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Multimodal Imaging of Brain Connectivity Using
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Alzheimer’s Disease
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Abstract—The Multimodal Imaging Brain Connectivity Anal-
ysis (MIBCA) toolbox is a fully automated all-in-one connectivity
analysis toolbox that offers both pre-processing, connectivity, and
graph theory analysis of multimodal images such as anatomical,
diffusion, and functional MRI, and PET. In this work, the MIBCA
functionalities were used to study Alzheimer’s Disease (AD) in
a multimodal MR/PET approach. Materials and Methods: Data
from 12 healthy controls, and 36 patients with EMCI, LMCI
and AD (12 patients for each group) were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion
Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic
PET data from 40-60 min post injection (4x5 min). Both MR and
PET data were automatically pre-processed for all subjects using
MIBCA. T1-w data was parcellated into cortical and subcortical
regions-of-interest (ROIs), and the corresponding thicknesses
and volumes were calculated. DTI data was used to compute
structural connectivity matrices based on fibers connecting pairs
of ROIs. Lastly, dynamic PET images were summed, and the
relative Standard Uptake Values calculated for each ROI. Results:
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An overall higher uptake of 18F-AV-45, consistent with an in-
creased deposition of beta-amyloid, was observed for the AD
group. Additionally, patients showed significant cortical atrophy
(thickness and volume) especially in the entorhinal cortex and
temporal areas, and a significant increase in Mean Diffusivity
(MD) in the hippocampus, amygdala and temporal areas. Fur-
thermore, patients showed a reduction of fiber connectivity with
the progression of the disease, especially for intra-hemispherical
connections. Conclusion: This work shows the potential of the
MIBCA toolbox for the study of AD, as findings were shown to
be in agreement with the literature. Here, only structural changes
and beta-amyloid accumulation were considered. Yet, MIBCA
is further able to process fMRI and different radiotracers, thus
leading to integration of functional information, and supporting
the research for new multimodal biomarkers for AD and other
neurodegenerative diseases.

Index Terms—Alzheimer’s Disease, brain connectivity, graph
theory, image processing, magnetic resonance imaging, molecular
imaging, multimodal imaging, network theory, positron emission
tomography, toolbox.

I. INTRODUCTION

EUROIMAGING techniques have long been used to un-

fold the complexity of human brain anatomy and func-
tion. The neuroimaging technique of election to study brain con-
nectivity is Magnetic Resonance Imaging (MRI). MRI allows
measuring in vivo and non-invasively the human morphology,
structure and dynamics with high resolution and soft tissue con-
trast. Further, MRI has been extensively used in the context of
structural connectivity, where the measurement of the random
displacement of water molecules using diffusion MRI (dMRI)
allows the tracing of three-dimensional paths between different
brain regions via tractography [1], [2]. Functional connectivity,
on the other hand, typically uses functional MRI (fMRI), which
has helped undercover concepts about the basal level of activa-
tions in the brain (resting state networks) [3], [4].

However, MRI lacks molecular sensitivity and specificity,
when compared with Nuclear Medicine methods such as
Positron Emission Tomography (PET), which allows acquiring
quantitative molecular data. Furthermore, the broad spectrum
of radiotracers allows understanding diseases states of different
molecular pathways. On the other hand, PET presents low
spatial resolution and reduced anatomical information. The
combination of complementary information from multimodal
data is therefore highly desired. In fact, it has already been
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shown that multimodal data brings new perspectives to the
knowledge of the brain and in particular it has been used to
find biomarkers for neurological diseases, such as Alzheimer’s
Disease (AD) [5], [6].

Nonetheless, managing and processing such multimodal data
is not straightforward and it is time consuming. Moreover, pro-
cessing is often performed in a non-automatic manner that is
prone to human error. Current automatic multimodal methods
are still fairly limited, being majorly focused on one technique
[71-19].

In this paper we exploit the multimodal capability of the
fully automated all-in-one connectivity analysis toolbox -
Multimodal Imaging Brain Connectivity Analysis toolbox
(MIBCA). MIBCA offers pre-processing, connectivity and
graph theory analyses, and visualization of multimodal data
such as anatomical MRI (aMRI), dMRI, fMRI and PET. Here,
MIBCA was applied to AD as a preliminary proof-of-concept
study.

