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SUMMARY

Alzheimer’s disease pathology (AD) originates in the
hippocampus and subsequently spreads to tempo-
ral, parietal, and prefrontal association cortices in a
relatively stereotyped progression. Current evidence
attributes this orderly progression to transneuronal
transmission of misfolded proteins along the projec-
tion pathways of affected neurons. A network diffu-
sion model was recently proposed to mathematically
predict disease topography resulting from trans-
neuronal transmission on the brain’s connectivity
network. Here, we use this model to predict future
patterns of regional atrophy and metabolism from
baseline regional patterns of 418 subjects. The
model accurately predicts end-of-study regional
atrophy and metabolism starting from baseline
data, with significantly higher correlation strength
than given by the baseline statistics directly. The
model’s rate parameter encapsulates overall atrophy
progression rate; group analysis revealed this rate to
depend on diagnosis as well as baseline cerebrospi-
nal fluid (CSF) biomarker levels. This work helps vali-
date the model as a prognostic tool for Alzheimer’s
disease assessment.
INTRODUCTION

Alzheimer’s disease (AD) is an amyloid-facilitated tauopathy

(Braak et al., 2000) whose origin and subsequent advance within

the brain is well characterized: the disease begins in the mesial

temporal lobe, an event accompanied by the accumulation of

misfolded b-amyloid and tau proteins, and thence progresses

along fiber pathways. Histopathological evidence of this highly

stereotyped progression has come to be known as the Braak

model (Braak and Braak, 1996): neurofibrillary tau tangles are
C

first found in entorhinal cortex and hippocampus (stages I–II),

then spread into the amygdala and basolateral temporal lobe

(stages III–IV), followed by isocortical association areas (stages

V–VI). Morphological changes accompanying this pathological

progression are clearly visible on MRI, especially from cross-

sectional and longitudinal morphometric mapping (Fischl et al.,

2002; Klauschen et al., 2009; Smith et al., 2004; Wu et al.,

2007). Longitudinal studies (Apostolova and Thompson, 2008;

Apostolova et al., 2007; Thompson et al., 2003; Whitwell et al.,

2007) confirm that progression follows vulnerable fiber pathways

rather than spatial proximity (Englund et al., 1988; Kuczynski

et al., 2010; Villain et al., 2008), closely mirroring Braak patholog-

ical stages (Whitwell et al., 2007).

Until recently, the causative mechanisms for this networked

spread were thought to be passive, including secondary Waller-

ian degeneration, disconnection, loss of signaling, axonal reac-

tion, and postsynaptic dendrite retraction (Seeley et al., 2009).

The latest evidence, however, favors a transneuronal ‘‘prion-

like’’ mechanism (Frost and Diamond, 2010; Jucker and Walker,

2013), whereby implicated proteins misfold, trigger misfolding

of adjacent same-species proteins, and thereupon cascade

along neuronal pathways via transsynaptic or transneuronal

spread (Clavaguera et al., 2009; Frost et al., 2009; Jucker and

Walker, 2011, 2013; Palop and Mucke, 2010). Exogenous seed-

ing of pathogenic proteins in the hippocampus caused remote

pathology in connected regions (Clavaguera et al., 2009; Jucker

and Walker, 2013). Seeded templating of misfolded protein

species can therefore be thought of as the causative ‘‘propa-

gating’’ event, and other observed phenotypes—hypometabo-

lism, atrophy, and cognitive dysfunction—result from the

pathology.

Recently, transneuronal transmission was mathematically

modeled in our laboratory (Raj et al., 2012) by a diffusive mech-

anism mediated by and restricted to the brain’s connectivity

network, and the resulting topography of the disease was math-

ematically deduced. The network was obtained using diffusion

MRI-derived healthy ‘‘connectomes’’ (Lo et al., 2010). Intrigu-

ingly, the macroscopic consequences of diffusive prion-like

propagation (the network diffusion or ND model) on healthy
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Table 1. Demographic Characteristics of the Study Cohorts

Gender Young Control (Age) ADNI Control (Age) ADNI AD (Age) ADNI MCI (Age)

Female 29 (23.0 ± 5.8) 37 (75.8 ± 5.8) 39 (74.8 ± 6.9) 49 (74.9 ± 8.2)

Male 44 (23.2 ± 4.3) 58 (73.6 ± 5.4) 60 (76.5 ± 7.2) 102 (75.5 ± 6.7)
networks recapitulated patterns of atrophy in various dementias.

Specifically, the model predicted spatially distinct ‘‘eigen-

modes,’’ which mirrored disjoint brain regions known to be

selectively targeted by different dementias (Buckner et al.,

2005; Seeley et al., 2009). This mathematical reformulation of

descriptive neuropathological observations into a deterministic

encapsulation of neurodegenerative progression opens the pos-

sibility of dementia prognostication.

The goal of this study is to develop the theoretical model of Raj

et al. (2012) into a clinically useful computational biomarker with

the ability to predict future patterns of atrophy in susceptible in-

dividuals. Implicit in this work is that baseline atrophy is sufficient

to give future predictions. Although motivated by stereotyped

Braak-type progression, individual subjects’ model predictions

do not rely on a priori monolithic Braak staging assumptions.

We are aware of no other existing tool that can predict future

topography of AD atrophy and metabolism in individuals. There

are clear applications of our biomarker in prognosis and as a

monitoring tool in clinical trials.

To assess our biomarker’s relative utility, we compare it

against quantitative models representing the alternative hy-

pothesis that growth of degeneration in different regions are in-

dependent processes that are not transmitted via white matter

connections. We chose two established hypotheses: (1) a sig-

moid model of disease progression (Jack et al., 2010), which

was verified using cerebrospinal fluid (CSF) amyloid scans

(Jack et al., 2013), whereby every brain region undergoes a

separate but temporally well-defined degeneration character-

ized by slow initial growth rate, peak intermediate growth,

and a declining eventual growth rate reflecting saturation

effects; and (2) an exponential model, where highly affected

regions undergo faster degeneration separately and indepen-

dently from other regions. The exponential model also

describes activity-dependent degeneration, whereby lifetime

neuronal activity, rather than network transmission, is thought

to govern degeneration and rapidity (Buckner et al., 2005; Grei-

cius et al., 2004).

RESULTS

The study cohort consists of all Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI) subjects who had two to four longitudinal

MRI and fluorodeoxyglucose (FDG) positron emission tomogra-

phy (PET) scans; their demographics are summarized in Table 1.

