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Keywords: Alzheimer’s disease, mild
cognitive impairment, MRI, classification,
support vector machines.

Acceptance: Received July 18, 2013,
and in revised form March 9, 2014. Ac-
cepted for publication May 25, 2014.

Correspondence: Address correspon-
dence to Alessandra Retico, PhD,
Istituto Nazionale di Fisica Nucle-
are, Sezione di Pisa, Largo Bruno
Pontecorvo 3, I-56127 Pisa, Italy.
E-mail: Alessandra.Retico@pi.infn.it.

∗Data used in preparation of this article
were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu). As such,
the investigators within the ADNI
contributed to the design and imple-
mentation of ADNI and/or provided
data but did not participate in analysis
or writing of this report. A complete
listing of ADNI investigators can be
found at: http://adni.loni.ucla.edu/wp-
content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.

J Neuroimaging 2015;25:552-563.
DOI: 10.1111/jon.12163

A B S T R A C T
Decision-making systems trained on structural magnetic resonance imaging data of sub-
jects affected by the Alzheimer’s disease (AD) and healthy controls (CTRL) are becoming
widespread prognostic tools for subjects with mild cognitive impairment (MCI). This study
compares the performances of three classification methods based on support vector ma-
chines (SVMs), using as initial sets of brain voxels (ie, features): (1) the segmented grey
matter (GM); (2) regions of interest (ROIs) by voxel-wise t-test filtering; (3) parceled
ROIs, according to prior knowledge. The recursive feature elimination (RFE) is applied in
all cases to investigate whether feature reduction improves the classification accuracy.
We analyzed more than 600 AD Neuroimaging Initiative (ADNI) subjects, training the
SVMs on the AD/CTRL dataset, and evaluating them on a trial MCI dataset. The classifica-
tion performance, evaluated as the area under the receiver operating characteristic curve
(AUC), reaches AUC = (88.9 ± .5)% in 20-fold cross-validation on the AD/CTRL dataset,
when the GM is classified as a whole. The highest discrimination accuracy between MCI
converters and nonconverters is achieved when the SVM-RFE is applied to the whole GM:
with AUC reaching (70.7 ± .9)%, it outperforms both ROI-based approaches in predicting
the AD conversion.

Introduction
Diagnostic early markers of Alzheimer’s disease (AD) are
widely investigated in order to aid researchers and clinicians in
the validation of the effectiveness of new AD treatments, while
limiting the duration and cost of clinical trials.1 Brain atrophy
and its evolution are recognized key neuroimaging biomarkers
of the AD progression.2–9

Brain scans acquired with structural magnetic resonance
imaging (MRI) are suitable for quantitative evaluation of brain
atrophy; moreover, image analysis algorithms can process these
in order to extract useful information and carry out both single-
subject analyses and between-group comparisons.

Machine-learning techniques applied to MRI images are in-
creasingly spreading tools that extract information from data

and can predict the pathology progression.10,11 The introduc-
tion of pattern classification and computer vision methods in
the neuroimaging field is due to Lao et al.12 In order to develop
an accurate predictor of pathology from a set of volumetric
images, the authors highlighted the limitations of voxel-based
morphometric methods and the potentiality of support vector
machine (SVM)-based decisional systems.

Classification approaches can be particularly useful in stud-
ies on the AD pathology, as they predict the conversion to AD
of those subjects referred to as affected by mild cognitive im-
pairment (MCI), a transitional state between normal aging and
dementia.13

Several machine-learning techniques have been imple-
mented so far in neuroimaging studies on AD, such as
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principal component analysis and linear discrimination
analysis,14,15 SVM,16–21 logistic regression,22 the combination
of information extracted from different diagnostic modalities
and their classification with SVM,23 with an automatic learn-
ing framework,24 or by combining multiple weak classifiers to
achieve more accurate and robust results.25

Many research groups investigating the AD pathology in
recent years developed and validated their analyses on data
samples provided by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI),15,19–26 as reported in the extensive review
carried out by the principal investigator on the ADNI initiative
Michael W. Weiner and colleagues.27

Recent studies by Cuingnet et al20 and Chu et al21 on
ADNI data were focused on a comparison between whole-
brain classification methods and region of interest (ROI)-based
approaches, all coupled to feature reduction methods, required
by the huge input data size. Both studies concluded that fea-
ture selection does not improve the classification accuracy and
that whole-brain methods outperform ROI-based ones, unless
the ROIs are chosen according to a prior knowledge of the
underlying disease. A recent study by Adaszewski et al28 on
longitudinal data of AD, MCI, and control (CTRL) subjects
reports that feature selection improves the classification accu-
racy at early MCI stages, whereas at a later stage whole-brain
methods are superior.