II. MATERIALS AND METHODS

In this section the ADNI database will be firstly described,
followed by the description of the subject groups, the neu-
roimaging sequences and the protocols used. Further, the
neuroimaging data processing and analysis performed by the
MIBCA toolbox will be introduced.

A. ADNI database

Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu). To date, over 1500
adults, aged 55 to 90, were recruited to participate in the re-
search, consisting of cognitively normal older individuals, pa-
tients with early or late Mild Cognitive Impairment (MCI), and
patients with AD. For up-to-date information, see www.adni-
info.org.

In this study, a total of 48 subjects of the ADNI-2 data-
base presenting concurrently volumetric T1-weighted (T1-w),
Diffusion Tensor Imaging (DTI) and PET data were studied.
Subjects belonged to 4 groups according to ADNI baseline
diagnosis: healthy controls (CTRL); and early MCI (EMCI),
late MCI (LMCI) and AD patients. Demographic data (age
and gender), Apolipoprotein E (ApoE) genotyping - absolute
frequency (2/3, 3/3, 3/4 and 4/4) - and Mini-Mental State
Examination (MMSE) are shown in Table I.

B. Neuroimaging data

MRI data including high-resolution T1-w and DTI data were
acquired using a 3T MRI scanner (Discovery MR750, Gen-
eral Electric, Milwaukee, U.S.A.) and an 8-channel receive-
only head coil. T1-w sequence (IR-SPGR) parameters include:
sagittal plane; Slices = 196; TR/TE/TT = 7.3/3.1/16 ms;
FA = 11°; Matrix = 256 x 256; Voxel size = 1.0 x 1.0 x
1.2 mm?®. DTI sequence (spin echo with echo planar readout):
axial plane; Slices = 60; 41 non-colinear diffusion-sensitizing
gradient directions; b = 0, 1000 s/mm? with 5 b0 acquisitions;
TR/TE = 190/62 ms; FA = 90°; Reconstruction matrix =
256 x 256; Voxel size = 1.4 x 1.4 x 2.7 mm3.

In addition, a hybrid PET/Computed Tomography scanner
(Siemens, Erlangen, Germany) was used to acquire 18F-AV-45
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TABLE I
DEMOGRAPHIC, GENETIC AND NEUROPSYCHOLOGICAL
CHARACTERIZATION OF SUBJECT GROUPS
CTRL EMCI LMCI AD
N 12 12 12 12
Gender 5F/7TM 4F/8M 6F/6M 3F/9M
Age’ 74.5+8.8 71.8+7.3 70.9+7.0 75.37.8
(y.0) [64-90] [55-82] [57-83] [60-89]
ApoE 2/3: 1 2/3:2 2/3:0 2/3: 1
3/3:6 3/3:3 3/3:2 3/3:6
3/4: 4 3/4:5 3/4: 8 3/4:5
4/4: 1 4/4:2 4/4:2 4/4: 0
MMSE 29.2+1.2 28.7£1.2 26.5£2.0 23.6£1.8
[26-301° [26-30]° [24-30]>¢ [21-26]>4

F = Female; M = Male
*Age at the time of diagnostic screening and imaging: mean + standard
deviation and age range (y.o. = years old). ApoE genotyping; MMSE =
Mini-Mental State Examination: mean + standard deviation scores and
scores ranges; Kruskal-Wallis test: significant difference in MMSE
(p=0.000); individual Mann-Whitney tests: ‘significant difference between
CTRL group and LMCI (p=0.001) and AD (p=0.000) patient groups;
Ssignificant differences between EMCI and LMCI (p=0.007), and AD
(p=0.000) patient groups; %significant difference between LMCI and and AD
(p=0.003) patient groups; No additional significant differences were
observed between subject groups.

F = Female; M = Male

@ Age at the time of diagnostic screening and imaging: mean £+

standard deviation and age range (y.o. = years old). ApoE genotyping;

MMSE = Mini — Mental State Examination: mean =+ standard

deviation scores and scores ranges; Kruskal-Wallis test: significant difference

in MMSE (p = 0.000); individual Mann-Whitney tests:

b significant difference between CTRL group and LMCI (p = 0.001) and

AD (p = 0.000) patient groups;

¢ significant differences between EMCI and LMCI (p = 0.007), and AD

(p = 0.000) patient groups;

4 significant difference between LMCI and and AD (p = 0.003) patient

groups; No additional significant differences were observed between subject

groups.