Where appropriate, results are stratified by diagnosis: mild

cognitive impaired (MCI) converters, MCI nonconverters, and

AD. The outcome of the analysis pipeline on this data procedure

was a regional atrophy/metabolism number for each subject,

evaluated at 90 regions covering the entire cerebral gray matter,

with no gaps, taken from a neuroanatomically accurate parcel-

lated brain atlas.
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Testing the Regionally Varying Relationship between
Baseline and Rate of Change
Scatterplots of the empirical relationship between baseline atro-

phy/metabolism and their rate of change are shown in Figure S1.

Each dot represents a parcellated gray matter (GM) structure of

each subject, where the x axis represents baseline value and

the y axis the slope. There is no simple relationship between

baseline atrophy/hypometabolism and its slope that fits all re-

gions and subjects. Neither the straight line (exponential, green)

nor parabola (sigmoid, cyan) captures this relationship fully,

althoughboth capture portionsof the data. TheNDmodel predic-

tion (red, middle panel) appears to successfully cover the

atrophy-slope plane. A topographic rendering of this relationship

is shown in Figure S2 (top: regional baseline t-statistic of all

patients’ FDG-derived regional hypometabolism [left], its rate of

change [middle], and the network diffusion model-predicted

rate of change [right]). The slope in hypometabolism is not simply

proportional to baseline; there is general agreement in temporo-

parietal regions, but not in frontal and occipital regions. Black ar-

rows point to specific structures that are discordant. Conversely,

in mesial temporal structures, the rate of change is less than

would be predicted by linearly extrapolating the baseline map.

In these discordant structures, the network diffusion model ap-

pears to be a better predictor of slope than the baseline map.

Next, we assess the accuracy of each model in predicting the

regional rate of change from baseline in both MRI atrophy and

FDG-PET-derived hypometabolism (Figure 1). The correlation

between the measured and predicted slope of the entire

MCI+AD cohort gave the following values: atrophy: R = 0.72

(exponential model), R = 0.68 (sigmoid), R = 0.85 (network diffu-

sion); FDG hypometabolism: R = 0.48 (exponential), R = 0.40

(sigmoid), R = 0.75 (network diffusion). While all three models

considered here capture to some extent the slope of atrophy/

hypometabolism, the NDmodel achieves the highest correlation.

Fisher’s R-to-z transform gave a significant difference in the re-

ported R achieved by the proposed model and both competing

models (p < 10�2).

Predicting Future Patterns of Atrophy and
Hypometabolism
Validation of the predictive ability of our model is contained in

scatterplots in Figure 2. Each point corresponds to a single re-

gion in a single subject. Both MRI-derived atrophy and FDG-

PET-derived hypometabolism are shown. Measured regional

baseline statistics already exhibit a strong and significant rela-

tionship to atrophy/metabolism at end of study (first and third

columns), expectedly, since drastic progression within 2–4 years

is unlikely. Correlation strength is generally higher for hypome-

tabolism than for atrophy, probably due to lower noise and

fewer artifact-inducing processing steps in FDG-PET images.

Interestingly, a significant subset of regional atrophy data appear



Figure 1. Correlation between Measured

and Predicted Atrophy/Metabolism Slope

Exponential model (linear relationship, left), sig-

moid model (middle), and network diffusion model

(right). Pearson’s R and p are shown alongside.

Top panel shows MRI atrophy and the bottom

FDG-PET hypometabolism data. In both cases,

the network diffusion model gives stronger

correlations than the other two models. See also

Figure S1.
to stray from the diagonal (first column), implying that localized

relationships are not sufficient to capture disease dynamics. A

closer investigation of these discordant regions (see the Supple-

mental Experimental Procedures and Figure S2, bottom) re-

vealed them to occur mostly in the frontal and occipital cortex

in MCI converters. These regions are typically involved in late,

but not early, stages, distal but connected to vulnerable tempor-

oparietal areas, hence ‘‘next-in-line’’ for future progression.

The correlation strength R (Table 2) is significantly improved in

all diagnoses by adding the NDmodel, and the above discordant

‘‘off-diagonal’’ regions were brought back onto the diagonal.

Fisher’s R-to-z transform indicates these improvements to be

highly significant, implying that the model is adding strong

predictive power that cannot be explained by the baseline

data alone. The model greatly reduces unexplained variance

(1 � R2), for instance in MCI converters, where it goes from

0.24 using baseline alone, to 0.08 using the ND model, consti-

tuting a net improvement of 300%. Note that these data are

group-level summaries of individual subjects’ predictions, using

each individual’s baseline scan. Hence, while these numbers

amply characterize the capability of the prognostic biomarker,

theydonot indicatepredictionperformance for a given individual.

Robustness Analysis
To characterize the robustness of our putative biomarker against

noise and intersubject variability, increasing amounts of inde-

pendent Gaussian noise were added to the reference connec-

tomes and the confidence interval (CI) of the R statistic in Table 2

was estimated usingMonte Carlo simulations with 100 trials (Fig-

ure S6A). Predicted R appears tolerant to moderate levels of

connectome noise. Second, the effect of intersubject variability

in the R statistic was explored via bootstrap analysis by repeat-

edly resampling 1,000 times from the ADNI cohort (see the Sup-

plemental Experimental Procedures and Figure S6B). The 95%

CI of predicted R statistic is listed in Table 2. Clearly, our results

have almost zero bias and are highly robust to intersubject vari-
Cell Reports 10, 359–369
ability and well within the range expected

from sampling errors. Interestingly, con-

nectome noise-induced variability in R is

actually less than that due to variability

in patients.

Example Future Predictions of
Atrophy and Hypometabolism
Some visually illustrated anecdotal exam-

ples of future progression are presented,
going beyond the 2- to 4-year timewindowof ADNI data. Figure 3

verifies that the group statistics of AD subjects, the best-charac-

terized and stereotyped group, follows expected progression.

The spheres are proportional to the t-statistic of MRI atrophy

after logistic transform and color-coded by lobe (frontal = blue,

parietal = purple, occipital = green, temporal = red, and subcor-

tical = yellow). The ND model correctly recapitulates the classic

Alzheimer progression from mesial temporal structures to

parietal and finally frontal areas. The rate of progression param-

eter was estimated by empirical fitting to individual subject

data as described earlier, but in order to minimize risk of overfit-

ting, the time-since-onset parameter was fitted to each diag-

nostic group rather than to individuals. FDG hypometabolism

results (Figure 3B) are similar. Next, we show six examples

drawn from individual subjects from all three diagnosis cate-

gories, selected via visual inspection as typifying the most

commonmodes of behavior we observed in each disease group.

