
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 2, FEBRUARY 2014 201

Unsupervised Segmentation, Clustering, and
Groupwise Registration of Heterogeneous

Populations of Brain MR Images
Annemie Ribbens*, Jeroen Hermans, Frederik Maes, Senior Member, IEEE, Dirk Vandermeulen,

Paul Suetens, Member, IEEE, and Alzheimer’s Disease Neuroimaging Initiative

Abstract—Population analysis of brain morphology from mag-
netic resonance images contributes to the study and understanding
of neurological diseases. Such analysis typically involves segmen-
tation of a large set of images and comparisons of these segmenta-
tions between relevant subgroups of images (e.g., “normal” versus
“diseased”). The images of each subgroup are usually selected in
advance in a supervised way based on clinical knowledge. Their
segmentations are typically guided by one or more available at-
lases, assumed to be suitable for the images at hand. We present
a data-driven probabilistic framework that simultaneously per-
forms atlas-guided segmentation of a heterogeneous set of brain
MR images and clusters the images in homogeneous subgroups,
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while constructing separate probabilistic atlases for each cluster to
guide the segmentation. The main benefits of integrating segmen-
tation, clustering and atlas construction in a single framework are
that: 1) our method can handle images of a heterogeneous group
of subjects and automatically identifies homogeneous subgroups
in an unsupervised way with minimal prior knowledge, 2) the sub-
groups are formed by automatical detection of the relevant mor-
phological features based on the segmentation, 3) the atlases used
by our method are constructed from the images themselves and
optimally adapted for guiding the segmentation of each subgroup,
and 4) the probabilistic atlases represent the morphological pat-
tern that is specific for each subgroup and expose the groupwise
differences between different subgroups. We demonstrate the fea-
sibility of the proposed framework and evaluate its performance
with respect to image segmentation, clustering and atlas construc-
tion on simulated and real data sets including the publicly avail-
able BrainWeb and ADNI data. It is shown that combined seg-
mentation and atlas construction leads to improved segmentation
accuracy. Furthermore, it is demonstrated that the clusters gen-
erated by our unsupervised framework largely coincide with the
clinically determined subgroups in case of disease-specific differ-
ences in brain morphology and that the differences between the
cluster-specific atlases are in agreement with the expected disease-
specific patterns, indicating that ourmethod is capable of detecting
the different modes in a population. Our method can thus be seen
as a comprehensive image-driven population analysis framework
that can contribute to the detection of novel subgroups and distinc-
tive image features, potentially leading to new insights in the brain
development and disease.

Index Terms—Atlas stratification, image clustering, pattern
recognition, population analysis, registration, segmentation.

I. INTRODUCTION

D IAGNOSIS of neurological diseases based on standard-
ized clinical tests is often difficult due to the complex

spectrum of symptoms and the overlap of symptoms across dif-
ferent diseases [1]. However, many neurological diseases can be
characterized by their gradual modification of the cellular envi-
ronment resulting in macroscopic effects visible in brain mag-
netic resonance (MR) images such as changes in shape, size or
image intensity of anatomical structures. For instance, changes
in the basal ganglia have been linked to the neurodegenera-
tive hypothesis in Huntington’s disease (HD) [2], while eval-
uating the atrophy of temporal lobe structures can improve the
diagnostic accuracy of Alzheimer’s disease (AD) [3]. Analysis
of brain MR images can thus provide disease-related features
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which contribute to the classification of the images according
to disease [4].
Accurate segmentation of brain MR images according to

tissue types [white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF)] or to relevant anatomical structures (e.g.,
deep gray matter structures, ventricles, hippocampus, cortical
lobes, etc.) is often a first step to extract features useful for
the identification of disease-specific morphological differences
[3], [5]–[7]. However, manual segmentation is time consuming
and susceptible to inter- and intra-observer variability. Fully
automated techniques [8]–[16] may provide a solution. To cope
with the complex structure of the human brain, they typically
rely on prior knowledge in the form of (possibly multiple) brain
atlases, i.e., templates representing the mean brain anatomy of
the population of interest and possibly its variability. These at-
lases are spatially warped to each individual study image using
nonrigid atlas-to-image registration techniques. Segmentations
are then obtained by label propagation [13], [17] and, in case
of homogeneous regions, often further refined by combining
atlas-to-image registration with an intensity model [18], [19].
In [12] and [14], algorithms have been presented for tissue
segmentation which combine atlas-based registration with an
intensity-based segmentation model in one unified probabilistic
framework whereby both techniques cooperate resulting in an
improved segmentation (and registration) performance.
Several methods have been proposed for constructing a prob-

abilistic atlas from a group of images [20]–[28]. These methods
differ in the similarity measure and the deformation model used
for warping all images to a common space, as well as in the pos-
sible use of a target image to guide the groupwise registration,
whereby different strategies have been proposed tominimize the
impact of the choice of the target image on the final atlas in order
to obtain unbiased atlases. Many studies have emphasized the
influence of the atlas construction procedure on the performance
of atlas-guided segmentation [28]–[30], in particular the rela-
tion between atlas sharpness (or blurriness) and the flexibility
of the atlas-to-image registration. Moreover, also the choice of
an appropriate atlas template is important for an optimal seg-
mentation performance, given that the similarity between a par-
ticular atlas and an individual study image can be rather poor as
a single mean shape atlas is not sufficient to adequately summa-
rize the variability within the heterogeneous (e.g., healthy and
diseased) human population [31], [32]. To overcome problems
with heterogeneity in a population, some atlas construction ap-
proaches perform a groupwise registration without computing
a mean shape template [33], [34]. In [35], images are assigned
a weight such that images closer to the “real” population mean
get a larger contribution in the construction of the atlas. Another
possibility is to create atlases for the different modes in a het-
erogeneous population, i.e., disease-specific atlases [31], [32].
In case multiple atlases are available, each atlas in turn can be

used as prior for the segmentation [13], [36]. To cope with the
fact that some of the atlases may deviate substantially from the
image to be segmented, several methods for (locally) selecting
suitable atlases have been proposed [18], [19], [37]–[41].
However, the assumption that multiple atlases are already

available implies that the procedures used for atlas construc-
tion and atlas-guided segmentation are not necessarily adapted

to each other. Moreover, the criteria for atlas selection are typ-
ically chosen heuristically, although intuitively the atlas selec-
tion criterion should be identical to the criterion used to select
the images for atlas construction. This is not guaranteed when
atlas construction and atlas selection are treated separately. A
possible solution is to avoid the use of an atlas by segmenting
a homogeneous group of images simultaneously. Here, models
(priors) are built implicitly or explicitly by the segmentation al-
gorithm itself [42]–[44]. However, similar criteria as used for
atlas construction and selection, are still needed for defining
such homogeneous groups of images.
A possible solution for creating such homogeneous groups of

images is the use of classification methods based on image fea-
tures. As stated before, these image features are often based on
the segmentations of the images and the atlas-to-image regis-
trations [45]–[49]. Most classification approaches identify the
image features that are characteristic for the disease-specific
morphological differences in advance, based on a training set
of already classified images. Afterwards these features are used
for classifying a new set of images [45]–[49]. Themutual depen-
dency of image feature-based classification and identification of
discriminative image features induces the combination of both
aspects in one unified framework. Such methods, as proposed
in [50]–[52], try to model the heterogeneity of a population by
simultaneously searching for the major modes in the popula-
tion and their discriminating mode-specific image features, by
simultaneously creating an atlas template for each of the modes.
This process is called atlas stratification and avoids the need for
prior knowledge about the relevant features, and of the classi-
fications of any of the images. Consequently, such data-driven
algorithms cluster the images in subgroups based on differences
in morphology as detected in the image data itself. This can re-
sult in the discovery of new subgroups differing in unexpected
ways.
The mutual dependency between atlas-guided segmentation,

atlas construction and clustering induces the combination of all
these aspects in a unified framework, as proposed in this paper.
As such the individual methods can benefit from each other and
become more data-driven.
In this paper, we propose such a unified framework for

population analysis of large heterogeneous image data sets.
The framework searches different modes in brain morphology
within a large population of brain MR images and tries to model
them by constructing a probabilistic atlas for each mode (atlas
stratification). The duality between the need of a segmented
set of brain MR images to construct probabilistic atlases and
atlas-guided brain segmentation techniques requiring well
adapted atlases, leads to including a segmentation procedure
within the framework, which is the main advantage of our
approach compared to related methods [50], [52]. Hence,
our proposed model combines and integrates segmentation,
clustering, groupwise registration and atlas construction within
one framework such that all aspects can benefit from one an-
other. In particular, such combinational approach improves the
segmentation performance as atlases are optimally adapted to
the images to be segmented, specifically as the same selection
criteria as well as the same flexibility in registration model
are used in both atlas construction and segmentation. The
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atlas stratification is also helped by the integrated segmen-
tation process as problems with image artifacts are avoided
and as the segmentations are consistent with the constructed
atlases. The combinational approach also results in a minimal
requirement of prior knowledge what makes the framework
more data-driven instead of hypothesis-driven. Therefore, we
hypothesize that such comprehensive data-driven framework
could contribute to getting new insights in neurological diseases
and their development and can therefore become an important
tool in the understanding and analysis of structural changes due
to pathology or aging.
The paper is organized as follows. In Section II, our unified

probabilistic framework is introduced as a maximum a poste-
riori (MAP) problem and the optimization based on an expec-
tation maximization algorithm is described. Furthermore, the
framework is situated in relation to the current state-of-the-art,
demonstrating the generality of our framework to other pub-
lished work. Section III describes the experiments and data sets
used for validation of the segmentation and clustering perfor-
mance of our framework, and of the quality of the obtained
atlases in terms of sharpness and stratification, i.e., the clear
visualization by the atlases of apparent disease-specific mor-
phology. The results are reported in Section IV. The paper con-
cludes with a discussion concerning the advantages and draw-
backs of the proposed method as well as an outlook for future
work (Section V).

II. METHODS

In this section, we describe our probabilistic model for si-
multaneous segmentation of all images of a heterogeneous data
set and clustering of the images into different homogeneous
subgroups. The model incorporates the iterative construction
of a probabilistic brain atlas for each cluster and the align-
ment of each atlas to all of the images, which guide their
segmentation and clustering. A schematic overview of our
approach is given in Fig. 1. The proposed framework is called
SPARC as it iteratively estimates the Segmentation of the
images, the Probabilistic Atlases per cluster, the atlas-to-image
Registrations and the Cluster memberships of each image. We
first describe an unsupervised version of our framework in
Sections II-A to II-D. Different strategies for (semi-)supervised
image clustering based on prior information that might be avail-
able, are described in Section II-E. Section II-F explains the
relation of the proposed method to the current state-of-the-art.