(florbetapir) dynamic PET data from 40-60 min post injection
(4 X 5min frames). PET data were acquired with the following
parameters: Slices = 109; Matrix = 336 x 336; Voxel size =
1.0 x 1.0 x 2.7 mm3; frames = 4. Data were attenuation,
decay, random, and scatter corrected and reconstructed using
OSEM2D with 4 iterations and 16 subsets.

C. MIBCA Toolbox

The MIBCA toolbox is an application developed in
MATLAB. The toolbox combines and integrates multiple
freely available and referenced neuroimaging software pack-
ages and applications in order to optimize and automate data
processing within a multimodal imaging framework for brain
connectivity analysis [10], [11]. Combined neuroimaging tools
include Freesurfer [12], FSL [13], SPM [14], Diffusion Toolkit
[15] and the Brain Connectivity Toolbox [16]. Currently, the
MIBCA toolbox is able to process aMRI from high-resolution
T1-w images, dMRI from DTI, fMRI from blood oxygen level
dependent (BOLD) resting-state or task-related data (not used
in this study) and also PET data of distinct radiotracers [17].
The data processing (C.1) and analysis (C.2) performed on this
study is explained below and summarized in Table II.

1) Data Processing: Following a data folder hierarchy
“Study-Subject-Acquisition-Images” the toolbox automatically
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TABLE 11
ANALYSED MODALITIES AND ASSOCIATED PRE-PROCESSING
AND EXTRACTED METRICS

Modality Pre-processing Metrics
Intensity normalization; skull stripping;
affine and non-linear registration to the . .
aMRI | MNI305 atlas; segmentation into gray and Cortical thickness,

white-matter and cerebro-spinal fluid; gray-matter volume

cortical and subcortical parcellation.

Mean Diffusivity,
Fractional

Eddy current correction; diffusion tensor Anisotropy, fiber

DTI reconstruction; FACT fiber tracking
R . count, node degree,
estimation; registration to aMRI .
clustering
coefficient
Motion correction; 8 mm Gaussian -
. A Relative Standard
PET smoothing; relative Standard Uptake M

Values estimation; registration to aMRI Uptake Values

identifies and processes the different subjects in batch and
specifically for each modality. Due to the specificities of each
imaging modality, these will be discussed next.

aMRI is the first modality to be processed by the toolbox.
This is the only modality that is required to be processed first as
it defines the non-linear transform (subject-template) that is fur-
ther applied in all other modalities. Using pipelined Freesurfer,
the following pre-processing steps were applied: non-para-
metric non-uniform intensity normalization; skull stripping;
affine and non-linear registration to the MNI305 atlas; segmen-
tation into gray and white-matter and cerebro-spinal fluid; and
parcellation into cortical and subcortical regions-of-interest
(ROIs) according to the Desikan-Killiany-Tourville atlas. The
imaging metrics used in this study, including cortical thickness
(CThk), and gray matter volume (GMV) for cortical ROIs and
GMV for subcortical ROIs, are then collected and organized
from Freesurfer output using a specific toolbox script.

Diffusion images were first corrected for eddy currents using
eddy_correct function (corrects for eddy current-induced distor-
tions and subject movements; available through FSL), and the
diffusion tensor was reconstructed from the raw images using
dti_recon function (available through Diffusion Toolkit). From
the reconstructed images, the Mean Diffusivity (MD) and Frac-
tional anisotropy (FA) maps were produced. Deterministic fiber
tracking was also performed with the diffusion toolkit using
the Fiber Assignment by Continuous Tracking (FACT) algo-
rithm to generate the streamlines from diffusion data. The T1-w
image was then affine registered to the b0 diffusion image, and
the transformation applied to the atlas image registered to the
T1-w (obtained through the aMRI pipeline). The registered atlas
image is then used to extract the mean MD, FA and fiber count
for each ROI.

PET images were first corrected for motion using SPM and
smoothed with an 8 mm Gaussian filter. The summed activity
was obtained from the dynamic PET data and affine registered
to the T1-w image. The aligned ROIs were then mapped back
to the PET space. The summed image was then transformed to
relative Standard Uptake Values (rSUV) with the cerebellum as
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the reference ROI. The registered atlas image was once more
used to extract the mean rSUV for each ROI.