We focused our analysis on a comparison between three dif-
ferent methods, in order to select the initial sets of brain voxels
to analyze with SVM classifiers. In particular, they are defined
as: (1) the segmented grey matter (GM), referred as whole-GM
classification; (2) the ROIs, obtained by the voxel-based mor-
phometry (VBM) analysis, ie, voxel-wise t-test filtering, referred
as VBM-ROI classification; and (3) the parceled ROIs, chosen
according to prior knowledge on the brain involvement in the
AD pathology, where the parcellation of the anatomical re-
gions is performed according to Laboratory of Neuro Imaging
(LONI) Probabilistic Brain Atlas (LPBA40),29 thus referred as
LONI-ROI classification.

The recursive feature elimination (RFE) method30 has been
implemented in our whole-GM analysis both in order to reduce
the data size, and to localize the brain regions that are more in-
volved in the AD pathology. The same approach has been
applied also to the VBM-ROI and LONI-ROI classification,
so as to evaluate the SVM-RFE potentiality in enhancing the
classification performance. Methods (1) and (2), complemented
with the RFE procedure, can be considered as data-driven ap-
proaches, where different criteria to select the initial set of fea-
tures are implemented (whole-GM vs. t-test filtered ROIs). They
are compared to (3) a prior-knowledge based analysis, where
the right and left hippocampi and parahippocampal gyrii are
considered as relevant ROIs in the AD pathology.

All the approaches are compared in terms of their ability in
correctly distinguishing AD from CTRL subjects and making
accurate conversion predictions on the MCI population. The
relative performances are compared in terms of the area under
the receiver operating characteristic (ROC) curve (AUC), eval-
uated within cross-validation protocols. The meaning of AUC
has been proved to be the probability that a random pair of
positive/diseased and negative/nondiseased individuals would
be correctly identified by the diagnostic test.31

Table 1. Demographic and Mini Mental State Examination (MMSE)
Score of the Data Samples

Cohort Sample Size Age Gender (M/F) MMSE

CTRL 189 76.6 ± 5.1 95/95 29.1 ± .9
MCI-NC 166 75.7 ± 7.3 106/60 27.2 ± 2.4
MCI-C 136 75.1 ± 7.1 80/56 25.2 ± 2.7
AD 144 75.5 ± 7.5 78/66 22.2 ± 3.3

CTRL = control; AD = Alzheimer’s disease; MCI-NC = MCI nonconverted to
AD.

The analysis is carried out on an MRI dataset extracted from
the publicly available ADNI collection.

This paper is structured as follows: a description of the MRI
data source and its characteristics is provided; then, a method-
ological overview for the VBM analysis and the machine-
learning SVM procedure is given; the implementation of deci-
sional systems in the whole-GM, VBM-ROI, and LONI-ROI
analysis is described, and finally results are discussed and com-
pared to other methods.

Materials and Methods
The ADNI Data Sample

Data used in the preparation of this article were obtained
from the ADNI database (http://www.adni.loni.ucla.edu). The
ADNI was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration, pri-
vate pharmaceutical companies, and non-profit organizations,
as a $60 million, 5-year public-private partnership. The primary
goal of ADNI has been to test whether serial MRI, positron
emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to mea-
sure the progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the time
and cost of clinical trials.

The principal investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of California
– San Francisco. ADNI is the result of efforts of many coinves-
tigators from a broad range of academic institutions and pri-
vate corporations, and subjects have been recruited from over
50 sites across the United States and Canada. The initial goal
of ADNI was to recruit 800 adults, aged 55-90 years, to par-
ticipate in the research, approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people with
MCI to be followed for 3 years, and 200 people with early AD
to be followed for 2 years. Up-to-date information is available
on http://www.adni-info.org.

The analysis reported in this paper has been carried out
on the structural MRI data of 635 subjects extracted from the
ADNI database. The statistical data of these subjects are sum-
marized in Table 1. The subjects have been divided into two
categories: a training/testing and a trial set. The training/testing
set consisted of 333 age- and sex-matched subjects, namely 189
CTRL and 144 AD. The trial set consisted of 302 MCI subjects,
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among which 136 converted to AD in a time frame of 2 years
from the baseline scans. These subjects were selected from the
larger ADNI data on the basis of the availability of baseline and
at least 2-years information. Moreover, training subjects were
chosen if confirmed to be CTRL/AD at follow-up assessment.
The data samples considered in this work are the same analyzed
in the paper by Chincarini et al.19

MRI Acquisition and Preprocessing

The MRI ADNI data were acquired with 1.5 T scanners.
Data were collected across a variety of scanners. Up-to-
date information on ADNI eligibility criteria and protocols is
available on http://www.adni-info.org. Raw MRI scans con-
verted to the Neuroimaging Informatics Technology Initia-
tive (NIfTI) format were downloaded from the ADNI site,
automatically reviewed by signal-to-noise statistics for qual-
ity, and processed with a wavelet-based noise-filtering algo-
rithm to improve signal-to-noise ratio and image uniformity
across different sites.19 Denoized scans were registered onto
the Montreal Neurological Institute (MNI) reference32 with a
12-parameter affine registration and resampled onto a 1-mm3

isotropic grid. Images were then intensity-normalized as re-
ported in Chincarini et al19 to achieve good histogram equal-
ization among images coming from different scanners, while
ensuring that the average gray levels of the three main cere-
bral matter contributions are mapped onto those of the MNI
reference.

