on the

training data, and report the best parameter w.r.t. RMSE of each

method. For methods involving feedforward neural networks, i.e.

FNNRW, FNNRW-Linear and FNAM, we set h¼50. For FNNRW

and FNAM, we set / :ð Þ as the tanh function which maps the input

to �1;1½ �.

Table 1. Twenty-six volumetric/thickness measures (FreeSurfer)

selected from ‘matching’ ROIs

Volume/Thickness ID ROI

LHippVol, RHippVol Volume of hippocampus

LEntCtx, REntCtx Thickness of entorhinal cortex

LParahipp, RParahipp Thickness of parahippocampal

gyrus

LPrecuneus, RPrecuneus Thickness of precuneus

LCaudMidFrontal,

RCaudMidFrontal

Mean thickness of caudal

midfrontal

LRostMidFrontal,

RRostMidFrontal

Mean thickness of rostral

midfrontal

LSupFrontal, RSupFrontal Mean thickness of superior

frontal

LLatOrbFrontal,

RLatOrbFrontal

Mean thickness of lateral

orbitofrontal

LMedOrbFrontal,

RMedOrbFrontal

Mean thickness of medial

orbitofrontal gyri

LFrontalPole, RFrontalPole Mean thickness of frontal pole

LInfTemporal, RInfTemporal Mean thickness of inferior

temporal

LMidTemporal, RMidTemporal Mean thickness of middle

temporal

LSupTemporal, RSupTemporal Mean thickness of superior tem-

poral gyri

Quantitative trait loci identification for brain endophenotypes via new additive model with random networks i871

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/17/i866/5093249 by Serials Section N
orris M

edical Library user on 04 D
ecem

ber 2018

www.adni-info.org
www.alzgene.org
http://www.openbioinformatics.org/annovar/


5.3 Performance comparison on ADNI cohort
We summarize the RMSE and CorCoe comparison results in Table 3.

From the results we notice that FNAM outperforms all the counterparts

in both FreeSurfer and VBM. Besides, from the comparison between

Lasso, Trace and FNAM, we find that the assumptions imposed by

Lasso (assumption of sparse structure) and Trace (low-rank assumption)

may not be appropriate when the distribution of the real data does not

conform to such assumptions. In contrast, FNAM is more flexible and

adaptive since FNAM does not make such structure assumption on the

data distribution. Moreover, from the comparison between FNNRW,

FNNRW-Linear and FNAM, we find that both FNNRW and FNAM

outperform FNNRW-Linear, which demonstrates the importance of the

nonlinearity introduced by the activation function. FNNRW-Linear only

involves linear functions, thus is not able to show the non-linear influ-

ence of QTL. As for FNNRW, we deem that the reason for FNAM to

perform better than FNNRW lies in the additive mechanism of FNAM.

Since FNNRW incorporates all features in each computation, it seems

too complex for the prediction thus brings about high variance.

5.4 Important SNP discovery
Here, we look into the significant SNPs in the prediction. According to

the definition in Equation (9), we calculate the importance of each SNP

and select the top 10 SNPs that weigh the most in VBM analysis. We

plot the weight map and brain map of the top 10 SNPs in Figure 1.

Table 2. Thirty-six GM density measures (VBM) selected from

‘matching’ ROIs

GM Density ID ROI

LHippocampus, RHippocampus Hippocampus

LParahipp, RParahipp Parahippocampal gyrus

LPrecuneus, RPrecuneus Precuneus

LInfFrontal_Oper, RInfFrontal_Oper Inferior frontal operculum

LInfOrbFrontal, RInfOrbFrontal Inferior orbital frontal gyrus

LInfFrontal_Triang, RInfFrontal_Triang Inferior frontal triangularis

LMedOrbFrontal, RMedOrbFrontal Medial orbital frontal gyrus

LMidFrontal, RMidFrontal Middle frontal gyrus

LMidOrbFrontal, RMidOrbFrontal Middle orbital frontal gyrus

LSupFrontal, RSupFrontal Superior frontal gyrus

LMedSupFrontal, RMedSupFrontal Medial superior frontal gyrus

LSupOrbFrontal, RSupOrbFrontal Superior orbital frontal gyrus

LRectus, RRectus Rectus gyrus

LRolandic_Oper, RRolandic_Oper Rolandic operculum

LSuppMotorArea, RSuppMotorArea Supplementary motor area

LInfTemporal, RInfTemporal Inferior temporal gyrus

LMidTemporal, RMidTemporal Middle temporal gyrus

LSupTemporal, RSupTemporal Superior temporal gyrus

Table 3. Biomarker ‘FreeSurfer’ and ‘VBM’ prediction comparison

via RMSE and CorCoe measurement

FreeSurfer VBM

RMSE LSR 0.2579 6 0.0123 0.1754 6 0.0045

RR 0.1837 6 0.0132 0.1285 6 0.0036

Lasso 0.2525 6 0.0124 0.1276 6 0.0040

Trace 0.1971 6 0.0151 0.1388 6 0.0048

FNNRW-Linear 0.2439 6 0.0191 0.1991 6 0.0173

FNNRW 0.2272 6 0.0220 0.1683 6 0.0269

FNAM 0.1815 6 0.0133 0.1246 6 0.0028

CorCoe LSR 0.9645 6 0.0032 0.5849 6 0.0192

RR 0.9818 6 0.0028 0.7435 6 0.0138

Lasso 0.9659 6 0.0032 0.7482 6 0.0144

Trace 0.9789 6 0.0032 0.7099 6 0.0188

FNNRW-Linear 0.9677 6 0.0044 0.5122 6 0.0589

FNNRW 0.9718 6 0.0058 0.6037 6 0.0823

FNAM 0.9821 6 0.0026 0.7592 6 0.0114

Note: The table shows the average RMSE/CorCoe value and the standard

deviation in 5-fold cross validation. Better performance corresponds to lower

RMSE value and higher CorCoe value. The best results are marked in bold.