2) Data Analysis: For each extracted metric the average and
standard deviation value for each of the studied groups (CTRL,
EMCI, LMCI, and AD) was automatically obtained.

Additionally, from fiber tracking data, structural connectivity
matrices were automatically computed by determining the
number of fibers connecting each ROI pair (FiberConn).

Then, using Graph theory analysis, the node degree (Deg) and
clustering coefficient (ClusC) metrics were calculated from the
matrices. Deg represents the number of regions to which a par-
ticular region is connected to, and thus translates how much that
region is integrated or communicates with different networks.
ClusC of a region represents the fraction of that region’s neigh-
bours (i.e. to which the region is connected to) that are neigh-
bours of each other, and therefore translates how segregated is a
particular region and associated network regarding others. This
segregated network may correspond, for instance, to a particular
brain function.

D. Statistical Analysis

Subject group demographic data (age and gender), ApoE
genotype and MMSE scores were analysed regarding mean,
standard deviation, and range values, and regarding absolute
frequencies when appropriate. Subject groups (controls and
patients) where compared regarding age and MMSE using
Kruskal-Wallis and Mann-Whitney U tests, and Gender and
ApoE genotype using the Chi-square test. Non-parametric tests
were used due to the low number of subjects per group. The
statistical analysis was done using PASW Statistics 21 software
and a significance of p < 0.05 was used.

Statistical differences between each 2 groups were computed
directly by the toolbox for each imaging and connectivity metric
and also for FiberConn. Here, the Mann-Whitney U test with
p < 0.05 was also used whilst controlling for age and gender.

Summarizing, the analysed metrics for this study were: CThk
and GMV from aMRI; MD, FA, Deg, ClusC and FiberConn
from dMRI and rSUV from 18F-AV-45 data.

III. RESULTS AND DISCUSSION

In this section group characterization will be firstly discussed
regarding values and statistical tests performed. Then connec-
tivity results and imaging metrics will be presented and dis-
cussed for each group comparison (e.g. CTRL vs EMCI). Fi-
nally, an overall discussion will be done regarding findings for
all groups studied.

A. Group characterization

It can be seen from Table I that MMSE scores decrease
monotonically from the CTRL to the EMCI, LMCI and AD
patient groups, as expected. In fact a highly significant overall
difference in MMSE was found using Kruskal-Wallis test
(p = 0.000). Individual comparisons between group pairs
using the Mann-Whitney test hold also significant differences
(p < 0.010) with the exception of CTRL vs EMCI with no
observable significant difference.
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CTRL vs EMCI

CTRL vs LMCI

EMCI vs AD

Fig. 1. Connectograms for CTRL vs (EMCIL, LMCI and AD), for EMCI vs (LMCI, and AD), and for LMCI vs AD. The outermost rings represent Freesurfer
T1-weighted segmented cortical (right hemisphere—light gray; left hemisphere—darker gray) and subcortical (black) brain regions. The inner rings from the outer-
most to the innermost respectively represent gray matter volume, cortical thickness, mean diffusivity, fractional anisotropy, node degree and clustering coefficient
of the structural DTI matrix, and PET relative standard uptake value. Red and blue squares respectively represent significant lower or higher values of the corre-
sponding ring metric for the second group in comparison to the first. In the center is a representation of structural DTI connectivity (fibers connecting different
brain regions). Red and blue lines respectively represent significantly decreasing or increasing number of fibers between groups. Here more intense colors represent
higher significances and therefore larger group differences. The Mann-Whitney U test was applied with significance p < 0.05. (see supplementary material for a

higher magnification of this image).