VBM Preprocessing

We conducted a VBM study33 in order to investigate the dif-
ferences in the regional volumes of GM between the AD and
CTRL groups and between the MCI converted to AD (MCI-C)
and MCI nonconverted to AD (MCI-NC) groups, respectively.
The T1-weighted volumetric images were analyzed with the
latest release of the Statistical Parametric Mapping (SPM)
software package, SPM8 (Wellcome Department of Imaging
Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm),
using the VBM protocol with modulation. We implemented the
Diffeomorphic Anatomical Registration using Exponentiated
Lie algebra (DARTEL) algorithm.34 A diffeomorphic warping
is implemented to achieve an accurate inter-subject registration
with an improved realignment of small inner structures35 and
to generate a study-specific template. The VBM preprocessing
was applied as follows: (1) SPM segmentation of brain tissues,
ie, GM, white matter (WM), and cerebrospinal fluid (CSF), us-
ing the New Segment toolbox, which extends the segmentation
procedure described in36 (2) importing the parameter files pro-
duced by the tissue segmentation in the DARTEL procedure 34

to generate a study-specific template and the deformation fields
that warp the segmented tissues of each subjects to the DAR-
TEL template; (3) warping to the MNI space of the DARTEL
template and of the segmented brain tissues previously aligned
to the DARTEL template according to the generated defor-
mation fields; (4) standard smoothing with isotropic Gaussian
kernel. After the preprocessing, we obtained smoothed mod-
ulated normalized data (in the MNI space) to be used for the
statistical analysis. The modulation operation is fundamental to
render the final VBM statistics reflecting the local volume dif-

Fig 1. Schematic representation of the SVM training on the
AD/CTRL sample and the SVM validation on the MCI sample.

ferences in tissue segments.33 Modulation allows compensating
for the effect of spatial warping that causes volume changes, so
that the total amount of GM in the modulated images remains
the same as it would be in the original images. The modulated
GM segments thus need to be corrected for total intracranial
volume (TIV) to take into account brain size variability.

VBM Statistical Analysis

The regional GM volumes were compared between the
AD/CTRL and the MCI-C/MCI-NC samples using the VBM-
DARTEL analysis. The normalized modulated and smoothed
GM image segments in each group were entered into a voxel-
wise two-sample t-test analysis in SPM8. The conventional
VBM analysis was employed using the stringent significance
threshold P < .05, family-wise error rate (FWE) corrected. An
absolute threshold mask of .1 on GM was used to avoid pos-
sible edge effects around the border between GM and WM.
Age, gender, and the TIV, computed as the sum of the SPM
segmented GM, WM, and CSF were entered as covariates in
the statistical analysis.

Multivariate Analysis with SVM

We followed the classification approach with SVM proposed
in Klöppel et al16 and in Ecker et al.37 As opposed to the
mass-univariate VBM analysis, the pattern recognition tech-
niques, eg, SVMs, are multivariate and make use of specific
inter-regional dependencies to help categorize scans.12,17

An SVM38 is a supervised binary classification method, ie,
it requires a training set, used to learn the differences between
the two groups, and a validation set to quantify the classifica-
tion performance on previously unseen data (see the schematic
flowchart in Fig 1). In our analysis, each image is treated as a
point in the high dimensional RN space, where the space di-
mension N is equal to the number of features/voxels in the
considered ROI.

The SVM inputs are feature vectors, the sequence of the
voxel intensity values of the ROI. The feature vectors belong-
ing either to the category of patients and CTRLs are labeled
with “1” and “−1”, respectively. The trained SVM classifier
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maps the RN space into R, by assigning to the newly examined
cases a one-dimensional (or binary) output. As the number of
features/voxels can be very high especially when the whole
GM is the ROI to classify, whereas the number of subjects con-
sidered in this study is limited to few hundreds, we considered
only linear-kernel SVMs to avoid the risk of overfitting data.
Training an SVM is a minimization problem where the largest
margin hyperplane allowing for an optimal separation of the
training examples is identified. The separating hyperplane is
defined by a weight vector and an offset, w · x + b = 0, where
the weight vector w is a linear combination of the support vec-
tors and it is normal to the hyperplane. During the SVM training
a free parameter has to be set, the c value, which controls the
trade-off between having zero training errors and allowing for
misclassifications. The c value has been heuristically estimated
in our analysis.

The SVM is trained according to the 20-fold cross-validation
(20f-CV) technique. The data are partitioned in 20 folds; one of
them is retained as validation data while the others are used to
train the classifier. The process is repeated 20 times, ie, un-
til each subsample is used once as validation set. We used
in this study SVM-Light software package 39,40 developed by
T. Joachims (http://svmlight.joachims.org/), which is freely
available for scientific and non-commercial use.