Fig. 1. Heat map and brain map of the top 10 SNPs in VBM analysis. The weight matrix is calculated on the whole VBM data so as to avoid the randomness intro-

duced by fold split. (a) Heat map showing the weights calculated via Equation (9) of the top 10 SNPs in the prediction. (b) Weight matrix mapped on the brain for

the VBM analysis. Different colors are employed to denote different ROIs

i872 X.Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/17/i866/5093249 by Serials Section N
orris M

edical Library user on 04 D
ecem

ber 2018



From the results, we notice that ApoE-rs429358 ranks the first in our

prediction. As the major known genetic risk factor of AD, ApoE has

been reported to be related with lowered parietal (Small et al., 2000),

temporal (van der Flier et al., 2011) and posterior cingulate cerebral

glucose metabolism (Liang et al., 2008) of AD patients. Moreover, we

present the LocusZoom plot (Pruim et al., 2010) for the SNPs close to

LIPA gene (10M boundary) in Chromosome 10 to show the AD-

associated region around LIPA-rs885561 in Figure 2. Similar to ApoE,

LIPA gene is also known to be involved in cholesterol metabolism

(Papassotiropoulos et al., 2005), where elevated cholesterol levels lead

to higher risk of developing AD. In addition, we detect other SNPs that

are established AD risk factors, e.g. rs1639-PON2 (Shi et al., 2004) and

rs2070045-SORL1 (Rogaeva et al., 2007). Replication of these results

demonstrate the validity of our model.

We also pick out SNPs with potential risks whose influence on

AD has not been clearly revealed in literature. For example,

rs727153-LRAT is known to be related with several visual dis-

eases, including early-onset severe retinal dystrophy and Leber

congenital amaurosis 14 (Perrault et al., 2004). LRAT catalyzes

the esterification of all-trans-retinol into all-trans-retinyl ester,

which is essential for vitamin A metabolism in the visual system

(Gollapalli and Rando, 2003). Clinically, vitamin A have been

demonstrated to slow the progression of dementia and there are

reports showing an trend of lower vitamin A level in AD patients

(Ono et al., 2004). Thus, it would interesting to look into the mo-

lecular role of LRAT in the progression of AD in future study.

Such findings may provide insights into the discovery of new AD-

associated genetic variations as well as the prevention and therapy

of this disease.

5.5 Performance with varying hidden node number
In Algorithm 1, we need to predefine the number of hidden nodes h,

thus it is crucial to test if the performance of FNAM is stable with

different h. In this section, we analyze the stability of FNAM model

w.r.t. the choice of hidden node number. Figure 3 display the RMSE

and CorCoe comparison results of FNAM when h is set in the range

of 10; 20; . . . ; 100f g. From these results, we can find that our

FNAM model performs quite stable w.r.t. the choice of hidden node

number. As a consequence, we do not need to make much effort on

tuning the number of hidden nodes. This is important to an efficient

implementation in practice.

5.6 Running time analysis
Here, we present experimental results to analyze the runtime (in

seconds) of FNAM with different number of hidden nodes. Our

experiments are conducted on a 24-core Intel(R) Xeon(R) E5-

2620 v3 CPU @ 2.40 GHz server with 65GB memory. The operat-

ing system is Ubuntu 16.04.1 and the software we use is Matlab

R2016a (64-bit) 9.0.0. Seen from Figure 4, it only takes a few

minutes to run our model on the ADNI data. The running time is

roughly linear to the number of hidden nodes, which is consistent

with our theoretical analysis that the time complexity of FNAM is

O(ndhc).
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Fig. 3. RMSE and CorCoe comparison of FNAM when the number of hidden nodes is set as f10; 20; . . . ; 100g, respectively. We add an error bar (in blue color)

to show the standard deviation in 5-fold cross validation
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Fig. 4. Runtime (in seconds) comparison of FNAM using different number of

hidden nodes. Y-axis shows the average runtime of 1-fold in the cross valid-

ation, including the time for tuning hyperparameter c as well as the time for

obtaining the prediction results

Fig. 2. LocusZoom plot showing AD associated region around rs885561-LIPA

(10M boundary) in Chromosome 10. A total of 132 SNPs are plotted. The hori-

zontal axis displays the chromosomal position and gene name of the SNPs.

Positions of exons are presented, with an arrow indicating the transcribed

strand. The vertical axis shows the weights of these 132 SNPs in the predic-

tion of left hippocampus for VBM analysis. Node color indicates the local link-

age disqeuilibrium (LD), i.e. r2 value between a certain SNP and rs885561 in

LIPA gene
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6 Conclusion

A novel additive model, called FNAM, was proposed for QTL identifi-

cation, which can be easily adapted to depict the non-linear associations

between SNPs and brain endophenotypes. The experimental results on

the ADNI cohort indicated the promising performance of FNAM. In

particular, we not only identified some SNPs validated in the previous

literature, but also found new SNPs with potential risk for Alzheimer’s.

These empirical studies validate the effectiveness of our approach, and

provide insights into the genetic causal relationships as well as early de-

tection of neurological disorders. We also derived the generalization

error bound of FNAM under a general assumption, i.e. m-dependent

observations, thus is suitable to many other biological applications.
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