Figures 3C and 3D show two representative AD examples,

whose classic temporal-dominant atrophy pattern remains

steady over extrapolated time scales as it progressively grows

more severe.

Figure 4 shows two example MCI nonconverters. The left

panel depicts regional MRI-derived atrophy at baseline with

respect to ADNI healthy controls, after logistic transform to

convert Z scores to positive atrophy values between 0 and 1.

The next two panels show the network diffusion model predic-

tion from baseline atrophy, extrapolated to 5 years and 10 years

out. The top case exhibits classic MCI topography with hippo-

campal involvement, but model extrapolation does not indicate

subsequent extrahippocampal spread or temporal involvement,

consistent with MCI-nonconverter status. The bottom case is an

interesting variant of the nonconverter case, with prominent

widespread atrophy at baseline in the frontal cortex. However,

extrapolated atrophy patterns stay within the frontal areas and

subsequently spread to parietal, but not temporal, regions—in

consonance with MCI-nonconverter diagnosis.
, January 20, 2015 ª2015 The Authors 361



Figure 2. Validation of the Predictive Power of the Network Diffusion Model

Columns 1 and 2 pertain toMRI-derived atrophy data and columns 3 and 4 to FDG-PET-derived hypometabolism data. The ADNI cohort is stratified by diagnosis:

MCI nonconverters (top row), MCI converters (middle), and AD (bottom). The relationship between baseline regional atrophy and atrophy at end of study is strong

and significant in all cases, including measured data (first and third columns) and model predictions (second and fourth columns). However, the correlation

strength is greatly and significantly improved in all diagnosis types by the network diffusion model. See also Figure S2 and the Supplemental Experimental

Procedures.
Figure 5 shows two examples of MCI converters, one of which

(bottom row) exhibits the classic AD pattern of progression

within and outward from the temporal lobe. Baseline atrophy is

overall mild, but the extrapolated patterns show the classic

progression fromMCI to AD. Specifically, the recruitment of tem-

poral and subcortical regions, which are associated with mem-

ory-related cognitive dysfunction, increases prominently. The

top case also exhibits prominent and early temporal involve-

ment, but longitudinal predictions are more prominent in frontal

and parietal regions. This case is consistent with current diag-

nosis of MCI converter, but worsening frontoparietal atrophy

may be expected.

Results of Subject-Wise Fitting of Model Parameters
The fitted model parameters—time between onset and baseline

scan tpost�onset and the rate constant of network diffusion b—are

quite variable across subjects. The distribution of b, shown in

Figure S3, categorized by diagnosis, appears to follow an expo-

nential distribution, whose parameters we fit using MATLAB’s

expfit() function and display in Table 3. Since the 95% CIs per-

taining to the three groups do not overlap, it may be concluded
362 Cell Reports 10, 359–369, January 20, 2015 ª2015 The Authors
that the rate parameters of the three groups are statistically sig-

nificant and come from different distributions. Notably, a clear

order emerges, such that b(MCI � N) z b(MCI � C) < b(AD),

with the mean rate parameter of AD group almost twice as large

as the MCI groups, whether it is fitted to MRI atrophy or FDG hy-

pometabolism data, an intuitive and expected result. Figure S3

shows that postonset time is widely distributed, without a

discernible difference between groups.

Given that baseline CSF biomarkers of amyloid deposition

(Ab � 42), tau (tau and p-tau) and their ratio ((Ab � 42)/tau), are

known to be correlated with diagnosis (Da et al., 2014; Dickerson

and Wolk, 2013; Roe et al., 2011; Shaw et al., 2011), we next

investigated whether these biomarkers impart a similar influence

on the rate constant and postonset time. Scatterplots depicting

these potential influences are shown in Figure S4, along with

Pearson correlation statistics. These results suggest little inde-

pendent role for CSF biomarkers, after accounting for the infor-

mation contained in the baseline image, in determining the rate

of progression or time since onset. Given that CSF biomarkers

are known to have a threshold effect, whereby their effect is im-

parted only at pathological levels (Fjell et al., 2010), we next



Table 2. Summary of Correlation Statistics between Baseline and End-of-Study Regional Statistics: Atrophy from MRI and

Hypometabolism from FDG-PET

Data Set

Stats

(Measured)

Stats

(Model) 95% CI of Model Stats

Unexplained

Variance (Measured)

Unexplained

Variance (Model)

Significance of

Fisher’s R-z

MCI-N atrophy 0.85 0.97 [0.951, 0.98] 0.28 0.059 p < 10�4

MCI-C atrophy 0.87 0.96 [0.94, 0.974] 0.24 0.078 p < 10�4

AD atrophy 0.89 0.96 [0.933, 0.975] 0.21 0.078 p < 10�4

MCI-N FDG 0.92 0.96 [0.95, 0.968] 0.15 0.078 p < 10�2

MCI-C FDG 0.89 0.93 [0.926, 0.951] 0.21 0.14 p < 10�2

AD FDG 0.88 0.95 [0.944, 0.964] 0.23 0.10 p < 10�4

MCI-N, MCI nonconverter; MCI-C, MIC converter.
dichotomize the ADNI subjects into two groups: pathological

baseline CSF Ab � 42 (<192 pg/ml) and nonpathological

(>192 pg/ml, bottom). The histogram of b in Figure S5 and distri-

bution statistics in Table 3 demonstrate that b, our marker of the

rate of progression, is significantly higher in the pathological

versus nonpathological group. We repeated this analysis for

genotypic dichotomization into APOE-ε4 allele noncarriers and

carriers (Figure S5, right). There was no difference between the

two groups when fitting b to MRI atrophy, but a significant differ-

ence was observed when fitting to FDG-PET, where exponential

parameter l was 0.29 for the former group and 0.45 for the latter

group.

DISCUSSION

Summary of Results
The proposed predictive model captures diffusive interneuronal

propagation enacted on the brain’s connectivity network, an

approach that was previously shown to recapitulate classic

topographic patterns of common dementias (Raj et al., 2012).