The classification performance is evaluated through the
ROC curve,41 where the sensitivity (true positive rate, ie, the
percentage of pathological subjects correctly classified) is plot-
ted against the false positive rate (ie, the percentage of misclas-
sified CTRL subjects). Different ROC curves are compared to
each other in terms of the estimated AUC.

The initial selection of brain regions for the three SVM clas-
sifications we carried out was operated as follows:

(1)Whole-GM classification: We consider as input to the SVM
classifier the whole GM segmented volume obtained from the
standardized and automated SPM preprocessing.16,37

(2)VBM-ROI classification: The ROIs that reached the statistical
significance in the VBM analysis (P < .05, FWE corrected) were
used as data-driven reduced input to the SVM classifier.
(3)LONI-ROI classification: The (1) and (2) voxel selection meth-
ods are complemented with a prior-knowledge based ap-
proach, where brain regions that encode interesting informa-
tion for the AD pathology are selected on the basis of previ-
ous studies.2–4 Usually Neuroradiologists are asked to manually
identify the brain regions to be considered. As an alternative,
atlas-based parcellation can be implemented to select anatom-
ical regions in a more automated and reproducible way. In
the present analysis we defined the ROIs according to the
LPBA4029 (http://www.loni.ucla.edu.Atlases/LPBA40). In par-
ticular, brain regions where neurodegeneration is expected in
AD have been chosen, ie, the right and left hippocampi and the
parahippocampal gyrii.

Discrimination Maps and RFE (SVM-RFE)

The implementation of a linear-kernel SVM allows a direct
extraction of the weight vector w as an image, which is referred
to as discrimination map. The w vector, which is normal to the
separating hyperplane and indicates the direction along which

the images of the two groups differ most, can be used to generate
a map of the most discriminating voxels in the images. As the
intensity value reported in each voxel of the considered input
images is proportional to the amount of GM in that specific
location (the modulation option has been selected in the SPM
segmentation), a higher/lower value in the discrimination map
indicates that patients have higher/lower GM volume in that
specific location with respect to CTRLs.

In order to identify the voxels with the highest discriminating
power, we implemented the SVM classification with the RFE
procedure (SVM-RFE).30,42 It is a feature-selection technique
that iteratively eliminates features/voxels from the data set, in
order to remove as many noninformative features as possible,
while retaining features that carry discriminative information.
A new SVM classifier is trained at each iteration, thus a new
weight map is generated. The selected feature-ranking criterion
is the absolute value of each weight vector component |wi|. The
features/voxels are iteratively excluded from the dataset with
the aim of removing as many noninformative voxels as possible
(low |wi|), while retaining those encoding the discriminative
information (high |wi|).

The SVM-RFE algorithm is implemented in this study to
estimate the SVM classification performance as a function of the
number of GM voxels retained as input to the SVM. At each
operative point of this curve the discrimination maps can be
visualized to localize the set of voxels that encode the between-
group discriminant information.

Prediction on the Outcome of MCI Subjects

The SVM-based method we present in this paper is able to
provide single-subject classification, ie, once an SVM classifier
is trained on a learning dataset, it can be applied on previously
unseen data and give a prediction on its class membership. In
our analysis the SVMs, trained and validated on the AD/CTRL
data sample, are evaluated on a completely independent val-
idation set, constituted by MCI subjects. Also in this case the
classifier performance is evaluated using the AUC as figure of
merit.

Correlation between SVM Test Margin and Cognitive Decline

When attempting to set up a useful imaging biomarker, sensi-
tive to the cognitive decline of patients with AD, it is important
to test for correlation with the mini mental state examination
(MMSE) score.1 We studied the correlation between the dis-
tance of each data point from the SVM optimal hyperplane
(we will refer to as the test margin) and the MMSE score of
each subject using the Spearman’s rank correlation coefficient
ρ.43

Results
VBM Results

Significant volumetric between-group differences have been
found in the AD/CTRL sample with Gaussian smoothing scale
s = 3 mm. By contrast, no significant between-group difference
has been detected in the MCI-C/MCI-NC analysis at any con-
sidered smoothing scale (s = 3, 6, 8 mm). The areas of brain
atrophy detected by VBM are shown in Figure 2, where the
t statistics of the significantly different areas (P < .05, FWE
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Fig 2. Significant regions detected in the AD vs. CTRL VBM statistical analysis (colored regions reporting the t statistics), overlaid on a
representative single-subject T1-weighted MRI (a sequence of axial views is displayed).

corrected) is overlaid on a series of axial views of a repre-
sentative T1 MRI of a single subject. The effect is localized
in the medial temporal lobe, as expected. The VBM cluster
coordinates in the MNI reference space and in the standard
Talairach and Tournoux space44 (the conversion being per-
formed with the Talairach Client),45,46 beside the anatomical
description of the corresponding brain areas, are reported in
Table 2.