A. Model Assumptions

Given a heterogeneous set of brain MR images, we try to find
the different modes (clusters) in a population. Different clusters
in the data set can correspond to the presence or absence of dis-
ease, different stages or types of disease, different age groups,
etc. We wish to cluster the images based on morphological fea-
tures derived by segmentation. In this paper, the segmentation
focuses on the three major brain tissue classes, i.e., white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). How-
ever, the method will be generally formulated such that more
tissue classes can be estimated, e.g., to separate internal and
external CSF. Thereto, we define a model that tries to explain

Fig. 1. Schematic overview of the proposed framework for joint segmentation
and atlas stratification of a heterogeneous group of images. (1) The images are
segmented based on a Gaussian mixture model on the intensities guided by
cluster-specific atlases (E-step). The images are clustered based on the simi-
larity between the segmentations and the cluster-specific atlases (E-step).
(2) Cluster-specific atlases are constructed from the segmentations based on
the cluster memberships (M-step). (3) The atlases are deformed towards the
images using segmentation-based registration (M-step).

the intensities of all images (i.e., observed variables) based on
knowledge of the segmentations and cluster memberships. Op-
timization of this model will then result in an estimation of the
tissue segmentations and the cluster memberships.
Let be the indices for the images and

for the voxels in an individual image (assuming all
images to have the same number of voxels for notational sim-
plicity). Furthermore, let be the indices for
the tissue classes of an image and let be the
indices for the clusters (modes) in the heterogeneous data set
of brain MR images. The number of tissue classes and the
number of clusters are fixed by the user. The tissue class
labels of all voxels are denoted as with

if voxel in image has tissue class and oth-
erwise. The cluster memberships are spec-
ified as if voxel in image belongs to cluster and

otherwise. The cluster memberships are speci-
fied voxel-wisely instead of assigning each image globally to a
single cluster. This choice is made as it takes into account that
different regions of the brain can evolve differently, e.g., not all
regions of the brain will be affected in the same way by the neu-
rological disease. Hence, the cluster memberships highlight
the spatial locations of the features that discriminate between the
clusters, e.g., regions specifically affected by disease or aging.
We specify now our model and make some independency as-

sumptions. We assume a Gaussian mixture model on the inten-
sities of each image including bias field correction analogously
to several models in literature [8], [9], [16]. For each image ,
let the image intensities of each tissue type be described by
a normal distribution with parameters , i.e.,
the mean and variance respectively. Furthermore, we assume
that the intensities are corrupted by a smoothly varying mul-
tiplicative effect to account for the bias field induced by MR
field inhomogeneities. We model the bias field as a linear com-
bination of smooth basis functions, with parameters repre-
senting the set of parameters of the bias field for image . For
mathematical stability, we perform a log-transformation of the
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data to make the bias additive and assume that the log-trans-
formed image intensities are normally distributed. Denoting the
log-transformed image intensities as , then the
probability density function on the intensities is given by the
following Gaussian mixture model:

(1)

with the bias field evaluated in voxel of image
with spatial coordinates .
The segmentation is guided by a prior probability for the class

label of voxel in image . This prior distribution is ob-
tained from the probabilistic atlas of cluster to which this voxel
belongs:

(2)

with the probabilistic atlas for tissue class and cluster
. The parameter denotes the deformation field rep-
resenting the atlas -to-image registration. We denote

for each image and each
cluster with the displacement of voxel in image to
the space of the atlas of cluster . Assuming all voxels and all
images to be independent, the prior on the segmentations is
then given by

(3)

In addition to the diffeomorphic regularizer embedded in the
registration procedure (see further), we define a prior distribu-
tion on the atlas-to-image registrations :

(4)

i.e., a Gaussian distribution with mean and variance .
The underlying assumption is that we expect the individual
atlas-to-image registrations within one cluster to be close
to a cluster-specific mean registration . This mean
registration is the groupwise registration between the atlas of
cluster and all images belonging to that cluster. In case the
atlas of cluster is in minimum deformation space, i.e., the
space where a minimum amount of displacement is necessary
to transform the atlas to all of the images individually [21], [26],
then equals the identity transform. The Gaussian distribu-
tion describes the -norm between an individual and the mean

registration of a cluster . The parameter is a weighting term
representing the (voxelwise and cluster-specific) variability
of the individual atlas-to-image deformations around the
cluster-specific mean deformation .
The prior probability on the tissue class labels and the reg-

istrations requires knowledge of the cluster memberships .
In this unsupervised version of the framework, we aim at dis-
covering relevant clusters within a heterogeneous population of
images based on the image data itself. Without specific prior
knowledge of the regions that discriminate between the different
clusters (i.e., the disease-specific patterns), we assume a priori
that the overall morphology changes (i.e., the cluster-specific
differences are present in all voxels) and that all voxels of the
same image are likely to belong to the same cluster. Hence, the
prior distribution on the cluster memberships is formulated
as a uniform distribution over the voxels within each image

(5)

Depending on the research question, more specific assumptions
concerning the prior probability of the cluster memberships can
be made. Some examples are given in Section II-E.

B. Maximum a Posteriori Problem

Our model with parameters ,
needs to be fitted to the observed image intensities , through
the following maximum a posteriori (MAP) problem:

(6)

Optimal estimation of the model parameters is facilitated by
knowledge of the class labels and cluster memberships . In
turn, estimation of the class labels and cluster memberships
is straightforward once the model parameters are known.

Therefore, the MAP problem is rewritten as

(7)

by introducing and as latent (hidden) variables and with

(8)

making use of the model assumptions defined in Section II-A.
To solve (7), we derive a lower bound of the log-likelihood func-
tion using Jensen’s inequality

(9)
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with denoting an estimate for the parameter set . This
lower bound can be optimized using the expectation maximiza-
tion (EM) algorithm which alternates between an expectation
step, inferring the posterior distribution over the hidden vari-
ables given the data and the model parameters, and a maximiza-
tion step, in which the expectation of the log-likelihood function
is maximized with respect to the parameters .

C. Expectation Step

Based on (9) and the assumptions stated in Section II-A, the
expectation of the log-likelihood function is derived as

(10)

making use of (8) and with the joint pos-
terior probability in voxel of image of the class label and
the cluster membership given the (log-transformed) intensities
and the current estimate of the model parameters (with
indexing the EM iterations). An expression for the posterior

can be obtained using Bayes’ rule

(11)

with

(12)

following (8). The posterior can now be rewritten as

(13)

The marginal posteriors of the class labels and the cluster mem-
berships respectively can be obtained by integration of the joint
posterior, i.e.,

(14)

and

(15)

From (13), it can be seen that are the probabilistic tissue
segmentations of image obtained by the conventional approach
[12], [15] of combining the Gaussian mixture model on the
(bias-field corrected) intensities with prior information derived
from an atlas, namely the cluster-specific atlas . Multiple
such segmentations for image are computed using the different
atlases of all clusters and these are subsequently combined by
a weighted sum to obtain the final segmentation for image , i.e.,
the probabilities of voxel in image to belong to class
[see (14)].
The weights are the probabilistic voxelwise cluster mem-

berships, i.e., the probability of voxel in image to belong to
cluster . From (15) and (12), it follows that the cluster mem-
berships are determined by three aspects. The first aspect is
the amount of deformation needed to transform the atlas to the
image. The second aspect is the likelihood of the image data
based on the intensity model given the deformed atlas tem-
plates. This can be interpreted as a similarity measure between
atlas and image as it expresses the overlap between a segmenta-
tion purely based on the intensity model and the segmentation
based on the deformed atlas. The third aspect that influences
the voxelwise cluster memberships is the prior model that is as-
sumed. The prior distribution on the cluster memberships al-
lows to implement various types of spatial regularization on the
final estimation of the voxelwise cluster memberships. It can
guide the cluster memberships to be locally or globally similar
by making the clustering more region-based or image-based in-
stead of voxel-based. Some examples of such clustering priors
are given in Section II-E.
Finally, a probabilistic cluster membership per image can

be obtained by averaging the voxelwise cluster memberships
per image

(16)

Each image can thus be assigned to a single cluster
, that is hypothesized to indicate the disease

state or stage of the corresponding subject.

D. Maximization Step

In the maximization step of the EM algorithm, the -func-
tion, given the posterior distribution for the hidden variables
and , is optimized with respect to the model param-

eters , resulting in new parameter estimates . As
the probability density function on the image intensities

is independent of the cluster member-
ships and as [see (14)], the
Gaussian mixture parameters and the bias field parameters
are determined in a completely similar way as in [8].
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A coordinate ascent strategy is used to update the atlases ,
the atlas-to-image registrations and the groupwise regis-
trations , as all these parameters depend on each other. We
start with updating the atlases and the groupwise registrations,
making use of the atlas-to-image registrations of the previous
iteration. The atlases can then be determined as follows:

with indexing the voxels in the atlas space. For each voxel
in image at location , is the corresponding
voxel in the atlas space. The following formulation for the atlas
is then found:

(17)
with the mapping of the atlas voxels onto image ,
with Jac the Jacobian and the determinant. Evaluation of
(17) assumes a suitable scheme for interpolation of and
at the transformed locations . A detailed derivation can
be found in Appendix A.
The atlases are thus constructed as the weighted sum of the

segmentations of the images deformed towards the atlas space.
The weights are determined by the (voxelwise) cluster mem-
bership probabilities. Moreover, the atlas construction implies
a modulation step, i.e., a scaling of the deformed segmentation
maps with the Jacobian determinant to preserve their local prob-
abilistic volumes. Due to the fact that the cluster memberships
are determined voxelwisely, the set of images that contributes
to the construction of an atlas is locally varying. In regions with
large inter-cluster differences, a small set of locally similar im-
ages will be selected for each cluster, while in case of small
inter-cluster differences, many images will contribute to the at-
lases as the cluster memberships will be rather equal between
images and between clusters. This results in a better capturing
of the inter-subject variability as a larger data set is available.
For the groupwise deformation field , we find

(18)

i.e., is constructed as the weighted sum of the deformations
corresponding to the individual atlas-to-image registrations.
The weights are given by the probabilistic cluster memberships.
Next, the atlas-to-image registrations can be updated.

We find the following derivative:

(19)

It is clear that there is no closed form solution for such that
, but the derivative provides a direction for itera-

tively updating in order to maximize the -function. Some
form of regularization is required to impose spatial smoothness
for obtaining a physically acceptable deformation field. To this
end, we interpret the derivative as a force field that

we use to drive the diffeomorphic demons registration approach
of [53] (although several other regularizers can be chosen in-
stead). The force field in (19) is modulated by , such that
image voxels with low probability to belong to cluster con-
tribute only little to driving the registration of this image to that
particular cluster.
The parameter of the clustering prior is updated as

follows:

(20)

which equals the mean of the voxelwise cluster membership
probabilities per image, and corresponds to the probabilistic as-
signment of an image to a cluster [see (16)]. Finally, the pa-
rameter of the registration prior is not updated, to avoid that
the MAP problem becomes underdetermined as the parameter
is only dependent on two other parameters, i.e., and .
Specific choices for are suggested in Section III.