Although the concepts on which this model is based are known,

our main contribution is that we were able to formalize andmath-

ematically encode existing understanding and employ them

toward the goal of predicting future progression in individual

subjects. By turning different competing descriptive hypotheses

into testable predictions, we were able to statistically compare

them. We found strong statistical evidence in favor of the

network diffusion model.

The major findings of this study were as follows. First, using

baseline MRI volumetrics and PET-based glucose hypometabo-

lism, the model predicted future atrophy/metabolism patterns of

AD and MCI subjects drawn from the ADNI database. Second,

the model captured the regionally varying baseline and slope

relationship accurately and to a larger extent than alternate local-

ized growth models, viz sigmoid, and exponential growth. Third,

an investigation of the fitted rate of progression in individuals

showed group differences between MCI and AD. The role of

CSF biomarkers in determining the rate of progression is re-

vealed only after dichotomizing the CSF data. Evidence for the

role of APOE allele status is mixed. Since the proposed predic-

tive model works on individual subjects, it is a computational

prognostic biomarker. Group-level summary statistics are pre-

sented here to characterize this biomarker, but the underlying

data come from individual subjects’ predictions. A thorough
C

robustness analysis via Monte Carlo simulations and bootstrap

analysis demonstrated the predictor performance to be insensi-

tive to connectome noise and intersubject variability. Each result

is discussed below in the context of current literature.

Capturing the Relationship between Regional Atrophy
and Its Rate of Change
The regional baseline/slope relationship provides an effective

way of testing the validity of progression models, since in the 2-

to 4-year window of observation, the progression in the ADNI

cohort may be considered roughly linear. It is known from

morphometric AD studies that the baseline/rate relationship is

complex (Jack et al., 2009); atrophied regions appeared to evolve

differently depending on disease stage (Whitwell et al., 2007), and

atrophy ratewas reported tohavea regionally varying relationship

withAb deposition (Tosun et al., 2011). Our result (Figures S1 and

S2) also suggests a regionally varyingbaseline/slope relationship.

Baseline and change values are in good agreement in classically

vulnerable temporoparietal regions, but not in frontal and occipi-

tal regions, which give the ‘‘off-diagonal’’ effect seen in Figure 2.

However, these regions are strongly connected to already-

affected regions, hence ‘‘next-in-line’’ for future changes accord-

ing to the transneuronal transmission hypothesis. Thus, without

considering network connectivity, these regions would arguably

be prone to underestimation as sites of future change. Examining

the correlation strength between measured atrophy slope and

model prediction (Figure 1), the networkmodel is strongly predic-

tive of slope (R = 0.85 for atrophy slope, R = 0.75 for hypometab-

olismslope). A nonnetworkedmodel of localized spread,whether

exponential (predicting a linear relationship) or sigmoid (parabolic

relationship), also predicts the slope, but not as well.

Comments on Alternative Localized Growth Models
The localized growth models were obtained by mathematically

encoding existing hypotheses. We allowed different regions

and subjects to be placed at different points along the sig-

moid/exponential curves, since they may be at different stages

of degeneration. In Jack et al. (2013), a similar strategy of placing

different subjects (although not regions) at different points along

the sigmoid curve demonstrated that long nonlinear sigmoid or

exponential dynamics over the duration of the disease can be

fit to narrow time windows exhibiting only linear trends. The

choice of these simple local growth models in favor of nonlocal

statistical models, e.g., projections to ‘‘AD-signature’’ regions
ell Reports 10, 359–369, January 20, 2015 ª2015 The Authors 363



Figure 3. ‘‘Glass Brain’’ Illustrations of

Regional Statistics of AD Subjects from

the ADNI Cohort

The spheres are proportional to effect size,

and color-coded by lobe: frontal = blue,

parietal = purple, occipital = green, temporal = red,

and subcortical = yellow.

(A and B) Group regional atrophy (A) and meta-

bolism (B) statistics of all AD subjects are shown.

Left: regional t-statistic at baseline with respect to

ADNI healthy controls, after logistic transform.

Network diffusion model prediction based on

baseline atrophy, extrapolated to 5 years out

(middle) and 10 years out (right). Our extrapola-

tions recapitulate the classic pattern of AD pro-

gression, from mesial temporal to parietal and

finally frontal structures.

(C and D) Two illustrative AD examples. In both

cases, the classic AD pattern of atrophy is seen at

baseline as well as at predicted future time points,

albeit with increasing severity.
(Da et al., 2014), wasmotivated by our goal of assessing the spe-

cific role of the network in determining the dynamics of AD.

Agreement with Prior Longitudinal Imaging Studies
MRI atrophy is strongly correlated with cognitive impairment and

its topographic distribution correlates well with Braak staging at

autopsy (Jack et al., 2010; Whitwell et al., 2009). FDG-PET is

correlated with impaired synaptic function (Rocher et al.,

2003), cognitive impairment, and postmortem AD diagnosis

(Hoffman et al., 2000). Apostolova et al. elegantly described

the patterns of AD progression from longitudinal MRI, showing

stereotyped spread of atrophy from temporal to parietal and

frontal regions (Apostolova and Thompson, 2008; Apostolova

et al., 2007). Morphological changes in MCI patients measured

using voxel-based morphometry followed a classic Braak

pattern of progression, starting from anterior medial temporal re-

gions at 3 years prior to conversion, spreading to nearby tempo-

ral and parietal cortices, and at AD diagnosis encompassing the

classic temporoparietofrontal AD pattern (Whitwell et al., 2007).

The ND model’s predictions (Equation 5) are in good agreement
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with these longitudinal observations. The

MCI-converter examples (Figure 4) reca-

pitulate almost perfectly the progression

described in Whitwell et al. (2007). Simi-

larly, the AD cases (Figure 3) are in good

agreement with the topographic evolu-

tion shown in Apostolova and Thompson

(2008) and Whitwell et al. (2007). Of note,

the ND model gives more accurate pre-

diction than linear local growth reflected

by baseline correlations.

The Role of Focal Origin,
Syndromic, Pathological, and
Genotypic Characteristics
We do not explicitly rely on any kind of

selective vulnerability or origination site,
e.g., entorhinal cortex and hippocampus (Braak and Braak,

1992; Braak and Del Tredici, 2012; Braak et al., 2000), this being

implicit in the baseline scan. Origination site might be dictated by

selective vulnerability due to various stressors (Braak et al.,

2000; Palop et al., 2006; Saxena and Caroni, 2011; Seeley

et al., 2009) or innate gene expression in origination sites (Goel

et al., 2014). Presented data suggest that even if origination sites

are anatomically or architectonically determined, the subse-

quent spread and eventual topographic fate of AD pathology

are likely determined by network topology.