This exception is to be expected if one considers that often
small differences in the clinical assessment and the limitations
of neuropsychological testing can result in one subject being
classified in one or another group, especially when clinical find-
ings are subtle and diagnosis is unsure as is the case of pa-
tients with EMCI [12]. Additionally, statistical tests showed
that the 4 groups are age- (Kruskall-Wallis and Mann-Whitney
tests), gender and ApoE genotype matched (Chi-square tests),

meaning that differences between groups found in the following
analysis should arise from pathology only and/or other co-vari-
ables herein not considered. This is crucial since age, for ex-
ample, has been proven to confound the effect of AD in specific
regions along the cortical surface [18], [19].The multimodal
imaging connectivity group comparison analysis is presented in
Fig. 1 and Table III, and will be discussed further below.
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B. Connectivity Analysis CTRL vs EMCI

Even though, no significant differences were observed be-
tween groups regarding demographics, ApoE genotyping and
MMSE scores, differences in several temporal lobe regions
were observed regarding different imaging and connectivity
metrics. Particularly, the left hemispherical (Lh) inferior tem-
poral gyrus (ITG) showed a decrease in GMV and the superior
temporal gyrus (STG) showed a decrease in GMV and also an
increase in MD. The right hemispherical (Rh) ITG and the tem-
poral pole (TP) both showed an increase in MD and a decrease
in FA, and the Rh STG showed only an increase in MD. All
the identified temporal regions are known to be affected in AD,
namely regarding the loss of gray-matter and tissue architecture
resulting in a decrease in GMV and an increase in MD [20].
A decreasing structural connectivity was also observed for
the Rh-STG and the Hippocampus (Hip). In fact, for the Hip,
changes were observed in white-matter (decrease in the number
of tracts) whilst no GMV changes were observed which agrees
with a recent work, where it was observed that white-matter
changes precede hippocampal atrophy in EMCI patients [21].

Additionally, an increase in Deg and a decrease in ClusC
were observed for the Lh medial orbito-frontal cortex (MeOFC)
and Rh superior parietal lobule (SPL) and Nucleus Accumbens
(Acc). The Rh-SPL also showed an increased rSUV, consistent
with the uptake of the beta-amyloid specific 18F-AV-45 tracer.
These regions are also known to be affected in AD [20], [22],
[23]. In particular, structural changes in the orbitofrontal cortex
have been observed in patients with MCI and AD 4 years be-
fore any cognitive symptoms [24]. Interestingly, in this work
changes were identified using the connectivity metrics but not
the imaging metrics, suggesting that the former may be more
sensitive to particular tissue structural changes than imaging
metrics. More recent studies have validated this finding and
further evaluated the use of different features in the differen-
tiation between MCI and AD groups, and controls, suggesting
improvements in the accuracy of the classification when using
network measures [25], [26]. The fact that Deg increases and
ClusC decreases may suggest that these regions establish addi-
tional connections with regions other than the ones from the tra-
ditional network as a means to compensate other brain regions
losses. Given the small studied groups further studies would be
necessary to confirm this hypothesis.

C. Connectivity Analysis CTRL vs LMCI

It can be observed from the connectograms in Fig. 1 that
differences between groups were more extensive. In particular,
changes in additional temporal lobe regions associated with AD
were observed, including the: ITG, STG and middle temporal
gyrus (MTG), Hip, Amygdala (Amg), and entorhinal cortex
(ERC). Also, other regions known also to be changed in AD
were observed, including: the fusiform gyrus (FG) bilaterally,
the supramarginal gyrus (SMG), the inferior parietal lobule
(IPL), the precuneus (PCn) and the frontal pole (FP) [27].

Again, the connectivity metrics identified changes regarding
the Deg and ClusC of the MeOFC. Intriguingly, the Rh-MeOFC
showed an opposite behaviour to what was described before for
the Lh-MeOFC: a decrease in Deg and an increase in ClusC.
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This fact could be interpreted as a region losing some of the
connections to the outside of its nearest- neighbour network,
resulting in an increased segregation. Nonetheless, an overall
decrease/increase in structural connectivity was observed in the
Lh/Rh, respectively. It is also worth considering that although
AD causes cell atrophy locally and it might have a specific pat-
tern of progression which affects the white matter tracts in dif-
ferent ways [28], some studies, have actually reported different
results in connectivity for the same regions [29].

Additionally, an overall rfSUV increase was observed in the
patient group, with the exemption of most basal ganglia struc-
tures. Interestingly, the putamen showed also a higher 18-AV-45
uptake which is consistent among patient groups EMCI, LMCI
and AD. Uptake changes in the putamen have also been ob-
served in other studies [30], [31].