SVM Classification, SVM-RFE, and Discrimination Maps

(1) Whole-GM classification

The SVMs have been trained on the AD/CTRL sample
according to the 20f-CV protocol and validated on the MCI
cohort. In this paper we address a classification problem where
the input is a vector that we call a pattern of n components,
which we call features. Thus, a pattern is generated for each
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Table 2. Anatomical Structures Detected in the Alzheimer’s Disease versus Control Voxel-Based Morphometry Analysis (Data Smoothed with
s = 3 mm). These Regions are Visible in Figure 2.

Cluster Extent (Voxels) MNI Coordinates Talairach Coordinates Brain Region Localization

2646 −22 −6 −21 −21 −5 −16 LC Limbic lobe Parahippocampal gyrus, amygdala
2892 21 −4 −18 19 −4 −12 RC Limbic lobe Parahippocampal gyrus, amygdala
62 −16 −39 1 −16 −38 1 LC Limbic lobe Parahippocampal gyrus, BA27
57 18 −36 1 16 −35 2 RC Limbic lobe Parahippocampal gyrus, BA27
158 56 −19 −8 51 −19 −4 RC Temporal lobe Superior temporal gyrus, BA22

LC = left cerebrum; RC = right cerebrum; BA = Brodmann area.

subject of our dataset, and the n features of each input vector are
the voxel intensity values of the GM of each subject. It happens
that the number of features/voxels is very large (about 6.5 ×
105), whereas the number of patterns in the training dataset is
limited to about 300. The linear-kernel SVM demonstrated to
be able to handle such disproportion between the number of
weights to be estimated and the training examples.

The classification error due to the random partitioning of
data into the train and test samples was estimated by repeating
the 20f-CV procedure 10 times and evaluating the correspond-
ing average AUC and its standard deviation (SD). As shown
in Figure 3, the discrimination performance of SVMs trained
with all features/voxels of the GM segments is equal to AUC
= (88.9 ± .5)% on the AD/CTRL sample, whereas it falls to
AUC = (67.8 ± .5)% on the MCI cohort.

The SVM-RFE procedure has been applied and the corre-
sponding AUC variation as a function of the number of retained
voxels is shown in Figure 3. The dotted lines above and below
the curve highlight the average (AUC ± SD) band.

It can be noticed that, whereas the highest AUC values in the
AD/CTRL discrimination are obtained when a large number of
GM voxels are retained for the classification, the performance
sensibly decreases when retaining less than 10,000 voxels. By
contrast, the trend of AUC in the MCI-C/MCI-NC SVM-RFE
classification is completely different. We remind that the MCI
cohort is used only as validation sample, ie, the SVM classifiers
trained on the AD/CTRL data are evaluated on the MCI cases,
which did not influence the training process. The reduction
in the number of retained voxels leads in this case to a slight
optimization of the classification performance, up to AUC =
(70.9 ± .9)%, obtained with 8,000 retained voxels.

(2) VBM-ROI classification

The SVM classifier was trained with the grey level infor-
mation encoded in the ROI identified by the VBM statistical
analysis (see Sec. VBM results). About 6 × 103 voxels were
significantly different in the AD versus CTRL statistical com-
parison. The SVM classification, according to the 20f-CV pro-
tocol repeated 10 times, achieved AUC = (85.4 ± .3)% in the
discrimination between AD and CTRL subjects. The validation
performance on the MCI dataset was less effective, with AUC =
(63.7 ± .2)%.

In order to optimize the discrimination performance, the
SVM-RFE procedure has been applied also in this case. The
behavior of AUC as a function of the number of retained vox-
els is shown in Figure 3 for both the AD/CTRL data and the
validation cohort of the MCI-C/MCI-NC subjects. It can be

noticed that despite the SVM-RFE procedure leads in this case
to a tiny improvement in the classification performance in both
the AD/CTRL and MCI-C/MCI-NC classification, in the latter
case the AUC values remain well below 70%.

(3) LONI-ROI classification

The hippocampus and parahippocampal gyrus ROIs ex-
tracted from the LPBA40 were coregistered to our images and
resliced to be used as masks to the segmented GM of our data
sample. The resulting LONI-ROI dataset consisted of vectors
of about 14 × 103 features, whose SVM classification provided
AUC = (88.1 ± .3)% on the AD/CTRL sample and AUC
= (65.6 ± .3)% on the MCI cohort. As shown in Figure 3, the
SVM-RFE procedure has almost no effect on the classification
performance.

Global versus local approaches and discrimination information
A direct comparison between the classification performance

of the whole-GM and the ROI-based methods is shown in Fig-
ure 3, which highlights two main results.

I. Before the RFE procedure is applied the whole-GM classifica-
tion can be directly compared with t-test filtering (VBM-ROI)
and prior knowledge-based method. The whole-GM classifica-
tion outperforms both the ROI-based methods, especially in
the prediction of the MCI outcome.
II. If the RFE is applied to all three datasets, the following
considerations hold: (i) the LONI-ROI approach shows similar
performance to the whole-GM method in AD versus CTRL
classification, even when classifying only with a few hundred
voxels, but its classification accuracy on MCI subjects is not
fully satisfactory; (ii) the restrictive choice of classifying only
the t-test filtered ROIs leads to a limited classification accuracy
on both the AD/CTRL and the MCI samples; (iii) the RFE
applied to the whole-GM data maximizes the performance in
MCI outcome prediction.