The puzzling dissociation between imaging-based neurode-

generative patterns and the distribution of AD-causing pathology

(tau and Ab) is well known (Jack et al., 2010). MRI atrophy and

FDG-PET binding are closely associated with cognitive deficits

and tangles, but not withAb deposition (Jack et al., 2010; Landau

et al., 2012; Murray et al., 2011; Robinson et al., 2011). Three

distinct topographical patterns were reported in AD—classical

(75%), limbic predominant (14%), and hippocampus sparing

(11%)—reflecting heterogeneous origination and spread sites

(Murray et al., 2011). Approximately 20%–40% of cognitively



Figure 4. Glass Brain Illustrations of Two

Example MCI Nonconverters from the

ADNI Cohort

The spheres are proportional to effect size and

color-coded by lobe: frontal = blue, parietal =

purple, occipital = green, temporal = red, subcor-

tical = yellow. Left: regional Z score of MRI-derived

atrophy at baseline with respect to ADNI healthy

controls, after logistic transform. Network diffu-

sion model prediction based on baseline atrophy,

extrapolated to 5 years out (middle) and 10 years

out (right). Neither case progresses into prominent

temporal involvement.
normal elderly people have significant Ab plaque deposition

(Jack et al., 2010). Given these dissociations, the utility of a

single-spread model in describing AD topography might be

doubted. However, the model’s function is not to capture a spe-

cific pathologic agent like amyloid or tau but to model progres-

sion starting at baseline markers of degeneration, howsoever

they may have arisen.

Interestingly, we found a strong dependence of the subject-

wise fitted rate of progression parameter b on subjects’

diagnostic status but no correlation between baseline CSF bio-

markers and rate of progression. A strong group difference

was however seen when the subjects are dichotomized into

high- or low-biomarker regimes (Table 3). Numerous prior re-

ports show a definite association between CSF biomarker levels

and risk of AD. It could be that our fitting procedure or CSF

biomarker levels or both are noisy. Since the subject’s morpho-

metric information is already built into the estimate of b via Equa-

tion 6, our result might simply imply that CSF biomarkers lack

incremental power to predict rate of progression, beyond what

is explained by imaging. This is in line with converging under-

standing based on the early deposition and subsequent plateau-

ing of amyloid (Villemagne et al., 2013), that while CSF

biomarkers are good predictors of conversion risk, neurodegen-

erative markers like MRI are more sensitive predictors of current

disease state and its rate of decline (Da et al., 2014; Dickerson

and Wolk, 2013; Fjell and Walhovd, 2011; Jack et al., 2009;

Vemuri et al., 2009). Our dichotomized CSF results support this

interpretation, such that CSF biomarker levels appear to exert

an effect on rate of progression only beyond the pathologic

threshold (Fjell et al., 2010; Mattsson et al., 2014; Schott et al.,

2010). The effect of APOE status on rate of decline b was mixed:

nonsignificant for MRI atrophy but significant for FDG-PET;

potentially, this could be due to the generally higher signal to

noise ratio observed in FDG data.

Clinical and Diagnostic Implications
These results provide support to the network diffusion model as

a prognostic aid to the clinician, allowing them to predict what
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the patient’s neuroanatomic state will be

at any given point in the future. Knowl-

edge of what the future holds can

empower patients and allow informed

choices regarding lifestyle, therapeutic,

and nontherapeutic interventions. The
NDmodel could potentially be used to enhance cohort stratifica-

tion and monitoring accuracy in large-scale clinical trials and

thus improve statistical power at a lower cost. By allowing

extrapolation of baseline state regardless of syndromic classifi-

cation, these data could present an opportunity to disentangle

and disambiguate AD subtypes in a clinical setting. Future neu-

roradiologists might plausibly eschew uncertain syndromic cate-

gorization in favor of quantitative models of topographical

patterning of future disease states as early markers of disease.

Cases of mixed dementia could also benefit, where classical re-

gion-based atrophy descriptors might prove unsatisfactory.

Limitations
This is a first-order, linear, parsimonious model of diffusive

spread that assumes static networks, even though both atrophy

and the network must dynamically evolve. However, these

nonlinear effects are difficult to capture analytically and can

only be accessed via numerical finite difference computa-

tions—a topic of future work. The model only considers the

long-range transmission of proteopathic carriers and not their

local ‘‘leaking’’ via synapses and dendrites, because local cir-

cuitry is neither observable by noninvasive tractography nor

necessary for modeling large-scale macroscopic patterns.

Technical limitations of the volumetric and tractography pro-

cessing pipelines include HARDI spatial and angular resolution,

coregistration errors, low test-retest reliability of volumetric

data, and the distance bias inherent in tractography. These

issues are even more problematic in longitudinal analysis, but

we believe this high-powered study is able to withstand these

challenges. Although the model enables long-term projections,

its validation was limited to public (ADNI) data sets of rather nar-

row time span (2–4 years), precluding long-term longitudinal

follow-up. One of the most attractive aspects of our model, its

ability to capture nonlinear trajectories of disease, is poorly

tested by these data. We hope that future work will address

this gap. Finally, healthy reference rather than individual patients’

connectomes were used for individual prediction to avoid indi-

vidual variability and noise and because the ADNI database did
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Figure 5. Glass Brain Illustration of the Pre-

dictive Ability of the Model on Two Example

MCI Converters, with Mild but Early Tempo-

ral Involvement, Progressing to the Classic

AD-type Topography with Prominent Tem-

poral Involvement
not contain diffusion MRI scans. However, variability in connec-

tomes appears to exert only minor influence on our model (see

Figures S5 and S6 of Raj et al., 2012); hence, our conclusions

should remain valid and withstand the scrutiny of future

investigations.

EXPERIMENTAL PROCEDURES

Data Description

Healthy Cohort

Axial T1-weighted fast spoiled gradient-echo scans (TE = 1.5 ms, TR = 6.3 ms,

TI = 400 ms, 15� flip angle, 230 3 230 3 156 isotropic 1 mm voxels) and

high angular resolution diffusion imaging (HARDI) data (55 directions, b =

1,000 s/mm2, 72 1.8-mm-thick interleaved slices, 0.85943 0.8594 mm planar

resolution) were acquired on a 3T GE Signa EXCITE scanner from 73 fully con-

sented young healthy volunteers under a previous institutional review board-

approved study (Kuceyeski et al., 2013).