D. Connectivity Analysis CTRL vs AD

In this comparison, even more pronounced changes compar-
atively to both CRTL-EMCI and CRTL-LMCI were observed.
In fact, several of the regions identified as different between
CTRL vs LMCI, were here different as well, and also different
in additional metrics. Such are the cases of the Lh-ITG, MTG,
SMQG, and of the Rh-TP, Hip, ERC, IPL, parahippocampalgyrus
(PHQG), and several parcels of the middle frontal gyrus (MFG)
and the insula (Ins). Most of the changes were observed as GMV
and CThk decreases and MD increases [20]. In fact, MD has
been identified as a more sensitive measure than FA to identify
differences between controls and different groups, such as MCI
and AD [32], which might explain why there were changes in
MD in more regions than when compared to FA.

As before, the Lh-MeOFC showed an increase in Deg and
a decrease in ClusC. Also, a decrease in ClusC was observed
for Lh-Hip and Amg, and an increase in ClusC was observed
for Rh-TP. Interestingly, the Lh-Hip also showed a decrease in
rSUV which suggests an extensive tissue change. Otherwise, the
overall increase in rSUV translates the extensive dissemination
of beta-amyloid deposition [30].

Lastly, a bilateral decrease in connections with the Hip and
with other temporal structures such as the Amg, PHG, STG,
MTG, ITG, and TP and also with FP were observed suggesting
an extensive compromise of the brain’s structural connectivity.
This finding is corroborated by previous studies that have im-
plicated changes in cortical regions such as the PHG regarding
white matter, which helps explaining and predicting the progres-
sion of the disease [33].

E. Connectivity Analysis EMCI vs LMCI

Differences between the EMCI and LMCI groups were ob-
served mainly in the Lh-FP, which could translate the deteri-
oration of cognitive functions as assessed by the MMSE. Ad-
ditional changes were observed in the MTG, ERC, PHG, Amg
and also in the cingulate gyrus and in the basal ganglia: palidum
(Pd), putamen (Pt) and thalamus (Tha). These latter changes
could also be associated with cognitive decline [34].

Further, the Rh-Tha showed a decrease in ClusC and in rSUV
and the Lh-Tha showed a decrease in the number of fibers con-
necting to the TP. Additional decreases in the number of fiber
connections included: Lh-FP and Lh-Ins; Lh-STG and Lh-ITG;
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TABLE III
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REGIONAL SIGNIFICANT CHANGES IN MULTIMODAL IMAGING METRICS AND CONNECTIVITY PARAMETERS IN SUBJECT GROUPS COMPARISONS