E. Clustering Priors

From (15), it follows that the cluster memberships are deter-
mined by the similarity between atlas and intensity model, the
amount of deformation needed for atlas-to-image registration
and a prior model on the cluster memberships (Section II-C).
This prior model allows to make the clustering more or less su-
pervised. In Section II-A, we specified the prior on the cluster
memberships to be uniform for each image [see (5)]. The param-
eters of the prior model (i.e., ) as well as the cluster member-
ships themselves are iteratively estimated from the data itself
as described above, such that the clustering is completely un-
supervised. However, in case a fixed binary prior is used, i.e.,

for some and zero otherwise, the frame-
work becomes completely supervised by assigning each image
a priori to a single fixed subgroup . Using such a prior is
comparable to executing the framework multiple times, i.e., on
each of the predefined subgroups separately, using each time one
cluster. In case fixed nonbinary prior probabilities are spec-
ified for some of the images, the algorithm becomes semisuper-
vised. The final cluster memberships for each image may differ
from the initial clustering as specified by the prior, depending on
the agreement between atlas and intensity model and the amount
of deformation needed to map the atlas onto the image.
Both the unsupervised and the supervised approach have their

advantages. Unsupervised clustering allows to detect new sub-
groups differing in unexpected ways which could contribute
to gaining new insights in neurological disease(s) as no prior
hypothesis is assumed. Moreover, as only image features are
considered during image clustering and atlas construction, the
atlases are driven towards optimally representing the images
under study and their variability, which in turn improves the seg-
mentation performance. On the other hand, supervised methods
are often better suited for specific clinical research questions
as in unsupervised methods the control over the representation
of the clinical subgroups is restricted to the initialization of the
framework (see further).
We now suggest a semisupervised approach inwhich the clus-

tering still relies to a large extent on the image data itself, but
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takes prior information into account as well (in a more intel-
ligent way compared to fixing the uniform distribution to pre-
specified values). Two types of prior information are considered
here. A first type concerns prior knowledge about the cluster
memberships of some of the images. This prior knowledge can
be based on clinical information and demographics or on ex-
plicit knowledge about the brain morphology. In this case, we
expect images with similar properties to belong to the same
cluster. A second type of prior information, denoted as spatial
prior information, is the availability of a hypothesis about the
regions where morphological features can be found, indicative
for a certain disease state or stage. For instance, hippocampal
atrophy has been proven to be indicative for patients suffering
from AD (e.g., [3]). Focussing on the hippocampal region when
assigning the cluster memberships would therefore be beneficial
when the aim is to separate AD patients from patients suffering
from other dementias. Such a regional focus in the voxelwise
clustering performed by our framework can be achieved by as-
signing a larger weight to this region and less to other regions
when updating the clustering prior.
Both types of prior information can be specified in the form

of must-link and cannot-link constraints, which can be modeled
by a Markov Random field (MRF) on the cluster memberships
[54]. Such MRF prior is defined by the Gibbs distribution

(21)
with the MRF parameters, the cluster memberships of
voxels in a neighborhood of voxel of image and
the normalization constant. The function is an energy func-
tion with parameters that is defined as the sum of clique po-
tentials over the neighborhood , and is generally defined by
the following Potts model:

(22)

with the neighborhood of voxel in image and
the MRF parameters describing the

transition energy between cluster memberships and specified
for voxel in image in relation to voxel in image . The way
the neighborhoods and MRF parameters are defined, is depen-
dent on the available prior knowledge, as they allow stimulating
or penalizing voxels/images to belong to the same cluster and/or
emphasizing the dependency of the cluster memberships of cer-
tain voxels on those of other voxels/regions. A specific example
is described in the experiments (Section III). A particular case of
such aMRF on the cluster memberships, has also been proposed
in [41], to stimulate local similarity (spatially in the image) in
the selection of a training image for label fusion.
The calculation of the -function by the EM algorithm

requires all possible realizations of the MRF, both in the ex-
pectation step (posterior) and maximization step (update of
the prior distribution). However, this is computationally not
feasible. Therefore, we use the mean field approximation [55],
[56] to estimate the prior distribution on the cluster member-
ships, resulting in the following expression for iteration
of the EM algorithm:

with the probabilistic estimation of the cluster member-
ships in the neighborhood of voxel in image , i.e.,

, in the previous iteration of the EM algorithm.

F. Model Variations Versus Related Work

In this section, we illustrate the generality of our framework
by showing how the framework described above reduces to
some well known methods in the literature under certain sim-
plifying assumptions.
• The method of [15] combines atlas-based image segmen-
tation with atlas-to-image registration. Similar approaches
are presented in [12], [14]. In our framework, this comes
down to considering only one image, using a given atlas
without updating it during iterations and specifying only
one cluster. The expected log-likelihood of our framework
reduces to

(23)

which corresponds indeed to the one given in [15]. If
one assumes that the atlas and the image are well enough
aligned a priori, the atlas-to-image registration can also
be left out from the framework, resulting in the model
proposed in [8].

• In [43], a method is proposed to simultaneously segment a
homogeneous data set of brain MR images (in atlas space)
while performing probabilistic atlas construction. The seg-
mentation is obtained based on a Gaussian mixture model
and the estimated atlas. In terms of our framework, the ex-
pected loglikelihood function can be written as

(24)

Hence, the method comes down to a simplified version
of our framework, whereby the images are assumed to
be homogeneous (i.e., only a single cluster is considered)
and no bias field correction is performed. Another funda-
mental difference, is that in our case, the segmentations
are performed in the space of the images. In the method of
[43], the parameter equals an image-to-atlas registration,
compared to being an atlas-to-image registration in the
method proposed in our framework.

• The method of [52] considers a heterogeneous set of im-
ages which one wants to split in homogeneous clusters
whereby the segmentations are of no interest. In our frame-
work, this means that the only hidden variables are the
cluster memberships. In [52], one therefore assumes that
the intensities of all images belonging to a certain cluster
are generated, per voxel, from aGaussian distribution, with
the mean equal to a mean intensity template of that cluster.
The method also includes a warping between the atlases
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and each of the images to correctly indicate the corre-
sponding voxels. The expected log-likelihood equals

(25)

with the Gaussian distribution. In [52],
the cluster memberships are determined per image instead
of per voxel as in our approach.

• Our framework is also closely related to multi-atlas seg-
mentation methods. As described in Section II-C, the
segmentation algorithm within our framework comes
down to a local-selection multi-atlas technique combined
with an intensity model. Therefore, our segmentation
method follows state-of-the-art segmentation techniques
such as [18], [19], [37]–[41], [57] that apply (local) atlas
selection to cope with possibly substantial differences
between the atlases and the images to be segmented.
While most of these proposed segmentation techniques
are formulated rather heuristically, the method of [41]
uses a probabilistic framework to generally describe such
segmentation methods based on multiple (local) atlas
selection, comparable as in our approach. Some of the
proposed (local) atlas selection techniques used for the
segmentation of homogeneous regions (e.g., [18], [19])
are further improved by the use of an explicit intensity
model, which is also included in our framework. However,
we follow the approach of [12], [14], [15], developed for
atlas-guided segmentation using a single atlas, which
simultaneously optimize the intensity model and the
atlas-to-image registration as this has proven to result in
improved segmentation (and registration) results. In con-
trast to most state-of-the-art methods, the weights used by
our method to fuse the segmentations are not determined
heuristically, but result directly from our probabilistic
model. These weights are the cluster membership
probabilities, i.e., the probability of voxel in image to
belong to cluster . Moreover, the same weights are used
by our method when constructing the atlases as a weighted
average of the segmentations.

• Finally, from Section II-D it follows that the atlases of our
framework are constructed in a similar way as in [25], [27].
Applying the groupwise registrations to the atlases results
in a similar method as in [21] where a minimal deforma-
tion atlas is constructed. However, these methods are de-
veloped for single atlas construction. Our algorithm con-
siders multiple clusters which has the advantage that im-
ages deviating from the group mean are given a smaller
weight, such that our atlases are better representations of
the true group means (of each cluster).

G. Initialization

All images are first globally normalized in a common coordi-
nate frame by affine registration of all images to a certain refer-
ence image using maximization of mutual information [58]. In

this paper, we use the ICBM452 atlas in the MNI standard coor-
dinate space as [59]. Furthermore, brain masking of all images is
preferred as it avoids that non-brain voxels are erroneously clas-
sified as brain tissue due to similarities in intensity (e.g., dura
and GM) what can also influence our intensity model. Brain
masking can be achieved for instance using a brain extraction
tool such as [60], but for the images in our experiments a brain
mask was already available.
The EM algorithm must be initialized by providing an initial

estimation of the model parameters or of the hidden variables,
i.e., the segmentation and cluster memberships. In this work, ini-
tial values for the model parameters are provided. Initial values
for the Gaussian mixture parameters of the intensity model
are estimated in the same way as within the framework, with the
required image segmentation replaced by the probabilistic
tissue class maps of the ICBM452 atlas [59] available in SPM
(http://www.fil.ion.ucl.ac.uk/spm/). The bias field coefficients
are initially all set to zero and all registrations are initially

set to the identity transformation. All parameters of the uniform
prior distribution on the cluster memberships are initialized as
the inverse of the total number of clusters, i.e.,
for all . Finally, the parameters , i.e., the cluster-specific
atlases, are initialized from a crude segmentation of a subset
of the images. These segmentations are obtained by applying
the Gaussian mixture model to the image intensities (no atlas
is used) using the initial estimations of the Gaussian mixture
parameters (see above). Subsequently initial estimates of the at-
lases are obtained as weighted means of these roughly seg-
mented images [analogously to (17)]. The subset of images and
the weights used when constructing the initial atlases for each
cluster are randomly selected or determined based on (clinical)
prior knowledge, depending on the specific research question.
We refer to the experiments for specific choices.

H. Implementation Details

We implemented the method in MATLAB (The Mathworks
Inc., Natick, MA, USA). To reduce the calculation time, time-
consuming parts are implemented in C++ and MATLAB’s par-
allel toolbox is used. The implementation consists of four main
parts: the intensity model, the atlas construction, the atlas-to-
image registration and the update of the prior on the cluster
memberships.
For the intensity model, analogously to [8], the number of

tissue classes has to be fixed in advance. In this work, the
number of tissue classes is fixed to three (WM, GM, CSF) as-
suming that the available brain masks are sufficiently accurate
to rule out background and non-brain voxels. Furthermore, two
Gaussians per tissue class and a 3-D fourth order polynomial
bias field model are used, as in [8].
For updating the atlases and groupwise registrations, we

follow the formulations of (17) and (20). To update the atlases,
the inverse of the registrations is required. However, in this
paper, we perform a forward image-to-atlas registration in-
stead as discussed in Appendix A. Furthermore, the atlases can
be brought to the minimal deformation space [21], i.e., the space
where the least amount of deformation is needed to transform
the atlas to all images in the set, by applying the cluster-specific
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Fig. 2. Exp. 1: (a)–(c): Synthetic images each generated from a different template with segmentation of the inner structure by SPARC indicated in blue. (d)–(e) Bias
field of an image: ground truth and estimation by SPARC. (f) Voxelwise cluster memberships of an image generated from cluster 3 [i.e., image of (c)] to belong to
cluster 1. (g)–(j) Probabilistic atlas for the inner structure: initialization and final atlases for cluster 1, 2, and 3 [blue contour = ground truth, green = SPARC (after
binairizing the probabilistic map)]. (k)–(l): Poor performance in case is chosen (k) too small (insufficient atlas deformation resulting in poor segmentation:
blue = segmentation, red = deformed atlas, green = original atlas) or (l) too large (poor clustering resulting in a fuzzy atlas).

groupwise deformations onto the corresponding proba-
bilistic atlas . In practice, the groupwise registration is
enforced to be the identity transformation per cluster when
updating the individual atlas-to-image registrations, aiming to
construct the atlas directly in the minimal deformation space.
However, to correct for deviations from this constraint to keep
fixed to the identity transform, the groupwise registrations
are computed anyway in each iteration of the EM algorithm

according to (18) and directly applied on the constructed atlases
. The individual atlas-to-image registrations are adapted

accordingly as .
To update with respect to the registrations , we run

five iterations of [53] in each EM iteration using the force field
of (19). To equalize the magnitude of the force fields between
different images with respect to a particular cluster, each force
field is normalized by a factor [see (16)]. An initial value
of four voxels was empirically chosen for the variance of the
Gaussian kernel used by this method to smooth subsequent up-
dates of the deformation field, but we reduce this value in a sys-
tematic way each time the relative increase in the loglikelihood
[see (10)] drops below 0.5%. In this way, the registration is first
performed at a more global scale and gradually more locally as
the method converges, what corresponds to a kind of multi-res-
olution approach.
Finally, the EM framework is stopped when the expected log-

likelihood function [see (10)] no longer increases significantly
(relative change smaller than 0.1%) or when the total number of
EM iterations exceeds 350.