Age-Matched Normal, AD, and MCI Cohorts

Data used in this article were obtained from the ADNI database (http://adni.

loni.usc.edu). Launched in 2003 as a $60million, 5-year public-private partner-

ship, ADNI aims to test whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessment can be combined to measure the

progression of MCI and early AD. More details of ADNI methodology are in the

Supplemental Experimental Procedures. Diagnosis is established by ADNI at

each longitudinal time point based on natural history and cognitive assess-

ment. We further classified MCI subjects as MCI converter or MCI non-

converter, depending on whether their baseline diagnosis changed to AD at

follow up. Volumetric 3D MPRAGE or equivalent T1-weighted 1.5 T images

are available at ADNI, with 1.25 3 1.25 3 1.2 mm resolution; acquisition pa-

rameters are reported elsewhere (Mueller et al., 2005). For FDG-PET scans,

subjects were injected with 5 mCi F18-FDG 30min prior to FDG-PET scanning

and six 5 min frames were acquired by the ADNI consortium.

Image Processing

In our laboratory, ADNI PET frames were coregistered to eliminate the effects

of motion, an average image was generated, and then intensity normalized

such that the average of voxels within the subject’s mask is exactly one. The

average image was nonlinearly warped into MNI152 space using SPM5 soft-

ware toolbox, with 2 mm isotropic voxels and 79 3 95 3 69 (in x y z) matrix

size. Regional FDG uptake was normalized by the subject’s cerebellar refer-

ence uptake. GM brain regions were parcellated from all subjects’ T1-MRI

scans using an atlas-based parcellation scheme (SPM from Klauschen

et al., 2009 and IBASPM from Iturria-Medina et al., 2007) to extract 116 regions
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of interest (ROIs). The T1 image tissue segmenta-

tions in 1-mm isotropic MNI space were used to

create a normalized atlas, and the FDG PET im-

ages were resliced to matching resolution in

SPM. The MNI atlas was then applied to the re-

sliced FDG to calculate signal mean for each of

the 116 regions. Twenty-six cerebellar regions

were removed, giving regional statistics on 90 re-

gions covering the cerebrum with no gaps.

Connectomes from healthy HARDI scans were

extracted using previously described methodol-

ogy (Kuceyeski et al., 2013), which included

Q-ball reconstruction followed by probabilistic

tractography seeded at the gray-white interface
voxels of the parcellated ROIs, with 1,000 streamlines drawn per seed voxel.

Each streamline is assigned a probability score (Iturria-Medina et al., 2008),

and connection strength is estimated by summing the probabilities of the

streamlines terminating in the two regions. A combined connectivity matrix,

C, is then obtained by averaging across healthy subjects.

Model Validation against ADNI Data

Normalized atrophy of each ADNI subject was computed in terms of regional Z

score of volume with respect to age-matched ADNI normal, such that for sub-

ject k and brain region i,

zkðiÞ= tkðiÞ � mhðiÞ
shðiÞ ;

where mh(i),sh(i) are the ADNI healthy controls’ mean and SD of volume of re-

gion i. Since only the highest positive values denote atrophy, the Z scores

were converted into a positive atrophy measure in [0,1] via the well-known

logistic transform

jkðiÞ=
1

e�zk ðiÞ=s + ezk ðiÞ=s;

where theparameters controls thesteepnessof the logistic function.Analogous

formulas govern regional hypometabolism statistics obtained from FDG-PET

maps. These statistics are vectorized over all regions to givemeasured atrophy

vectors ck for all subjects k. All regional statistics, whether measured or pre-

dicted, were mapped within the brain using a ‘‘glass brain’’ rendering using in

house open source MATLAB Brainography toolkit (LoCastro et al., 2014).

Development of a Predictive Network Diffusion Model of Dementia

The connectivity matrices above define a network or graph G= fV;Eg whose

nodes vi˛V represent gray matter structures and edges ei;j˛E represent fiber

connectivity. The burden of disease-causing proteinopathic agent is repre-

sented by the vector xðtÞ= fxðv; tÞ; v˛Vg at time t at each node. It was pro-

posed in (Raj et al., 2012) that dementia progression into this network in a

diffusive manner is captured by a so-called ‘‘network heat equation’’(Lafferty

and Kondor, 2002)

dxðtÞ
dt

= � bHxðtÞ; (Equation 1)

where H is the graph Laplacian matrix whose entries are given, for all node

labels i,j,j0, by

Hi;j =

8><
>:

�ci; j for isj and ct; js0P
t; j0 :ei; j˛E

ct;j for i = j

0 otherwise

:

http://adni.loni.usc.edu
http://adni.loni.usc.edu


Table 3. Exponential Distribution Parameter l of Subject-Wise b

in Each Diagnostic, CSF Amyloid, or APOE Grouping

Group

l from

Atrophy 95% CI

l from

FDG 95% CI

MCI-N 0.025* [0.022, 0.030] 0.022* [0.019, 0.026]

MCI-C 0.020* [0.016, 0.025] 0.024* [0.020, 0.029]

AD 0.037 [0.030, 0.045] 0.046 [0.038, 0.056]

Ab � 42 > 192 pg/ml 0.012* [0.009, 0.016] 0.022* [0.017, 0.029]

Ab � 42 < 192 pg/ml 0.027* [0.023, 0.032] 0.036* [0.031, 0.043]

APOE-ε4 noncarriers 0.030 [0.026, 0.035] 0.029* [0.025, 0.035]

APOE-ε4 carriers 0.030 [0.026, 0.035] 0.045* [0.039, 0.053]

Significance of MCI versus AD group, and low- versus high-CSF amyloid

and APOE carrier versus noncarriers groups, are denoted by * when their

95% confidence intervals do not overlap. See also Figures S3–S5.

MCI-N, MCI nonconverter; MCI-C, MIC converter.
This is the graph equivalent of the Laplacian diffusion operator DxbV2x. Since

all brain regions are not the same size, each row and column of the Laplacian is

normalized by their sums. This diffusion model captures transneuronal propa-

gation as a connectivity rather than distance-based process, enacted via

active axonal transport followed by membrane or exocytotic processes into

extracellular space. Fiber length does not enter this model, since there is no

evidence that axonal transport efficiency is dependent on fiber length.