CTRL vs EMCI CTRL vs LMCI CTRL vs AD EMCI vs LMCI EMCI vs AD LMCI vs AD
GMYV increases Lh-Bankstss Rh-CerebC
Lh-Hip, Amg,
ERC, ITG, MTG, Lh-Hip, Amg, ERC, Lh-FP,iCG, Lh-Hip, Amg, ERC, LhA <O
GMV decreases | H-STG, ITG, parsT, STG, MTG, PHG, parsO, SMG; | MTG, ERC, PHG; Rh_'LO°l§épaaeré
parsT SMG, FP; Rh-ERC, IPL, ITG, Amg; Rh-ERC, PHG, Hip, = Ap ’
Rh-ITG, Hip; parsO, TP, Hip, Amg th-PHG Amg 1p, Acc
Amg
Lh-Bankstss, caMFG,
PHG, PoCG, SPL STG Lh-MTG, PG,
Lh-MTG. STG- ’ SlVfG' > > PoCG, SPL, STG, Lh-STG, SMG;
CThk decreases Lh-PCG ; > > Lh-FP SMGQ, Ins; Rh-CaCG, PoCG,
Rh-ERC, ITG Rh-Bankstss, caCG, ERC,
Rh-ERC,IPL, MTG, raCG, STG, SMG
FG, IPL, MTG, PHG, PCn. SPL
PCn, SPL, STG, SMG, ?
TP,
Lh-STG, Cd, . .
iCG: Lh-Hip, Amg, Lh-Hip, Amg, FG, iCG,
Rh-CerebC CG, FG, IPL, | MIG pCG, PCn, MG,
TP ‘;T"G ’ igiG oG PO SFG, STG, TP, Ins; Lh-Hip, ERC, ITG, Lh-ITG, MTG;
MD increases g 4 - PLL; > Rh-Bankstss, FG, IPL, Lh-caCG MTG; Rh-ITG, SMG,
caMFG, MTG, Rh-caMFG, FG, . . .
K iCG, MTG, Pcal, PCn, Rh-ITG, Hip Hip
STG, FP, IPL, ITG, iCG, IMFG. STG. Cd_ Hi
CerebC, Pt, Pd, | MTG, PCal, Amg » 1%, LG AP,
A Amg
mg
Lh-Pd;
MD decreases Lh-parsO Rh-Pd, FP Rh-Pt, Pd
] ] Lh-IPL,McOFC;
FA increases Lh-PCn; Rh-pCG, SMG Lh-Pt Rh-PA, |y G SMG, FP,
Rh-parsO raCG,
TP, Pd
Lh-TP;
FA decreases Rh-ITG, TP Rh-Amg Lh-CerebC
Lh-MeOFC;
Deg increases Rh-SPL, Lh-MeOFC, Lh-ERC
CerebC, Acc
Lh-ERC;
> Lh-LOC, PCG, Lh-raCG; Lh-PCG; Acc
Deg decreases Lh-parsO Rh-Bankstss, Rh-parsO, PCn Rh-SPL Rh-PCG, Acc Rh-ITG, Acc
MeOFG
ClusC increases Lh-parsO Rh-MeOFC Rh-TP Rh-Tha Lh-IPL Rh-PaCG, TP
Lh-MeOFC; . .
ClusC decreases | Tha, IPL, Lh'%ﬁ;:é‘é)m Lh-Hip, Amg, MeOFC Rh-parsO Lh- ERC, PHG,
Rh-SPL, Acc
Lh-PCG; .
SUVinenaes | TP | Ol | ovnllocmmnsbaal | g e | oA
caMFG, Pt, Pd gang gang
rSUV decreases Lh-Hip Rh-Tha, Lh-Hip; Rh-Hip, Tha Rh-Hip
Decrease s Bilateral
Bilateral decrease in highlight: Lh- Decrea‘se highlight: decreasing and
Decrease . . . . Rh-Tha; Rh-Acc and X :
Lo Decrease connections with the Hip Tha and Lh-TP; X increasing
highlight: Rh- ) S . Rh-Pt; Increase .o
. . especially within and with other temporal Lh-FP and Lh- C connections;
FiberConn STG and Rh-Pt; O - X . highlight: Lh-STG and .
Rh-Hip and Rh the Lh; increase in structures: Amg, PHG, Ins; Lh-STG Rh-STG: ral Bilateral
e the Rh STG, MTG, ITG, TPand | and Lh-ITG; terhemisohorioal decreasing
also with the FP Rh-STG and connections gecmase d connections with
Rh-PCn the Hip

The table shows main significant regional increases and decreases in imaging metrics and connectivity parameters for the second group in comparison to the
first. Regions with 2 or 3 changes (except rSUV) are displayed in bold, and underlined, respectively. In the rSUV rows are described specific regions or an overall
appreciation. SC = structural connectivity; GMV = gray matter volume; CThk = cortical thickness; MD = mean diffusivity; FA = fractional anisotropy; Deg = SC
node degree; ClusC = SC clustering coefficient; rSUV = relative standard uptake value; FiberConn = number of fibers connecting pairs of regions (SC); Rh — right
hemispherical; Lh — left hemispherical; acronym suffixes G = gyrus, L = lobule, C = cortex, and P = pole; ITG = inferiortemporal; MTG middletemporal; STG =
superiortemporal; TTG = transverse temporal; SMG = supramarginal; SPL = superior parietal; IPL = inferiorparietal; LG = lingual; FG = fusiform; TP =
temporal; FP = frontal; MeOFC = medial orbito-frontal; LOFC = lateral orbito-frontal; rMFG = rostral middle frontal; SFG = superior frontal; LOFG = lateral
orbitofrontal; LOG = lateral occipital; iCG = isthmus of the cingulate; caCG = caudal-anterior cingulate; raCG = rostral-anterior cingulate; pCG = posterior
cingulate caMFG = caudal middle frontal; PHG = parahippocampal; parsO = pars orbitalis; parsT = pars triangularis; parsOp = pars opercularis; PCal =
pericalcarine; ERC = entorhinal; Amg = amygdala; Hip = hippocampus; Acc = accumbens; Cd = caudate; Pd = pallidum; Pt = putamen; Tha = thalamus; Ins =
Insula; Cn = cuneus; PCn = precuneus; PCG = precentral; PaCG = paracentral; PoCG = postcentral; Bankssts = banks of the superior temporal sulcus; CerebC =

cerebellum. No CThk increases were observed. The Mann-Whitney U test was applied with significance p<0.05.