III. DATA SETS AND EXPERIMENTS

Three different aspects of the proposed method need to be
validated: the clustering performance, the segmentation perfor-
mance, and the quality of the constructed probabilistic atlases.
Experiment 1 provides a proof-of-concept of the method based

on synthetic images. Experiment 2 focuses on combined seg-
mentation and atlas construction making use of the publicly
available BrainWeb data set. Experiment 3 validates the clus-
tering performance of our algorithm on a clinical data set of
Huntington’s disease and normal control subjects. Finally, ex-
periment 4 involves a global evaluation of the framework on
the publicly available ADNI data set, with a focus on the voxel-
wise cluster memberships and providing a practical example of
the benefits of combined segmentation and atlas stratification.

A. Experiment 1

To provide a proof-of-concept of our method, we first apply
our method to a heterogeneous group of simulated 2-D images
with known ground truth for the segmentation of the images,
their cluster memberships and the cluster-specific atlases. The
test images are generated from three templates containing three
structures (and background) mimicking three different tissue
classes as illustrated in Fig. 2(a), (b), and (c). The first template
contains a ring with an inscribed ring and in this second ring
an inscribed circle (radius ). In the second template, the inner
circle is elongated along the vertical axis (long axis ) forming
an vertical ellipse and in the third template, the inner circle is
elongated along the horizontal axis (long axis ) forming a hor-
izontal ellipse. The test images are generated by varying the ra-
dius of the inner circle (in case of template 1) or the length of the
long axis of the inner ellipse (in case of templates 2 and 3) by
sampling these from a Gaussian distribution with mean equal
to and , respectively. The intensities of the different struc-
tures in each test image are chosen to be similar to WM (inner
circle ellipse), GM (inner ring) and CSF (outermost ring) in a
brain MR image, including 3% noise following a Rayleigh dis-
tribution similarly as in [61]. Also a smoothly varying multi-
plicative bias field modeled as a fourth order polynomial is in-
cluded, with values ranging between approximately 0.9 and 1.1
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[e.g., Fig. 2(d)]. A total of 150 test images are generated this
way (i.e., 50 per template).
Our unsupervised framework is applied to this data set with

and . The modes (clusters) in the popu-
lation are expected to follow the morphology induced by the
generating templates, while the atlases are expected to coin-
cide with the templates. The segmentations are compared with
their ground truth by the Dice overlap measure of their inner
circle/ellipses. The atlases obtained for each cluster are com-
pared with their ground truth, i.e., the template corresponding to
that cluster, after binarizing the atlases by assigning each pixel
in the atlas to its most likely tissue class. The clustering is eval-
uated by the percentage of images that is assigned to the cor-
rect cluster, i.e., the cluster corresponding to the template from
which the image was generated. However, an incorrectly clus-
tered image can have a cluster membership close to 0.5. Also,
even if all images have been assigned to the correct cluster, the
separation between both clusters can be limited as all cluster
membership probabilities can be rather close to 0.5. Therefore,
we also measure the clustering accuracy by the following inner
product (as also used in [52]):

(26)

with the ground truth cluster memberships. To get insight in
the influence of the parameter of the Gaussian prior distribu-
tion imposed on the atlas-to-image registrations, the experiment
is performed with different values for this parameter, namely

, 3, 5, 8, and , i.e., no prior on the registrations. All
experiments are repeated five times, each time using a different
set of 150 test images, and the average performance over these
five runs is reported.

B. Experiment 2

The purpose of this experiment is to investigate the benefits
of simultaneous segmentation and atlas construction over doing
both processes separately and sequentially. We apply our frame-
work to the publicly available BrainWeb data set [61] which
consists of 20 simulated MR images representing normal brains
with ground truths for the major brain tissue classes (WM and
GM). We run our algorithm using only one cluster
such that the prior distribution on the cluster memberships

equals one ( for , ). With only
one cluster, the prior on the atlas-to-image registrations [see
(4)] reduces to an additional regularization of the deformation
fields. As all images are from normal brains, this prior is not
useful here. Hence, for fair comparison with other atlas-guided
methods (see below), we remove this prior by setting to be
in this experiment.
To investigate the benefits of combined segmentation and

atlas construction, we compare SPARC with a simplified ver-
sion of our algorithm (denoted as SPARC-a) whereby the atlas
itself is not updated, but a previously constructed atlas is used
instead, which is obtained by first running the full version of
SPARC on the same images. This comes down to sequential
atlas construction and segmentation, whereby segmentation is
performed by simultaneously estimating the Gaussian mixture

model parameters and the atlas-to-image registrations similar
to [12] (see Section II-F). To avoid the introduction of bias to-
wards the atlas in the sequential algorithm, as well as to make
a fair comparison with state-of-the-art techniques using prede-
fined prior information, we also run SPARC-a with a different
atlas, i.e., not generated by our method itself, namely the atlas
available from SPM8b (http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm8b/). We denote these results as SPARC-a-spm.
To further assess the quality of the segmentations ob-

tained from SPARC, we compare our results with two
widely used single atlas segmentation tools, i.e., SPM8b
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8b/, [12]) and
FSL (http://www.fmrib.ox.ac.uk/fsl/fsl/, [9]). The segmenta-
tions obtained by SPARC are compared to the other methods in
this experiment by paired t-tests of their Dice overlap measures
with the ground truth segmentations.

C. Experiment 3

The goal of this experiment is to evaluate the clustering
performance of our framework on a heterogeneous set of clin-
ical brain MR images. To this end, we try to separate between
normal subjects and patients with neurodegenerative disease by
applying our method on 3-D T1-weighted MR images of eight
clinically confirmed Huntington’s disease (HD) patients (two
males, six females, age between 33–57 years with the average
age 46 year) and eight normal controls (two males, six females,
age between 28–48 years with the average age 38 years) [62].
All images were acquired on the same 3T MRI scanner (Philips
Achieva) at the radiology department of the university hospital
of our institute (UZ Gasthuisberg, Leuven, Belgium), with
dimensions of and voxel sizes around 1 .
Manual segmentations are available for nucleus caudatus for
all images. We run our algorithm using two clusters
and set empirically to 4 mm (based on an assessment of
the inter-subject variance of the atlas-to-image deformations
in experiment 2). We initialize the atlases as described in
Section II-G, i.e., as the weighted sum of crude segmentations
of all the images, whereby for each cluster one image of the set
of 16 images is randomly selected which gets a larger weight
than all others, i.e., a weight of 2/17 for the selected image
and 1/17 for all other images respectively. We evaluate the
clustering performance of our method by comparing with the
clinical diagnosis and by assessing the ability of our method
to pick up morphological features that are relevant for HD.
Thereto, we relate the clustering obtained from SPARC to the
(dis)similarity in morphology of the nucleus caudatus between
the images, as nucleus caudatus has been indicated as a region
largely affected by HD [2], [62]. We quantify the (dis)similarity
by the Dice overlap measure between the available manual
segmentations for nucleus caudatus of all images. Furthermore,
the experiment contributes to assessing the segmentation per-
formance of our framework on clinical images. However, as no
ground truth is available for the segmentation of WM, GM and
CSF, segmentation accuracy of our method can only be verified
visually in this experiment. The quality of the atlases obtained
for both clusters is also assessed visually for this experiment in
terms of sharpness and stratification, i.e., is the disease-specific
morphology clearly visualized by the atlases.
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D. Experiment 4

In this experiment, we show that the definition of voxelwise
cluster memberships can be useful for the study of specific re-
search questions. We also show how clustering based on image
features of brain morphology can provide new insights in the
available clinical and demographical information. In addition,
we use this experiment to provide a practical example of the
benefits of combined segmentation and atlas stratification.
Data used for this experiment were obtained from

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical com-
panies and nonprofit organizations, as a $60 million, five-year
public private partnership. The primary goal of ADNI is to test
whether imaging measures, biological markers, and clinical
and neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). The Principal Investigator of
this initiative is Michael W. Weiner, MD, VA Medical Center
and University of California—San Francisco. ADNI is the
result of efforts of many coinvestigators from a broad range of
academic institutions and private corporations. For up-to-date
information, see www.adni-info.org.
For this experiment, structural brain MR images of 45 AD

patients (aged 72.5 3.1 years on average, range 65–77 years)
are selected as well as 45 images of age-matched normal con-
trols (aged 72.1 2.1 years, range 65–75 years) from the ADNI
database. All images are 1.5T 3-D T1-weighted baseline scans
with voxelsizes around 1 that were corrected for MR ac-
quisition artifacts as described in [63]. For all images, a segmen-
tation of the hippocampus is available as provided by ADNI. As
both groups in this experiment have the same age range, patterns
of normal brain aging can be assumed to be similar for both,
such that clusters detected by our method can be expected to ex-
pose patterns that are characteristic for AD. Finally, the images
of three normal controls and of 16 AD patients showed clear
signs of leukoaraiosis, i.e., a WM deficit that shows hypo-in-
tense T1-contrast compared to the normal WM, as illustrated in
Fig. 15(a). This might influence the segmentation and clustering
process and is therefore studied more into detail.
We run SPARC using two clusters and set

equal to 3 mm if and to 5 mm elsewhere, with the hip-
pocampal region (region of interest), in which a smaller inter-
subject variability can be assumed than in the rest of the brain
(e.g., the cortex). We initialize the atlases (Section II-G) making
use of some clinical prior knowledge, i.e., by averaging the ini-
tial segmentation of three images with respectively the lowest
(AD cluster) and highest (normal cluster)Mini-Mental State Ex-
amination (MMSE) score. As hippocampal changes have been
linked to AD [3], we wish to exploit and steer the voxelwise
clustering mechanism of our algorithm to focus in particular on
the hippocampal region. We can impose that the cluster mem-
berships of all voxels are determined to a large extent by the
cluster memberships of voxels in the hippocampal region, by

using an MRF prior on the cluster memberships, as described in
Section II-E [see (21)]

(27)

with . We set if , and
otherwise. Hence, is theMRF field strength, i.e., the amount
of penalizing the clustering configurations in which the cluster
membership of voxel is different from those of voxels in
neighborhood . We define the neighborhood to contain
all voxels of image and choose to be different for voxels
in the hippocampal region compared to voxels in the re-

mainder of the image. If we wish that the clustering is primarily
determined by the hippocampal region, a suitable choice is for
instance

(28)