The AUC values obtained in the whole-GM SVM-RFE anal-
ysis considering 6,000 retained voxels (corresponding approx-
imately to the VBM ROI size) on the AD/CTRL and on the
MCI-C/MCI-NC samples correspond to the AUC shown in
Figure 4, where the average and SD band over the 10 repe-
tition of the 20f-CV are shown. The 80% sensitivity and 80%
specificity values characterize the AD/CTRL sample separa-
tion, whereas in the MCI classification the performance is lim-
ited to the 70% sensitivity and 62% specificity values.

The discrimination map can be visualized at each step of the
SVM-RFE procedure applied to the whole-GM data; in order
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Fig 3. SVM-RFE of whole-GM, VBM-ROI and LONI ROI analyses. The SVM training and testing is performed on the AD/CTRL sample in
20f-CV; an independent validation is carried out on the MCI-C/MCI-NC sample. The average values obtained over 10 repetitions of 20f-CV are
shown; the bands around the average curves correspond to two standard deviations.

Fig 4. ROC obtained in the SVM-RFE procedure on the AD/CTRL
and on the MCI-C/MCI-NC samples, considering 6000 retained vox-
els (corresponding approximately to the VBM ROI size). The curves
averaged over the ten repetition of the 20f-CV are shown, surrounded
by the ± SD band.

to directly compare it to the significant ROIs obtained with
the VBM analysis, it has been visualized at the operative point
corresponding to 6,000 retained voxels. The computed weight
vectors wr

k are averaged on r and k (where k = 1, . . . 20 refers
to the 20 different vectors obtained in the 20f-CV protocol,

and r = 1, . . . 10 refers to the 10 repetitions of the SVM-RFE
procedure). The discrimination map is shown in Figure 5, where
regions with positive and negative values of w are reported; it is
possible to distinguish brain regions where GM is either greater
or lower in the patient group with respect to the CTRL group.
Since the map was obtained by averaging the 200 different maps
generated in the 10 repetitions of the 20f-CV, it is highly stable
with respect to the training case variability. The discriminant
regions, therefore, reflect the underlying characteristics of the
AD pathology for the general population we analyzed.

The more extended and effective discriminant regions are
described in terms of coordinates in the MNI reference space
and in the standard space of Talairach and Tournoux in Table 3,
where the anatomical description of the corresponding brain ar-
eas is also provided. It can be noticed that the parahippocampal
gyrii and the superior temporal gyrus (BA22) have consistently
been found in the VBM statistical univariate analysis. However,
the discriminant information that allows the AD/CTRL separa-
tion appears not to be mainly localized in the Limbic lobes, as
highlighted by the VBM analysis in the VBM-ROI approach,
and as a-priori defined through the LONI-ROIs. By contrast,
many regions spread over the whole GM contribute to the two-
class separation. In addition, the blind validation of this dis-
crimination pattern on the MCI-C/MCI-NC sample has shown
enhanced discrimination ability with respect to the SVM classi-
fication of the VBM-ROIs and LONI-ROIs. The latter is a ma-
jor result of the present analysis suggesting that relevant infor-
mation to make predictions on the MCI population may reside
in regions of the brain other than those that are most relevant
when the AD pathology has already reached an advanced stage.
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Fig 5. Average discrimination map obtained by training on the AD/CTRL data with the 6000 top ranking SVM weights wi. The corresponding
discrimination average performance is area under the receiver operating characteristic curve (AUC) = (87.1 ± .6)% in 20f-CV repeated ten
times on AD/CTRL data, and AUC = (70.7 ± .9)% in independent validation on the MCI-C/MCI-NC cohort.

Correlation of Test Margin with MMSE

We analyzed the correlation of the SVM test margin with the
MMSE score for the AD/CTRL and the MCI-C/MCI-NC sam-
ples. The test margin has been computed for each subject
at the operative point corresponding to 6,000 retained vox-
els during the 10 repetitions of the SVM-RFE procedure. We
found the average Spearman’s rank correlation coefficient as:
ρ = .386 ± .008 (P < 10−3) for the AD/CTRL sample and
ρ = .189 ± .008 (P = 10−3) for the MCI sample. Figure 6 shows

the scatter plots between the SVM test margins and the MMSE
score for both data samples obtained in one of 10 repetitions
of the SVM classification. A small noise term has been added
to the MMSE score of each subject to make the distributions
more visible.

Conclusions and Discussion
We presented in this paper a comparison among three dif-
ferent implementations of SVM classifiers complemented by
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Table 3. Anatomical Structures Represented in the Discrimination Maps Obtained with the SVM-RFE Procedures Trained on Alzheimer’s
Disease/Control Voxel-Based Morphometry and Mild Cognitive Impairment data. These Regions are Visible in Figure 5.