and Rh-STG and Rh-PCn. These regions have been recently as-
sociated with differences in cortical thicknesses observed be-

tween these two groups of patients [35].

F. Connectivity Analysis EMCI vs AD

In this test, the observed differences are similar to the ones

found in the comparison between CTRL and AD groups. The
main differences include the extension of changes of the ERC
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and PHG regarding decrease in GMV and CThk and increase in
MD, suggesting that these structures are particularly affected in
the progression from EMCI to AD. As before, the Lh-MeOFC
appears to have a role in disease progression, as it is known to
have strong connections to the hippocampus and the ERC and
participate in decision-making and reward cognitive processes
[36], [37].

Interestingly, a bilateral Deg decrease in the precentral gyrus
(PCG) and the Acc was observed. The latter also showed in-
creased rSUV. This suggests that PCG changes may be associ-
ated with known gait variability in MCI and AD patients [38]
and increased changes in Acc [37].

Finally, decreases in rSUV were also observed for Hip bilat-
erally and for Rh-Tha, and also several inter-hemispheric con-
nections were observed to be reduced.

G. Connectivity Analysis LMCI vs AD

It can be observed that the main differences between groups
are related to a higher predominance of changes in temporal re-
gions such as the Hip and the ITG, and also of the SMG and
the Acc. Interestingly, the GMV observed to be decreased bilat-
erally for the pars orbitalis may be related to known deficits in
semantic fluency [39], [40].

Once more, the Hip showed decreased rSUV with bilateral
decreasing number of fiber connections, which may translate an
increased damage to this structure.

H. Overall Connectivity changes in AD

Although this study is preliminary and based in a small co-
hort, the obtained results are in agreement with the main known
findings regarding AD, such as: a decrease of both GMV and
CThk [41], and an increase of the MD in temporal, frontal and
parietal regions [42], [43]; an increasingly compromised whole-
brain structural connectivity [44], [45]; and also a generalized
increase in the accumulation of beta-amyloid plaque [46], [47].
Moreover, our preliminary results showed a low sensitivity of
the 18F-AV-45 radiotracer for differentiation between CTRL-
EMCI and LMCI-AD; and a reduction of fiber connectivity with
the progression of the disease, especially for intra-hemispherical
connections.

This study is also in agreement with a very recent study [48]
in which a related dataset and connectivity analysis were also
used. The authors of this study concluded that the beta-amyloid
burden, as measured by 18F-AV-45, was related to changes in
structural connectivity metrics.

In addition, it was shown that the MIBCA toolbox is a
framework suitable for automated processing and comprehen-
sive analysis of multimodal data, with the potential to facilitate
the discovery of new aspects of physiopathology and novel
biomarkers of disease.

IV. CONCLUSION

The potential of the MIBCA toolbox for the automatic
pre-processing, analysis, visualization and integration, of neu-
roimaging data applied to the study of AD was presented. The
findings obtained using the toolbox were in agreement with the
literature for AD. In addition, significant differences in both
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imaging and connectivity metrics found in group comparisons,
such as in CTRL vs EMCI, warrant further investigations
which may lead to the identification of biomarkers for early
AD diagnosis.

In resume, the MIBCA toolbox can integrate multimodal in-
formation without increasing the workload of the researcher.
The researcher is only required to manually place the imaging
data in the specified hierarchy, defining the different contrasts
and regression variables, and then select, in the toolbox’s in-
terface, the data types and the analyses to be performed. The
following pre-processing and analyses is done automatically in
batch. The researcher is finally able to explore the data through
an integrated visualization tool. These features make the toolbox
especially useful for novel and improved studies where mul-
timodal information is presented, such as in hybrid MR/PET
scanners.
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