(29)

with the number of voxels in the hippocampal region. Thus,
the prior on the cluster membership of each voxel is determined
by the cluster memberships of all other voxels of the same
image, however, the voxels in the hippocampal region are
dominant over all other regions (90%–10%). To avoid the need
of predetermined manual segmentations of the hippocampus
for all images, we define the hippocampal region generally
within the MNI space and hence the same for all images. Its
location is determined based on the union of an independent set
of images (after affine alignment to MNI space) with available
hippocampus segmentations (also extracted from ADNI). This
union is then smoothed with a Gaussian kernel (kernel width
2) to account for the variability that is not captured within the
given set, and subsequently a threshold is taken at 0.25.
To get more insight in our atlas stratification (and in its im-

pact on the segmentation), we compare our stratification ap-
proach (SPARC) using image-based clustering with a simpli-
fied version of our method in which the clustering is kept fixed
and identical to the clinical classification (denoted as SPARC-c).
This means that the clustering process becomes supervised and
the method boils down to running SPARC using a single cluster

on each of the two clinical subgroups of 45 images
separately. To evaluate the impact of the regional focus on the
clustering, we also run the unsupervised version of SPARC (i.e.,
without MRF on the cluster memberships), which will be de-
noted as SPARC-u in this experiment. Finally, we show how
our algorithm for combined segmentation and atlas stratification
copes with the images showing leukoaraiosis, compared to tech-
niques that perform the atlas construction and segmentation sep-
arately and sequentially, including SPM8b [12], SPARC-a-spm
(SPARC-a using the SPM99 atlas (MNI305), i.e., a completely
affinely constructed atlas) and SPARC-a-Wang (SPARC-a using
the nonrigidly constructed atlas from [26]). In particular, the
presence of leukoaraiosis in some images is likely to affect the
atlas-guided segmentation, which may lead to inconsistencies
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Fig. 3. Exp. 1: Boxplots indicating the performance of SPARC on the sets of synthetic images. The performance of SPARC is given for different values of the
parameter (x-axis): (a) the segmentation accuracy (Dice overlap for inner structure), (b)–(c) the cluster membership accuracy [the percentage of correctly
clustered images and by (26)], (d)–(f) the quality of the atlas for cluster 1, 2, and 3 (Dice overlap of ground truth and binarized segmentation for inner structure).

between different images that could complicate groupwise as-
sessment of morphological differences. We use this experiment
as a practical example of the benefits of combined segmenta-
tion and atlas construction for stratification as implemented in
SPARC, showing that SPARC creates consistent segmentations
over all subjects despite the intensity abnormalities present in
some subjects contributing to the clustering process.

IV. RESULTS

A. Experiment 1

In this experiment, our unsupervised framework using three
clusters is performed on a data set of artificial images, for dif-
ferent values of the parameter . The results are illustrated in
Fig. 2 and summarized in the boxplots in Fig. 3.
Overall SPARC segments the images well [e.g., Fig. 2(a), (b),

and (c)]. The Dice scores for the inner circle/ellipse of all im-
ages are close to one [Fig. 3(a)]. Also the bias fields are well
estimated [Fig. 2(e) and (d)]. The obtained cluster memberships
are sharp and about 85% of the images are correctly classified
[Fig. 3(c) and (b)]. We found that the misclassified images are
all generated from the first template, as these are easily confused
with images of the other clusters in case the radius of the inner
circle is small.
The overlap of the atlases with their corresponding ground

truth is large, resulting in high Dice coefficients when binai-
rizing the probabilistic atlas maps [Fig. 3(d), (e), and (f)]. The
obtained atlases are sharp and represent well the cluster-spe-
cific morphology (circle/vertical ellipse/horizontal ellipse),
mimicking the original templates from which the images
were created [Fig. 2(h), (i), and (j)]. Furthermore, the voxel-
wise cluster memberships clearly indicate the cluster-specific
morphological features per image. For instance, in Fig. 2(f)
the voxelwise cluster membership probabilities to belong to

cluster 1 (circle) are given for an image that is generated from
template 3 (horizontal ellipse). Most regions in the image have
a similar morphology for all three clusters (grey). A larger
difference between the image and template 3 compared to the
other templates is visible in the vertical direction (black). In the
horizontal direction, the image and template 3 have a similar
morphological pattern, while it differs from template 2 (vertical
ellipse). Therefore, the voxels are slightly highlighted in this
region (white). We can thus conclude that our framework is
capable of segmenting a set of images in tissue classes and de-
tecting the major structural modes as well as the discriminative
imaging features between the modes in the heterogeneous data
set.
From the boxplots in Fig. 3, it is clear that the influence of

the registration prior is quite important. A value of the vari-
ance equal to 3–5 mm seems to be preferable, what is con-
form with the way the images are generated. A too small value
of can result in quite fuzzy atlases and/or in inferior seg-
mentation results [e.g., Fig. 2(k)]. When the value is too large,
large deformations are allowed and are not steering the clus-
tering. The clustering performance decreases significantly and
the atlases stay fuzzy as they do not show the template-specific
morphology [Fig. 2(l)]. However, it is clear that a fairly similar
performance is obtained for a relatively large range of values for
. This is an important result as we want the prior information

needed in our unsupervised framework to be limited, to rely as
much as possible on the data itself.

B. Experiment 2

The segmentation results for the BrainWeb images obtained
by the different segmentation methods are summarized in
Table I by the average Dice overlap measures per tissue class
(and standard deviations), showing that our method performs
superiorly to current state-of-the-art methods. An example of a
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Fig. 4. Exp. 2: BrainWeb data set: (a) GM segmentation for one example image as obtained with SPARC (green) compared to SPM8b (red) and ground truth
(blue). (b)–(d) Probabilistic GM atlas constructed during iterations 1, 15, and 100 of SPARC.

TABLE I
EXP. 2: BRAINWEB DATA—SEGMENTATION ACCURACY FOR THE 20

SIMULATED IMAGES IN TERMS OF % DICE OVERLAP (MEAN STANDARD
DEVIATION). BOLD = HIGHEST VALUE, VALUES SIGNIFICANTLY

DIFFERENT FROM SPARC (PAIRED T-TEST WITH 5% SIGNIFICANCE LEVEL)

segmented image is given in Fig. 4(a). Furthermore, the results
indicate that combined segmentation and atlas construction is
beneficial over sequential atlas construction and atlas-guided
segmentation (comparing SPARC vs. the sequential methods
SPARC-a, SPARC-a-spm and SPM). The atlases constructed
over different iterations of SPARC are shown in Fig. 4(b)–(d).
The atlases gradually converge over EM iterations to a sharp
representation of the mean of the normal population.

C. Experiment 3

In this experiment, we investigate whether SPARC is capable
of discriminating brain MR images of HD patients from normal
controls by unsupervised image clustering. In Fig. 5, the image-
wise cluster membership probabilities [see (16)] are plotted for
all 16 images (eight normal controls, eight HD patients) in this
study. A sharp clustering is obtained for most images and the
obtained clustering corresponds to the clinical classification for
15 of the 16 images. Fig. 6 depicts the similarity between any
pair of images as evaluated by the Dice overlap of their nucleus
caudatus segmentations, one of the regions most affected by
HD [2]. Comparing this to the cluster memberships in Fig. 5,
similar trends are visible, e.g., image 10 and 11 (clinical HD)
show larger similarity to the normal images than to the HD im-
ages, but smaller than the similarities among the normal images.
This indicates that SPARC indeed detects the major clusters in
a heterogeneous set of images based on relevant morpholog-
ical features. The cluster-specific features are highlighted by the
voxelwise cluster membership probabilities as can be seen in
Fig. 7(a) and (b). Mainly voxels in the ventricles, nucleus cau-
datus and putamen are highlighted, indicating that these voxels
drive the clustering process. The corresponding atlases, shown

Fig. 5. Exp. 3: Cluster membership probabilities of all images to belong to the
normal cluster. Image 1–8 are normal controls (blue triangles) and image 9–16
are clinically diagnosed with HD (red squares).

Fig. 6. Exp. 3: Pairwise Dice overlap of nucleus caudatus between all 16 im-
ages. Images are ordered as in Fig. 5, i.e., image 1–16 can be found from left to
right and from top to bottom.

in Fig. 8(b), are sharp and clearly reveal the cluster-specificmor-
phological features. The atlas of the HD patients has enlarged
ventricles and clearly shows brain atrophy in putamen and nu-
cleus caudatus and to a lesser extent in the cortex, when com-
pared to the atlas of the normal controls.
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Fig. 7. Exp. 3: Voxelwise cluster memberships for (a) a normal image to be-
long to the normal cluster and (b) a HD image to belong to the HD cluster.
Identical regions (e.g., nucleus caudatus, putamen, ventricles) are highlighted
in these images, indicating that these regions are affected by HD. Note that the
images are illustrated at a different scale, related to the prior probability on the
cluster memberships of both shown images which results in cluster membership
probabilities that are on average lower for the shown HD image compared to the
shown normal image.

Fig. 8. Exp. 3: Probabilistic GM atlas for (a) cluster 1 (“normal”) and
(c) cluster 2 (“HD”) and (b) their difference image.

Fig. 9. Exp. 4: ADNI data set: probabilistic GM atlases constructed based
on the clinical diagnosis (SPARC-c (supervised), top), based on global mor-
phology-based stratification (SPARC-u (unsupervised), middle) and based on
the local morphology-based stratification (SPARC (semisupervised), bottom).
Left: group corresponding to healthy controls, right: group corresponding to
AD, middle: difference map between both atlases (“AD”—“normal”), scaled
between 1 (red) and 1 (blue) with the interval [ 0.2 0.2] set to white (i.e.,
no difference). The green boxes provide a rough outline of the hippocampal re-
gion. In general, differences are more pronounced by SPARC than by SPARC-c.

Fig. 10. Exp. 4: Probabilistic cluster membership to belong to the “normal”
cluster obtained from semisupervised SPARC compared to those obtained from
unsupervised SPARC. Blue triangles indicate the subjects clinically diagnosed
as healthy, while the red squares indicate the subjects clinically diagnosed as
AD.

D. Experiment 4

We applied SPARC to a set of 90 images from the ADNI data-
base (45 AD patients, 45 normal controls), focusing largely on
the hippocampal region to guide the clustering. Fig. 11 plots the
clustering by SPARC, in terms of the image-wise probability to
belong to the normal cluster, versus the subjects’ age [Fig. 11(a)]
and hippocampal volume [Fig. 11(b)]. Fig. 11(a) shows a sim-
ilar distribution of ages for both clinical groups as well as for
the two clusters obtained by SPARC, indicating that the influ-
ence of normal ageing patterns, which can exhibit those of AD,
on the clustering can be neglected. The clustering obtained by
SPARC agrees with the clinical diagnosis for 74 of the 90 im-
ages (82%) if a threshold of 50% on the image-wise “normal”
cluster membership probabilities is applied. Even better agree-
ment is obtained by adopting a larger threshold of 66% (78 of
90 images correctly classified, or 87%), which can be explained
by the fact that the variability within the diseased cluster is ex-
pected to be larger than the one in the normal cluster. Fig. 11(b)
relates the clustering by SPARC, which was largely influenced
by the appearance of the hippocampal region, to the volume of
the hippocampus as derived from the hippocampus segmenta-
tions provided by ADNI. Three clinically normal subjects that
SPARC classified as AD have a smaller hippocampus volume
thanmost other clinically normal images and six AD cases, clas-
sified as normal by SPARC, have a larger hippocampus volume
than most of the other AD subjects. On the other hand, three
images clinically diagnosed as normal are correctly classified
as belonging to the “normal” cluster by SPARC although their
hippocampus volume is also small. This can be explained by the
fact that our clustering method considers not just the volume,
but the entire appearance of the hippocampus, including posi-
tion and shape, and (to a smaller extent in this experiment) the
appearance of all other brain regions as well.
To study, the impact of the focus on the hippocampal re-

gion, we not only compare with the clinical diagnosis (i.e.,
supervised), but also perform unsupervised SPARC (without
the MRF) clustering the images based on the total brain mor-
phology. In Fig. 10, the probabilistic cluster memberships
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Fig. 11. Exp. 4: (a) Age and (b) hippocampus volume in terms of the probabilistic cluster memberships obtained from semisupervised SPARC. Blue triangles
indicate the subjects clinically diagnosed as healthy, while the red squares indicate the subjects clinically diagnosed as AD.