Cluster Extent (Voxels) MNI Coordinates Talairach Coordinates Brain Region Localization

328 −25 −11 −31 −24 −9 −25 LC Limbic lobe Uncus BA 28
156 32 24 −32 29 23 −22 RC Frontal lobe Inferior frontal gyrus BA 47
212 5 −78 −20 4 −73 −21 RCl Posterior lobe Declive
141 26 36 −24 23 34 −14 RC Frontal lobe Middle frontal gyrus BA 11
224 22 −5 −16 20 −5 −10 RC Limbic lobe Parahippocampal gyrus Amygdala
179 −29 48 −17 −28 45 −7 LC Frontal lobe Middle frontal gyrus BA 11
159 55 −17 −8 50 −17 −4 RC Temporal lobe Superior temporal gyrus BA 22
148 −59 −28 −2 −56 −27 −1 LC Temporal lobe Middle temporal gyrus BA 21
168 −35 −16 −4 −33 −16 −1 LC Sub-lobar Lentiform nucleus Putamen
227 −24 −34 −4 −23 −33 −3 LC Limbic lobe Parahippocampal gyrus BA 27
148 37 −19 2 33 −20 5 RC Sub-lobar Claustrum
392 4 30 19 3 25 24 RC Limbic lobe Anterior cingulate BA 24
116 6 −33 13 4 −34 13 RC Sub-lobar Thalamus Pulvinar
175 −58 −20 17 −55 −22 17 LC Parietal lobe Postcentral gyrus BA 40
186 −5 −55 24 −6 −55 21 LC Limbic lobe Posterior cingulate BA 31
201 −3 50 30 −4 42 35 LC Frontal lobe Medial frontal gyrus BA 6
103 40 36 26 36 29 31 RC Frontal lobe Middle frontal gyrus BA 9
107 −51 −41 50 −49 −44 44 LC Parietal lobe Inferior parietal lobule BA 40
100 −3 −10 52 −4 −16 50 LC Frontal lobe Medial frontal gyrus BA 6
204 −29 7 59 −29 0 57 LC Frontal lobe Middle frontal gyrus BA 6
103 8 −53 68 5 −57 60 RC Parietal lobe Precuneus BA 7
107 18 −4 69 15 −12 66 RC Frontal lobe Superior frontal gyrus BA 6
100 −3 −13 72 −5 −20 67 LC Frontal lobe Medial frontal gyrus BA 6

LC = left cerebrum; RC = right cerebrum; RCL = right cerebellum; BA = Brodmann area; MNI = Montreal Neurological Institute.

Fig 6. Scatter plots reporting the MMSE score and SVM test margin obtained with SVM trained on AD/CTRL data: AD vs. CTRL (left) and
validation on MCI-C versus MCI-NC sample (right). A small noise term has been added to the MMSE score of each subject to make the
distributions more visible. The results obtained in one representative out of ten repetitions of the SVM classification are shown.

the RFE feature-selection method and applied to the following
data: (1) the whole-GM segmented out of brain MRI; (2) the
ROIs selected by t-test filtering, ie, those encoding statistically
significant between-group differences in AD versus CTRL com-
parison; and (3) the hippocampus and parahippocampal gyrus
ROI parceled according to the LPBA40.29

The GM data of either the whole brain (whole-GM method)
or the chosen ROIs (VBM-ROI and LONI-ROI methods) have
been classified by SVMs, implementing the RFE technique in
order to reduce the amount of input data and localize the rele-
vant image information. The global and the local SVM-based
techniques are both able to provide single-subject classification,

ie, a prediction on the possible conversion of MCI subjects into
AD.

The classification of the whole-GM voxels leads to bet-
ter performance in terms of AUC with respect to the
VBM-ROIs and LONI ROIs classification accuracy on the
AD/CTRL sample and especially in the prediction of MCI
conversion.

This result is confirmed even when the RFE is applied. In
this case the whole-GM approach demonstrated to achieve the
best accuracy in MCI-C/MCI-NC separation, ie, AUC = (70.9
± .9)% with 8,000 retained voxels. Moreover, the AUC val-
ues obtained in the prediction of the MCI outcome with the
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Table 4. Performance of Recently Developed Machine-Learning Approaches to Alzheimer’s Disease Diagnosis

Authors Publ. Year Total Number of Cases AD CTRL MCI-C MCI-NC Classification Sens. (%) Spec. (%) Accur. (%) AUC (%)

Casanova et al22 2011 98 49 49 – – AD/CTRL 82.9 90 85.7 –
Davatzikos et al26 2011 356 54 63 69 170 AD/CTRL – – – 73.4

MCI-C/MCI-NC – – – 66
Hinrichs et al24 2011 233 48 66 38 81 AD/CTRL 86.7 96.6 92.4 97.7

MCI-C/MCI-NC – – – 76.7
Cuingnet et al20 2011 509 137 118 106 148 AD/CTRL 81 95 – –

MCI-C/MCI-NC nbtc nbtc – –
Chincarini et al19 2011 635 144 189 136 166 AD/CTRL 89 94 – 97