From matrix algebra, Equation 1 is satisfied by

xðtÞ= e�bHt x0; (Equation 2)

where x0 is the initial pattern of the disease process, on which the term e�bHt

acts essentially as a spatial and temporal blurring operator. We therefore call

e�bHt the diffusion kernel, and Equation 2 is interpreted as the impulse

response function of the network. Since the above requires matrix exponenti-

ation, it is solved via the eigendecomposition of the network Laplacian H into a

number of eigenmodes into which the diffusive process becomes trapped, and

disease evolution will be governed by these eigenmodes:

xðtÞ=Ue�LbtUyx0 =
XN
i = 1

�
e�bli tuy

i x0

�
ui : (Equation 3)

The eigenvalues li of the Laplacian H are in the interval [0,2], with a single

0 eigenvalue and a small number of near-zero eigenvalues. Most eigenmodes

ui correspond to large eigenvalues that quickly decay due to exponentiation,

leaving only the small eigenmodes that remain operative.

Relationship to Atrophy/Metabolism

The measurable phenotype (regional atrophy in MRI, hypometabolism in FDG-

PET) in region k is assumed to be the consequence of the accumulation of pa-

thology; hence, it is modeled as the integral

fkðtÞ=
Z t

0

xkðtÞdt: (Equation 4)

On the whole brain, this givesFðtÞ= R t
0 xðtÞ dt. These results are summarized

from (Raj et al., 2012), and below we derive results capturing the temporal dy-

namics of the model.

Prediction of Future Atrophy and Metabolism

Expanding Equations 3 and 4 via eigendecomposition H = ULUy,

FðtÞ=
Z t

0

e�Hbtx0 dt =U
1

b
L�1

�
I� e�Lbt

�
Uyx0

=U diag

0
B@
8><
>:

t; i = 1

1� e�libt

bli
; i>1

9>=
>;
1
CAUyx0:
C

The last expression is necessitated by the fact that l1 = 0, which gives

lim
l1/0

ð1� e�l1btÞ=l1b= t. Note also that early in the disease,

lim
t/0

Uð1=bÞL�1ðI� e�LbtÞUyx0 = tx0. For tractability, we assume that this rela-

tionship hold in all subjects, such that F(tpost�onset) z tpost�onsetx0, where

tpost�onset is the time elapsed between disease onset and baseline scan.

Then, for any time t > tpost�onset,

FðtÞ= 1

btpost�onset

U diag

0
B@
8><
>:

bt i =1

1� e�li ;bt

li
i>1

9>=
>;
1
CA UyFbaseline: (Equation 5)

We perform prediction of future atrophy and hypometabolism in patients using

Equation 5.

Relationship between Atrophy and Its Rate of Change

From the above, we have

x0 = bU diag

0
@
8<
:

1=bt; i = 1

li

1� e�libt
; i>1

9=
;
1
AUyFðtÞ

dFðtÞ
dt

= e�Hbtx0 = bU diag

0
BBB@
8>><
>>:

1

bt
; i = 1

lie
�libt

1� e�libt
; i>1

9>>=
>>;

1
CCCA UyFðtÞbb ~HðbtÞFðtÞ:

(Equation 6)

Thus, the network diffusionmodel deterministically predicts that the atrophy or

hypometabolism at any time point and their rate of change are related via the

matrix ~HðbtÞ.
Nonnetworked Models: Sigmoid and Exponential

The exponential growth model is mathematically given by F(t) f exp(t/a)F0

and the sigmoid by F(t) f 1/(exp(t/a) + exp(�(t/a)))F0. However, it is known

that different brain regions and different subjects experience atrophy, hypo-

metabolism, and pathology at different time points; hence, we allow different

subjects and brain regions to be placed at different points along the above

curves, such that for region j of subject k, we hypothesize

Fj;kðtÞfexp

�
t � tj;k

a

�
F0

j;k ðexponentialÞ

Fj;kðtÞf 1

exp

�
t � tj;k

a

�
+ exp

�
� t � tj;k

a

�F0
j;k ðsigmoidÞ;

where tj,k is the time since disease onset of region j in subject k. Thus, all sub-

jects and regions are hypothesized to fall on the same growth curve with a

single scale parameter a, albeit different temporal location tj,k. Note that neither

nonnetworked model formula involves connectivity, since they assume local-

ized progression.

The corresponding relationship predicted by the exponential model is, by

definition, dFj,k/dtfFj,k(t). It can be shown that the sigmoid model would pre-

dict thatdFj,k(t)/dtfFj,k(t)(max(Fj,k)�Fj,k(t))—an analytic result that appears to

have been reproduced statistically in an earlier thorough investigation of longi-

tudinal behavior of amyloid PETdata (Jack et al., 2013). In that paper, aB-spline

fitting procedure revealed that an ‘‘inverted U’’-shaped curve best described

the relationship between amyloid burden at baseline and its rate of change.

The quadratic expression above would predict exactly this curve shape.

Estimating Unknown Model Parameters

For prediction of individual subjects, two unknown parameters must be esti-

mated for each subject: the time between onset and baseline scan tpost�onset

and the rate constant of network diffusion b. We do this by fitting these param-

eters to measured regional slope data, using the baseline-slope relationship

given by Equation 6. Denoting yðbtÞb ~HðbtÞcbaseline, we estimate

bbt = argmaxbt

�
corr

�
yðbtÞ; Dc

Dt

��
;
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where corr(,,,) refers to the Pearson correlation coefficient between two vec-

tors, c is the measured atrophy or hypometabolism of the given subject, and

Dc/Dt is the measured slope. Then, the rate constant b is given by the best

estimate of the scaling required for the fit:

bb =
y
� bbt	T

y
� bbt	T

y
� bbt	

Dj

Dt
:

Finally,

tpost�onset =
bbtbb :

CSF Biomarker Analysis

CSF biomarker levels of amyloid, tau, and p-tau were obtained from the ADNI

database, and subsequently, their prediction ability of ND model parameters

was investigated using Pearson correlation. The statistics of CSF biomarkers

was also investigated within dichotomized groups (based on diagnosis, APOE

status, and baseline CSF biomarker level), as described in Results. Histograms

were fitted to exponential distributions usingMATLAB’s expfit() function and its

mean parameter obtained, as enumerated in Figures S3–S5.
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10.1016/j.celrep.2014.12.034.