Fig. 12. Exp. 4: (a) Age and (b) hippocampus volume in terms of the probabilistic cluster memberships obtained from unsupervised SPARC. Blue triangles
indicate the subjects clinically diagnosed as healthy, while the red squares indicate the subjects clinically diagnosed as AD.

obtained from SPARC with and without focus on the hip-
pocampal region (i.e., semisupervised SPARC compared to
unsupervised SPARC) are plotted. We notice that there is no
strong correlation between the results of the unsupervised
and semisupervised model. Furthermore, the overlap between
the unsupervised model and the clinical diagnosis is smaller
compared to that of the semisupervised model with the clinical
diagnosis. In the unsupervised model, 66 of the 90 images (or
73%) are clustered according to the clinical diagnosis of the
images, when applying a threshold of 50% on the image-wise
“normal” cluster membership probabilities, compared to the
82% in the semisupervised model. In Fig. 12, we plot the
image-wise probability to belong to the normal cluster obtained
from SPARC-u versus the subject’s age [Fig. 11(a)] and versus
the hippocampus volumes [Fig. 11(b)]. The similar distribution
of the ages for both obtained subgroups indicates that the
influence of normal aging patterns can again be neglected.
Furthermore, from Fig. 11(b), it follows that the correspon-
dence between the clustering obtained from SPARC-u and a
classification based on hippocampus volume, is a lot smaller
than in case of our semisupervised approach [Fig. 11(b)].
This indicates that our semisupervised model is indeed largely
driven by changes in the hippocampal region, while larger
morphological variations might be present in different regions

of the brain MR images of the heterogeneous data set, driving
the unsupervised model.
To study major morphological changes between the con-

structed subgroups of both methods, which drive the in-
dividual cluster memberships, we analyze the constructed
subgroup-specific atlases in more detail. These cluster-specific
atlases represent the global morphological patterns for the dif-
ferent subgroups in the population. Fig. 9 shows corresponding
coronal slices of the GM atlases as constructed by SPARC [mor-
phological-based stratification focusing on the hippocampal
region (semisupervised)], SPARC-u [morphological-based
stratification without prior knowledge (unsupervised)] and
SPARC-c [predefined subgroups based on clinical classifica-
tion (supervised)]. We observe that the constructed atlases are
largely similar between the different levels of supervision,
what supports the hypothesis that AD is indeed linked to
hippocampal changes. However, in the difference maps of the
atlases, we observe slightly different patterns. For instance, it
can be seen that the semisupervised case seems slightly more
driven by the hippocampus and the inferior horn of the lateral
ventricle, compared to the unsupervised case where the lateral
ventricle (in general) seems to play a more important role in
driving the clustering process. Furthermore, the difference
maps of the atlases obtained from SPARC (both unsupervised
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Fig. 13. Exp. 4: ADNI images with GM segmentations obtained from SPARC (blue) and hippocampus segmentation available from ADNI (green): (a) a healthy
subject (clinical diagnosis) belonging to the “normal” cluster, (c) an AD subject (clinical diagnosis) belonging to the “AD” cluster, (e)–(g) two AD subjects (clinical
diagnosis) belonging to the “normal” cluster although the hippocampi are small. (b), (d), (f), (h): the voxelwise cluster memberships for each image, rescaled based
on the estimated cluster membership of the image, i.e., in (16), for visualization purposes. The rescaled voxelwise cluster memberships highlight the voxels that
want to drive the clustering even more towards a subgroup than the estimated image-wise cluster memberships. Red indicates driving more to the normal cluster,
while blue indicates driving more to the AD cluster. We observe (for this slice) that in (f) voxels in the hippocampal region and the inferior horn of the lateral
ventricles are rather driving to the AD cluster, while voxels in the cortex are pointing to the normal cluster. In (h) the voxels in the hippocampal region are rather
driving to the normal cluster, while voxels in/around the central part of the lateral ventricles are driving to the AD cluster.

and semisupervised) show larger differences in morphology
than those obtained using SPARC-c (supervised). Finally, the
atlases obtained using SPARC are visually sharper, which
is confirmed by their smaller self-information (entropy) of
the atlases , which equals resp. 0.1618 and
0.1666 for SPARC and 0.1629 and 0.1678 for SPARC-u,
compared to 0.1808 and 0.1747 for SPARC-c. This indicates
that our image-based clustering is more appropriate to ex-
pose morphological features between both groups than a pure
clinically based clustering. The fact that SPARC based on the
hippocampal region results in sharper atlases than SPARC-u
might indicate that the hippocampal region drives the clustering
to a more global optima. This amplifies the advantage of our
semisupervised model where we can include prior knowledge
about the major changes in brain morphology.
We studied the general cluster memberships and the corre-

sponding groupwise morphological cluster-specific patterns ob-
tained from our semisupervised model. We now analyze the in-
dividual images of the data set. Fig. 13(a) and (c) show sim-
ilar coronal slices through the hippocampus of the MR images
of a normal and a AD subject, which are correctly classified as
such by SPARC. Fig. 13(e) and (g) showMR images of two AD
subjects with relatively small hippocampus volume, but classi-
fied by SPARC as belonging to the normal cluster. The corre-
sponding voxelwise cluster memberships for all these images
are shown in Fig. 13(b), (d), (f), and (h). These voxelwise cluster
memberships highlight the regions that want to drive the clus-

tering further towards one of both subgroups compared to the
image-wise cluster membership. As the hippocampal region de-
termines the prior on the cluster memberships for 90%, and has
therefore a large impact on the image-wise cluster memberships,
voxels in this region will only be highlighted if the cluster mem-
berships of voxels in other regions (which determine the prior
on the cluster membership for 10%) will be relatively different.
Other highlighted voxels show that these regions can be even
more important the hippocampal region to guide the clustering
process between those two clusters. Studying these images, vi-
sualizing the driving voxels gives an indication of why the im-
ages shown in Fig. 13(a) and (c) are similarly classified by our
algorithm than by the clinical diagnosis, while the images of
Fig. 13(e) and (g) are differently classified by our algorithm than
by the clinical diagnosis.
Finally, the contours of the binary GM segmentation, ob-

tained by assigning each voxel of the probabilistic segmentation
maps generated by SPARC to its most likely tissue class, are
overlaid in blue in Fig. 13. It can be seen here that the obtained
GM segmentations are overall quite accurate, but include some
non-brain voxels, as is also apparent from the atlases shown in
Fig. 9. This can be explained by the fact that the brain masks
available from ADNI are sometimes inaccurate (as they were
only constructed to perform bias field correction [63]), while
for the experiments in this paper only three brain tissue classes
were considered (and no class for the remaining is included).
Furthermore, the segmentation in the hippocampal region, i.e.,
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Fig. 14. Exp. 4: Prior models for GM segmentations in the neighborhood of the hippocampus obtained from SPARC: resp. based on cluster-
specific atlases (SPARC) (blue), and based on disease-specific atlases (SPARC-c) (green). Hippocampus segmentations available from ADNI are given in pink. The
shown images correspond to the images of Fig. 13 where we also showed the obtained segmentations by SPARC: from left to right resp. the images corresponding
to Fig. 13(a) a healthy subject (clinical diagnosis) belonging to the “normal” cluster, Fig. 13(c) an AD subject (clinical diagnosis) belonging to the “AD” cluster,
and to Fig. 13(g) an AD subjects (clinical diagnosis) belonging to the “normal” cluster although the hippocampus is small. Red arrows indicate regions were the
prior based on the cluster-specific atlases seem to be better adapted towards the true segmentation compared to the disease-specific atlases.

the region that majorally determines the clustering, is studied
more into detail. The segmentation is determined by the inten-
sity model and a prior based on the constructed atlases. Fig. 14
shows the prior on the segmentations ob-
tained from SPARC and SPARC-c for three cases of the im-
ages presented in Fig. 13. For the image assigned to the normal
cluster by both SPARC and the clinical diagnosis, we obtain
similar results for SPARC and SPARC-c, although the prior
of SPARC-c seems to segment some GM to WM in the re-
gion below the hippocampus. For the image assigned to the AD
cluster by both SPARC and the clinical diagnosis, we observe
that both underestimate the seriously enlarged inferior horn of
the lateral ventricle, but that the underestimation is worse for
the SPARC-c prior. For the image of the AD person (clinical di-
agnosis) that is assigned to the “normal” cluster by SPARC, we
observe the largest differences between the priors of SPARC and
SPARC-c. In particular, SPARC-c seems to expect that the hip-
pocampus is located lower than visualized by the image, what
is indicated by the WM region below the hippocampus, as it is
estimated by SPARC-c below the expected true segmentation.
Although, the differences between the SPARC and SPARC-c
priors are subtle, it can in general be observed that the prior
based on the cluster-specific atlases (SPARC) seems closer to
true segmentation for all images, than the prior based on the
disease-specific atlases (SPARC-c).
We now analyze the segmentation of the AD image of