MCI-C/MCI-NC 72 75 – 74
Cui et al23 2011 350 96 111 56 87 MCI-C/MCI-NC 96.4 48.3 67.1 79.6
Liu et al25 2012 783 198 229 225 131 AD/CTRL – – 90.8 94.7
Cho et al15 2012 491 128 160 72 131 AD/CTRL 82 93 – –

MCI-C/MCI-NC 63 76 – —
This paper 2013 635 144 189 136 166 AD/CTRL 80 80 80 87.1 ± .6

MCI-C/MCI-NC 70 62 66 70.7 ± .9

AD = Alzheimer’s disease; CTRL = healthy controls; MCI-C = mild cognitive impairment converted to AD; MCI-NC = MCI nonconverted to AD; AUC = area
under the receiver operating characteristic curve; nbtc = no better than chance (as stated by the authors).

whole-GM approach with SVM-RFE outperform the corre-
sponding AUC values obtained with the ROI-based methods
for a large range of voxels retained in the SVM-RFE procedure.

The data-driven feature selection operated by the RFE pro-
cedure leads to improved performance especially in the predic-
tion of the MCI outcome with the whole-GM approach. It has
to be noticed that in this case the data driving the feature selec-
tion belong to the AD/CTRL sample, whereas the classification
performance improvement refers to the MCI cohort, which is
used in this analysis only as validation set.

Despite the classification performance obtained on the MCI
population (AUC = 70.7%, sensitivity of 70% and specificity of
62%, and accuracy of 66%) being comparable to values found
in recent papers,15,19,20,22–26 as reported in Table 4, it cannot be
considered fully adequate to set up an MRI-based automated
tool for the early diagnosis of the AD. A direct comparison
is possible with the classification performance obtained in the
study by Chincarini et al,19 which was conducted on the same
dataset. The classification accuracy obtained in the present anal-
ysis are not as high as those achieved by Chincarini et al,19

especially in the AD/CTRL separation. This is related to the
fact that in the present study we did not carry out any strong
optimization of the classification methods, since its goal is the
comparison between whole-GM versus preselected ROI clas-
sification carried out by using quite straightforward and easily
accessible methods of MRI data analysis (eg, VBM preprocess-
ing with SPM tools and SVM analysis with available software
packages).

The main result is that the data-driven whole-GM approach
based on SVMs is able to find subtle relationships among dif-
ferent brain regions and thus achieve better classification per-
formance in the MCI conversion prediction with respect to
decisional systems based on the analysis of preselected ROIs.
Cuingnet et al20 and Chu et al21 have recently conducted similar
comparative analyses on ADNI data. In particular, Cuingnet
et al20 compared 10 different methods and concluded that
whole-brain methods are the most powerful in the AD/CTRL
classification. However, the authors stated that no classifier ob-

tained significantly better results than chance in the MCI/AD
conversion prediction. They also found out that feature selec-
tion methods did not improve the classification performance.
Chu et al21 confirmed that data-driven feature selection meth-
ods do not perform better than whole-brain approaches (if
the dataset is sufficiently populated) and highlighted that only
when prior knowledge is used to select ROI (hippocampus
and parahippocampal gyrus) it is possible to outperform the
whole-brain results. Instead, our work shows that the LONI-
ROI approach performs as well as the whole-GM method in
AD versus CTRL separation, but it is outperformed by the
whole-GM method in the MCI conversion prediction.

Contrary to the results by Cuingnet et al20 and Chu et al,21

we found that the data-driven SVM-RFE technique applied to
whole-GM data leads to a slight improvement of the classifica-
tion performance in the MCI-C/MCI-NC discrimination (data
considered only as validation set), with AUC = (70.7 ± .9)%.
In addition, in our analysis the whole-GM technique, with and
without RFE, outperforms the ROI-based ones.

In a recent study by Adaszewski et al28 the feature selection
was shown to improve the classification accuracy at early MCI
stages, whereas at a later stage the whole-brain methods are
superior. Our analysis on a dataset of subjects at a fixed time
point supports the results obtained by Adaszewski et al28 on
a longitudinal dataset of subjects; the feature selection SVM-
RFE improves the MCI classification accuracy, whereas it is
not necessary to implement it in the AD/CTRL separation, as
the performance is maximized by the whole-GM classification.

It also shows that the selected features/voxels in the SVM-
RFE method belong to highly distributed clusters in the brain,
in agreement with the work of Chu et al.21 The pattern of highly
discriminant voxels that maximizes the predictive power of AD
conversion on the MCI population is not confined in the Limbic
and Temporal lobes, involving instead a more extended and
complex circuit of GM regions.

In conclusion, the analysis reported in this paper shows that
higher accuracy in the prediction of MCI conversion to AD can
be achieved if the brain is considered as a whole. Several studies
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based on whole-brain or multiple-ROI analyses47–49 support the
atrophy of the whole brain as relevant AD biomarker, due to
its high capability to differentiate AD from CTRL subjects and
to track the disease progression.
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