AUTHOR CONTRIBUTIONS

A.R. conceptualized this study and developed the mathematical model, per-

formed statistical tests, andwrote themanuscript. E.L. wrote the Brainography

tool and performed volumetric analysis. A.K. extracted healthy networks. A.K.

and E.L. provided suggestions on modeling and statistical analysis. D.T. pro-

vided assistance on data processing and analysis. M.W. and N.R. provided

neurological interpretation, scientific advice, and guidance. All authors helped

improve the manuscript.

ACKNOWLEDGMENTS

Data used in the preparation of this article were obtained from the ADNI data-

base (http://adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implementation of ADNI and/or provided data

but did not participate in analysis or writing of this report. A complete listing

of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. This research was

supported in part by NIH grants R01 NS075425 and P41 RR023953 (to A.R.)

and a Leon Levy Fellowship (to A.K.). Data collection and sharing for this proj-

ect were funded by the ADNI (NIH grant U01 AG024904) and DOD ADNI

(Department of Defense award number W81XWH-12-2-0012). ADNI is funded

by the National Institute on Aging, the National Institute of Biomedical Imaging

and Bioengineering, and others, as detailed in the Supplemental Experimental

Procedures.

Received: September 17, 2014

Revised: November 8, 2014

Accepted: December 15, 2014

Published: January 15, 2015

REFERENCES

Apostolova, L.G., and Thompson, P.M. (2008). Mapping progressive brain

structural changes in early Alzheimer’s disease andmild cognitive impairment.

Neuropsychologia 46, 1597–1612.

Apostolova, L.G., Steiner, C.A., Akopyan, G.G., Dutton, R.A., Hayashi, K.M.,

Toga, A.W., Cummings, J.L., and Thompson, P.M. (2007). Three-dimensional
368 Cell Reports 10, 359–369, January 20, 2015 ª2015 The Authors
gray matter atrophy mapping in mild cognitive impairment and mild Alzheimer

disease. Arch. Neurol. 64, 1489–1495.

Braak, H., and Braak, E. (1992). The human entorhinal cortex: normal

morphology and lamina-specific pathology in various diseases. Neurosci.

Res. 15, 6–31.

Braak, H., and Braak, E. (1996). Evolution of the neuropathology of Alzheimer’s

disease. Acta Neurol. Scand. Suppl. 165, 3–12.

Braak, H., and Del Tredici, K. (2012). Where, when, and in what form does spo-

radic Alzheimer’s disease begin? Curr. Opin. Neurol. 25, 708–714.

Braak, H., Del Tredici, K., Schultz, C., and Braak, E. (2000). Vulnerability of

select neuronal types to Alzheimer’s disease. Ann. N Y Acad. Sci. 924, 53–61.

Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos,

A.F., Sheline, Y.I., Klunk, W.E., Mathis, C.A., Morris, J.C., and Mintun, M.A.

(2005). Molecular, structural, and functional characterization of Alzheimer’s

disease: evidence for a relationship between default activity, amyloid, and

memory. J. Neurosci. 25, 7709–7717.

Clavaguera, F., Bolmont, T., Crowther, R.A., Abramowski, D., Frank, S.,

Probst, A., Fraser, G., Stalder, A.K., Beibel, M., Staufenbiel, M., et al. (2009).

Transmission and spreading of tauopathy in transgenic mouse brain. Nat.

Cell Biol. 11, 909–913.

Da, X., Toledo, J.B., Zee, J., Wolk, D.A., Xie, S.X., Ou, Y., Shacklett, A., Parmpi,

P., Shaw, L., Trojanowski, J.Q., and Davatzikos, C.; Alzheimer’s Neuroimaging

Initiative (2014). Integration and relative value of biomarkers for prediction of

MCI to AD progression: spatial patterns of brain atrophy, cognitive scores,

APOE genotype and CSF biomarkers. Neuroimage Clin 4, 164–173.

Dickerson, B.C., and Wolk, D.A.; Alzheimer’s Disease Neuroimaging Initiative

(2013). Biomarker-based prediction of progression in MCI: Comparison of AD

signature and hippocampal volume with spinal fluid amyloid-b and tau. Front

Aging Neurosci 5, 55.

Englund, E., Brun, A., and Alling, C. (1988). White matter changes in dementia

of Alzheimer’s type. Biochemical and neuropathological correlates. Brain 111,

1425–1439.

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van

der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., et al. (2002). Whole

brain segmentation: automated labeling of neuroanatomical structures in the

human brain. Neuron 33, 341–355.

Fjell, A.M., and Walhovd, K.B. (2011). New tools for the study of Alzheimer’s

disease: what are biomarkers andmorphometric markers teaching us? Neuro-

scientist 17, 592–605.

Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J.,

Holland, D., Blennow, K., Brewer, J.B., and Dale, A.M.; Alzheimer’s Disease

Neuroimaging Initiative (2010). Brain atrophy in healthy aging is related to

CSF levels of Ab1-42. Cereb. Cortex 20, 2069–2079.

Frost, B., and Diamond, M.I. (2010). Prion-like mechanisms in neurodegener-

ative diseases. Nat. Rev. Neurosci. 11, 155–159.

Frost, B., Ollesch, J., Wille, H., and Diamond, M.I. (2009). Conformational di-

versity of wild-type Tau fibrils specified by templated conformation change.

J. Biol. Chem. 284, 3546–3551.

Goel, P., Kuceyeski, A., LoCastro, E., and Raj, A. (2014). Spatial patterns of

genome-wide expression profiles reflect anatomic and fiber connectivity

architecture of healthy human brain. Hum. Brain Mapp. 35, 4204–4218.

Greicius, M.D., Srivastava, G., Reiss, A.L., and Menon, V. (2004). Default-

mode network activity distinguishes Alzheimer’s disease from healthy aging:

evidence from functional MRI. Proc. Natl. Acad. Sci. USA 101, 4637–4642.

Hoffman, J.M., Welsh-Bohmer, K.A., Hanson, M., Crain, B., Hulette, C., Earl,

N., and Coleman, R.E. (2000). FDG PET imaging in patients with pathologically

verified dementia. J. Nucl. Med. 41, 1920–1928.

Iturria-Medina, Y., Canales-Rodrı́guez, E.J., Melie-Garcı́a, L., Valdés-Hernán-

dez, P.A., Martı́nez-Montes, E., Alemán-Gómez, Y., and Sánchez-Bornot, J.M.
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