Fig. 13(c) [also Fig. 15(a)], that shows seriously enlarged
ventricles and leukoaraiosis (WM deficits), more into detail.
Hereby, we will illustrate how the analysis of such images ben-
efits from our framework for combined segmentation and atlas
stratification, compared to techniques based on separate and
sequential atlas construction and segmentation (i.e., SPM8b,
SPARC-a-spm, and SPARC-a-Wang). Firstly, we segment the
image using SPM8b and SPARC-a-spm, which make use of
an a priori constructed fuzzy probabilistic atlas for WM, GM,
CSF, constructed using a global registration algorithm from a
data set of normal images. We also segment the image using
SPARC-a-Wang, which makes use of a nonrigidly constructed
probabilistic atlas for WM, GM, and CSF obtained from a data
set of normal images. The segmentation results obtained from
these techniques for the AD image [Fig. 15(a)] are shown in
Fig. 15. It can be seen that the use of an a priori constructed
fuzzy atlas (SPM8b, SPARC-a-spm) results in inconsistent
incorporation of the leukoaraiosis in the tissue classes, i.e.,
different parts of the leukoaraiosis are segmented as different
tissue classes (WM, GM and CSF). This is likely to lead to
inconsistenties between the leukoaraiosis segmentations of

the different images. Moreover, it also has an impact on the
GM segmentation as the deep GM structures are underesti-
mated. The use of an a priori constructed sharp nonrigid atlas
(SPARC-a-Wang) results in an underestimation of CSF and GM
as the large difference in morphology between the AD image
and the sharp atlas, constructed from normal images, could not
be captured by the model. Segmentations determined based
on a fixed prior atlas can therefore result in a poor extraction
of disease-specific image features, e.g., when analyzing the
GM volume to quantify GM atrophy. In Fig. 16, the results
obtained from SPARC are shown for the same slice. It is clear
that the SPARC atlas is sharp, but can adapt towards the image
as it describes the corresponding cluster-specific morphology,
resulting in a more accurate segmentation. The leukoaraiosis is
consistently included into the GM tissue class, which indicates
that leukoaraiosis occurs in multiple images in more or less
similar places (and is not merely an outlier occurring in a single
image). Volumetric studies on the GM tissue class to extract
imaging features can therefore also be problematic when using
our model. However, our model extracts cluster-specific fea-
tures directly based on the segmentations in a voxelwise way,
i.e., by performing voxelwise clustering. As the leukoaraiosis
is consistently detected between the images, it can possibly
be picked up as feature. Our model indicates indeed that
leukoaraiosis is more likely to occur in AD patients as these
regions are highlighted [Fig. 16(b) and (d)]. Hence, our method
for combined segmentation and atlas stratification provides
segmentations and atlases adapted to the morphological pattern,
which results in more consistent segmentations over all images
of the data set (i.e., in contrast to the methods relying on a priori
constructed atlases, handling an individual image), such that the
clustering and feature detection can benefit from this specific
segmentation. A more profound analysis using more clusters,
i.e., to separate AD and normals with and without leukoaraiosis,
will provide extra insights and might also contribute to the
analysis of the differences between the clinical diagnosis and
our morphological clustering of this heterogeneous data set.

V. DISCUSSION

In this paper, we have presented a unified probabilistic frame-
work, called SPARC, that simultaneously segments a set of im-
ages in tissue classes and clusters them into different subpopu-
lations without the need for prior knowledge. The method auto-
matically generates nonrigid probabilistic atlases for each sub-
population and reveals the location of cluster-specific morpho-
logical features for each image. The unified framework makes
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Fig. 15. Exp. 4: Illustration of the need for appropriate atlases for segmentation and analysis of a subject. Atlas-driven tissue class segmentation of a brain MR
image of an AD patient with seriously enlarged ventricles and leukoaraiosis (red circles). (a) Subject, (b)–(d) the SPM8b atlas and corresponding segmentations
obtained with SPM8b [12], (e)–(l): the a priori atlases (see text for details), corresponding deformed atlases and obtained segmentations using SPARC-a. Colors
[red to yellow] indicate probabilistic values [0.5–1] in all images. It is clear that a fuzzy atlas [(b) and (e)] results in a random incorporation of the leukoaraiosis
(i.e., outliers) in the WM or GM (or CSF) segmentation, and in an underestimation of the deep GM structures. The segmentation based on the sharp atlas (i) is not
influenced by the leukoaraiosis, but is not able to cope with the large changes in brain morphology caused by AD.

that all these aspects can benefit from each other. The combina-
tion of segmentation, registration, atlas construction and (unsu-
pervised) clustering, while exposing the morphological features
between clusters, makes the proposed method a comprehensive
image-driven population analysis framework.
We explained in Section II-C how our framework relates

to state-of-the-art segmentation techniques for label fusion
[19], [37]–[41] including local atlas selection and the use
of an intensity model to further improve the segmentation
performance as we deal with homogeneous regions as in [18],
[19]. Contrary to the methods of [18], [19], the parameters of
the intensity model used for atlas-guided segmentation and
of the atlas-to-image registration are iteratively and jointly
updated by our method as in [12], [14], [15], which is shown
to be beneficial over performing segmentation and registration
sequentially. However, the models in [12], [14], [15] are only

capable of handling a single atlas, while our algorithm makes
use of multiple atlases.
A second major difference to all previously mentioned

methods is that our method does not assume the atlases to be
given a priori, but constructs these during the segmentation
process itself. Combining atlas construction and segmentation
has already been shown to be beneficial over performing
both algorithms separately and sequentially [43], [44] as the
same registration flexibility is used for atlas construction and
atlas-guided segmentation [28]–[30] and as the atlases are
better adapted to the images. In case a single cluster is used,
SPARC reduces to an unbiased probabilistic atlas estimation
algorithm, as discussed in Section II-F, similar to the ones
proposed in [21], [25], [27].
However, the main issue addressed in this paper is that a

single template is not sufficient to summarize the variability in a
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Fig. 16. Exp. 4: Illustration of the advantages of combined segmentation and atlas stratification using SPARC for the analysis of an individual subject, compared to
state-of-the-art segmentation techniques (Fig. 15). Atlas-driven tissue class segmentation of a brain MR image of an AD patient with seriously enlarged ventricles
and leukoaraiosis (red circles). (a) and (c) Two slices of the same subject. (b) and (d) The corresponding voxelwise cluster memberships to belong to AD for these
slices. For the first slice, we also show: (e) AD atlas for GM, (f) deformed atlas, (g)–(h) probabilistic segmentations of GM and CSF ([red yellow] .
The atlas is sharp, but can clearly adapt towards the subject to be segmented. The leukoaraiosis is systematically segmented as GM, indicating that it systemati-
cally occurs in the data set, in particular in the AD subjects, in the same spatial location. This becomes also clear from the voxelwise clustering highlighting the
leukoaraiosis regions as more likely to belong to AD.

large and heterogeneous population of images as also argued by
[31], [32]. Hence, SPARC adopts a multi-atlas stratification and
clustering strategy, in line with recent work [50]–[52]. The main
difference with these methods is, however, that SPARC models
the heterogeneity of the population explicitly by creating proba-
bilistic atlases and uses this setting immediately to segment the
set of images and to find the cluster-specific morphological fea-
tures based on these segmentations. The cluster-specific features
are obtained both groupwise, by comparing the atlases, and in-
dividually, as the relevant features are highlighted in each image
separately by the voxelwise cluster memberships.
The use of segmentations for atlas stratification avoids the

need for intensity normalization and overcomes problems
with image artifacts, compared to the stratification/clustering
approaches proposed in [50]–[52]. Handling both segmentation
and atlas stratification in a single framework allows these
techniques to cooperate. The stratification method embedded
in the segmentation procedure makes that more appropriate
image-specific prior knowledge is driving the segmentation
process than in case a single atlas was constructed. This can be
explained by the fact that the use of a priori defined subgroups,
e.g., based on a clinically diagnosis, does not necessarily result
in an optimal separation (and atlas construction) according to
morphological patterns, while our stratification explicitly fo-
cuses on a discrimination based on the morphology. In addition,
the local cluster memberships defined in SPARC, allow local
selection of images for atlas construction and subsequently
an appropriate local selection of atlases for segmentation,

based on the same criterion. In contrast, performing combined
segmentation and atlas construction based on clinically defined
subgroups, boils down to a global selection. The use of local
weights for atlas stratification not only allows a locally adap-
tive and hence more optimal atlas selection, but also makes
that more images contribute to the construction of the atlases
(and therefore to the segmentations) in case the inter-cluster
differences are small, as discussed in Section II-E. Both these
facts, i.e., cluster-specific atlases rely on more information (i.e.,
due to local selection) and directly rely on the morphology
of the data set (i.e., based on the optimal similarity between
atlases and segmentations of the images), makes that segmen-
tation based on cluster-specific atlases is likely to outperform
segmentation based on disease-specific atlases. This second
argument is also stated by [52]. Furthermore, the statement is
further amplified as by combining the clustering and the atlas
construction, the same criterion is used to assign the images to a
subgroup for atlas construction as to select the most appropriate
atlas for image segmentation.
In turn, the atlas stratification also benefits from the com-

bination with the segmentation algorithm. From previous
discussion, it follows that the obtained segmentations are a
more accurate representation of the specific morphological pat-
terns of the data set, compared to segmentations obtained based
on a priori constructed atlases. As such the morphological
patterns are more distinct what can contribute to an improved
stratification.
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The fact that our method explicitly models the heterogeneity
of the population by detecting relevant image clusters and ex-
posing the cluster-specific image features, makes our method
capable to perform cross-sectional studies. The major difference
with state-of-the-art cross-sectional studies (e.g., [3], [6]) is that
our algorithm performs an unsupervised clustering, while most
state-of-the-art methods are based on a clinical hypothesis and
perform therefore supervised analyses. The advantage is that our
method can contribute to the discovery of new subgroups, e.g.,
characterizing new subtypes of a disease, and new morpholog-
ical features leading to new research questions. However, dif-
ferent types of prior information can be taken into account in
the semisupervised clustering scheme described in Section II-E,
including prior information about regional features and/or clin-
ical information, to study specific clinical hypotheses.
The experiments demonstrate the use of SPARC in multiple

settings. In the first experiment, a proof-of-concept of the frame-
work is given based on synthetic images. The second experi-
ment demonstrates that the segmentations obtained with SPARC
are more accurate than those obtained with conventional seg-
mentation methods. The experiment also confirms that com-
bined segmentation and atlas construction results in improved
segmentation results over the use of a predefined probabilistic
atlas for segmentation. The improvement is, however, limited in
this experiment as the data set is homogeneous and consists of
healthy controls, while predefined atlases, such as used by e.g.,
SPM, are also often constructed from images of healthy con-
trols. A greater improvement can therefore be expected when
segmenting images showing large morphological changes, e.g.,
caused by a neurodegenerative disorder, compared to normal
images.
The third and fourth experiment explore our algorithm in a

heterogeneous setting, namely normal controls versus HD and
AD patients respectively. The clustering obtained with SPARC
largely agrees with the clinical classification for both experi-
ments. This not only provides evidence that our algorithm is ca-
pable of distinguishing subgroups in a population, as the major
variability in morphology within the population is expected to
be caused by the disease, but also shows that the obtained sub-
groups are clinically relevant. As such the voxelwise cluster
memberships estimated by our method allow to localize dis-
ease-specific features for each image individually, while also the
features at cluster level can be obtained (e.g., by comparing the
cluster-specific atlases generated by our method). Hence, our
method reveals for each subject local features that conform or do
not conform with the overall pattern of each of the clusters. This
could be exploited in further research to develop novel strategies
for testing specific hypotheses regarding an individual subject,
for instance for early diagnosis of subtle disease patterns.
Furthermore, experiment 4 shows that our clustering ap-

proach results in cluster-specific atlases with more pronounced
differences than in case atlases are constructed based on clinical
knowledge. This indicates that our approach for atlas stratifi-
cation results in a more optimal separation of morphological
patterns and in atlases that better capture the variability within
the population than using clinical defined subgroups. Hence,
our method could be capable of detecting more subtle morpho-
logical variations and could contribute to the discovery of new

subgroups, possibly differing in unexpected ways. Moreover,
the improved capturing of the morphological variability by the
atlases supports our expectation that segmentation based on
cluster-specific atlases corresponding to the image-modes in
a population, is likely to outperform segmentation based on
disease-specific atlases. This expectation is further amplified
in the experiment by the priors of the segmentations obtained
from disease-specific and cluster-specific atlases, where the
priors based on cluster-specific atlases seem closer to the true
segmentations than those based on the disease-specific atlases.
Finally, experiment 4 also provides an explicit example of
the benefits of combined segmentation and atlas stratification
using a data set of normal and AD patients, where some images
show a WM deficit (leukoaraiosis). The example shows that
in sequential techniques, prior information used for the seg-
mentation is often not appropriate, e.g., coming from normal
patients to segment a diseased patient and as such introducing
bias towards the normal population. Furthermore, in sequential
techniques, they must define specific guidelines for specific
morphological patterns, such as these WM deficits, to obtain
consistencies within and between the images, while they are
automatically handled using our method. In particular, the
experiment shows how some morphological patterns deviating
from the normal tissue structures (e.g., leukoaraiosis) can be
picked up by our combined method when they arise in mul-
tiple images, while they might be discarded when performing
both processes separately and sequentially. The detection of
these novel morphological patterns has shown to improve the
segmentation performance and allows the detection of novel
cluster-specific features.
Although, we have shown the advantages of combined seg-

mentation and atlas stratification (i.e., less bias and detection
new morphological patterns), we must notice that the use of
prior information about the segmentations might still be helpful.
In our algorithm, we assume that all information can be learned
from the images. However, this assumption might not be valid,
e.g., structural differences within a tissue might lead to poor
image contrast visible in all brain MR images. Furthermore, the
current algorithm still suffers from a few limitations. Firstly, the
method requires atlas-to-image and image-to-atlas registration
(Section II-H and Appendix B) in each iteration between all at-
lases and all images. This makes the method computationally
intensive. Also, the registrations are updated based on the opti-
mization of the expected loglikelihood function (analogously to
[15]). However, as there is no closed solution for the expected
loglikelihood in terms of the registrations , an improved regis-
tration might be obtained by optimizing the loglikelihood func-
tion directly (analogously to [12]), what also results in more
consistency between registration and segmentations. Secondly,
the method as implemented here requires accurate brain masks
to overcome that non-brain tissue is included in brain segmenta-
tion (i.e., as shown in experiment 4). The inclusion of non-brain
tissue will also induce a bias in the Gaussian mixture model pa-
rameters. Moreover, these incorrectly segmented voxels can in-
fluence the cluster memberships. Adding an extra tissue class
for non-brain tissue can resolve this problem and including con-
straints as proposed in [16] could further improve the segmen-
tation of non-brain versus brain tissue. A third limitation is that
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the initialization can have an impact on the clustering, although
the basic version of the method is assumed to be unsupervised.
This requires a more profound analysis. In this paper, the im-
pact of the initialization on the clustering was only determined
by the initialization of the atlases, i.e., as a specific subset of
images was selected for their initial construction (Sections II-G
and III). However, experiment 3 indicates that the influence is
restricted as a “random” initialization is used (Section III), while
the obtained results for the clustering follow our expectations.
Moreover, often a specific research question is defined and/or
clinical knowledge is available. This helps to select an more
optimal set of images for the initial construction of the atlases
(e.g., experiment 4). A last limitation concerns the parameter
which need to be defined in advance. In experiment 1, we con-
cluded based on the artificial images that the influence of this
parameter on the final results is limited for a quite large range
of values. However, locally adapting the prior, e.g., allowing
a larger variance in regions where the inter-subject variability
is known to be larger such as the cortex, might further improve
the clustering. Also, varying the parameter for the different sub-
groups, as it can be expected that the variability is larger in a
“diseased” cluster compared to the normal cluster, might fur-
ther improve our algorithm.
This paper focuses on the segmentation accuracy and the

clustering performance of our algorithm. Further research will
focus on the use of the constructed atlases to segment new un-
seen images as well as on the classification of new images. Also,
not discussed in this paper, the framework is implemented to
handle multi-modal images. As the method is a generic frame-
work, it can be used in all types of settings. Different prior
distributions and models could be plugged in our framework,
e.g., non-Gaussian models for the intensity [64] or alternative
models for the clustering and registration prior. This enlarges
the generalisability of our framework even more. Finally, we
assumed that the number of clusters is specified in advance.
In case of a specific research question or clinical hypothesis,
the optimal number of clusters is typically known, e.g., when
we want to investigate how AD patients can be distinguished
from normal controls. However, the proposed framework can
also be very useful in cases where the optimal number of clus-
ters is unknown, e.g., in spectrum disorders, the optimal number
of stages in an aging study, etc. Thereto, further research could
focus on the development of a model to determine this optimal
number. Different methods for automatically detecting the op-
timal number of clusters in a data set have already been pro-
posed in literature [65], [66]. Such techniques are often based
on systematically optimizing the loglikelihood for a different
number of clusters, while including a cost term for this number.
Evaluating the cluster memberships generated by our method
could also provide insight in the required number of clusters for
a particular data set: if multiple images are assigned with equal
probability to two different clusters, these images are likely to
form a new subgroup.

VI. CONCLUSION

We have presented a unified probabilistic framework, for the
analysis of large heterogeneous sets of brainMR images, that si-

multaneously performs image segmentation, clustering in sub-
groups, and groupwise registration. The framework has been il-
lustrated to be a generalization of different state-of-the-art tech-
niques for the individual aspects. However, it’s setup differs in
four major ways: 1) atlas-guided segmentation and atlas strat-
ification are performed simultaneously, 2) atlas stratification is
performed locally, 3) cluster-specificmorphological patterns are
automatically exposed in a groupwise way as well as in each
individual image, 4) clinical prior knowledge can be included
directly to complement information extracted from the brain
morphology.
The framework is applied to multiple data sets, including

BrainWeb and ADNI, to illustrate its feasibility and evaluate
its performance. It is shown that the segmentation benefits from
the combination with atlas stratification. Furthermore, the ex-
periments demonstrate that our algorithm is capable of finding
the major modes of variability in the population, while the con-
structed atlases clearly represent the cluster-specific brain mor-
phology. Finally, it is illustrated how new morphological fea-
tures might be picked up by our combined method over han-
dling the different aspects separately and sequentially.
On a methodological side, future work will focus on im-

proving the registration and automatically determining the
optimal number of clusters. However, as important will be
exploring the potential contribution of the presented method
in multiple applications. Our major interest goes here to the
impact of regrouping images, based on the morphology com-
pared to clinical subgroups, for the detection of novel imaging
biomarkers. Furthermore, the method might contribute to the
development of proper representations of spectrum diseases
constructing morphology-based subgroups, or to the extraction
of endo-phenotypes for genetic association studies by sepa-
rating environmental factors by those correlated with genetics.

APPENDIX A

In this appendix, we derive the equations to update the atlases
in the maximization step of the SPARC algorithm. We have to
determine

(30)

with indexing the voxels in the atlas space. Therefore, we
rewrite the part of the -function dependent on the atlas, in
terms of voxels in the atlas space
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with , with the determinant of a matrix
and the Jacobian matrix of containing the par-
tial derivatives of the warp field with respect to the coordinates.
Furthermore, is a continuous and compact subset of that
covers the discrete set . Thus, the -function
is rewritten in terms of the voxels in the atlas space using the
substitution and by interpreting the discrete lat-
tice temporarily as a continuum using an integral instead of a
summation. Solving (30) comes down to the computation of the
saddle point of the following Lagrangian with Lagrange multi-
pliers :

resulting in

The atlas is thus constructed as the weighted sum of the seg-
mented images deformed towards the atlas space. The weights
equal the cluster membership probabilities (voxelwise). More-
over, the atlas construction implies a modulation step, i.e., a
scaling of the deformed segmentation maps with the Jacobian
determinant to preserve their local probabilistic volumes.

APPENDIX B

In this appendix, we discuss the computation of the inverse
registration of to determine the image-to-atlas registration for
atlas construction given by (17) and detailed in Section II-H.
An exact derivation of the inverse is possible as we constrain
all registrations to be diffeomorphic. However, the atlas-to-
image registrations and image-to-atlas registrations are not ex-
actly each others inverses as simultaneously updating the at-
lases and the atlas-to-image registrations is unfeasible. In prac-
tice the atlases and registrations are not updated at the same
time by the M-step, but sequentially, i.e., the atlases are reesti-
mated first before updating the atlas-to-image registrations. Ac-
cordingly, forward- and inverse registrations transform (to) dif-
ferent estimations of the atlases. This becomes also clear from
the schematic presentation of our framework (Fig. 1). It shows
that first the segmentations are estimated. Subsequently, an esti-
mate of the image-to-atlas registrations is required to compute a
new estimate for the atlases. Lastly, the atlas-to-image registra-
tions are computed based on the new estimates of the atlases
and as such a new prior is obtained to update the segmenta-
tions. It is clear that the required image-to-atlas registrations will
only equal the inverse atlas-to-image registrations when the al-
gorithm has converged, i.e., when the estimated segmentations
and atlases do not change anymore. Therefore, we prefer to re-
place the inverse registration by a forward image-to-atlas
registration, called , updating a similarity measure based on
the previous estimation of the atlas. As such, we allow a more
adapted registration per iteration, what avoids ending up in local
optima of the overall EM algorithm. The registration must
converge to the inverse registration when new updates of

the image segmentations and atlases become minimal and when
the deformed images exactly match the atlases and vice versa.
The last argument states that the assumption of a diffeomorphic
relationship between the atlas and the image must be valid.
From the -function it follows that the following similarity

measure need to be maximized to update the registration :

(31)

with the mean deformation in from the image towards
the atlas space and the variance. The first part of the simi-
larity measure described in (31) tries to match the probability
maps of the image and the atlas (for cluster ). This part equals
almost exactly the expected likelihood under the substitution

(considering the grid temporally as a continuum).
However, the posterior of the expected likelihood is not fixed
anymore during the maximization step, i.e., when updating
the model parameters. Therefore, the second term obtained
in Jensen’s inequality [see (9)] is not constant anymore and
should be taken into account when updating . Under the
assumption that is locally constant, the first part of (31) is
obtained. Remark that this part is equal to the similarity mea-
sure used in [27] to construct a probabilistic atlas. Moreover,
under the assumption that is constant, the measure has
the same optimum as , which is
symmetric to the similarity measure used to update the forward
atlas-to-image registration.
The second part of (31) describes a similar constraint

on the registration than the one described on the forward
atlas-to-image registration, although it has a slightly different
interpretation. It is assumed that the voxels in the image spaces
corresponding to the same voxel in the atlas space are
Gaussian distributed with mean voxel . Therefore, the
registration must stay close to a groupwise image-to-atlas
registration . Here, equals the identity transformation
as we reestimate the atlas each time such that equals the
identical transformation (see implementation: Section II-H)
and can be seen as the inverse of . The variance in
the image space equals then

(32)

The force field which drives the image-to-atlas registration
is now as follows:

(33)

Both terms in the force field are multiplied with ,
forcing the force field to have a larger impact on the construction
of the deformation field in case a voxel with a larger probability
to belong to the atlas is reached. For simplicity and stability, the



RIBBENS et al.: UNSUPERVISED SEGMENTATION, CLUSTERING AND GROUPWISE REGISTRATION OF HETEROGENEOUS POPULATIONS 223

transformed cluster memberships are kept constant
in each iteration step, when updating the registrations, i.e., no
derivative to update the registration is computed towards this
term.
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