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Abstract— The majority of existing computer-aided diagnosis
(CAD) schemes for Alzheimer’s disease (AD) rely on the
analysis of biomarkers at a single time-point, ignoring the
progressive nature of the disorder. Recently, a method was
proposed by Gray et al. [1] for the multi-region analysis of
longitudinal fluorodeoxyglucose positron emission tomography
(FDG-PET) images which reported classification improvements
by using regional signal intensities combined with regional
change over a 12 month period. In this paper we extend
the approach proposed in [1] to the analysis of the entire
brain pattern. Compared to [1], our method uses voxel-
wise differences and avoids segmentation of the images into
regions of interest. For our study, FDG-PET scans at the
baseline and at 12-month follow-up of cognitively normal
(CN), mild cognitive impairment (MCI) and AD subjects were
retrieved from the Alzheimer’s disease neuroimaging initiative
(ADNI) database. For both AD and MCI identification, the
best classification results were achieved by combining cross-
sectional and longitudinal information rather than using only
the cross-sectional data. Furthermore, the longitudinal voxel-
based analysis outperformed multi-region analysis.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder
and the most common cause of dementia in the elderly. AD
is characterized by long-term memory loss along with the
progressive decline of other cognitive functions and a cure
has not been found yet [2]. The onset of AD is typically
preceded by an intermediate stage known as mild cognitive
impairment (MCI) [3]. Since AD is a progressive disorder,
the diagnosis of the MCI stage is crucial in order to enable
earlier therapeutic intervention which would offer greater
protection against further neuronal damage. Fluorodeoxiglu-
cose positron emission tomography (FDG-PET) has been
reported as a powerful MCI and AD biomarker. Several
FDG-PET studies have shown that metabolic patterns and its
progression along time differ from cognitively normal (CN),
MCI and AD subjects. For example, a reduced FDG-PET
metabolism within specific brain regions in AD and MCI
patients compared to CN individuals was reported in [4] and
[5]. In their 3-year longitudinal study, de Leon et al. [6]
concluded that metabolic reduction along time could predict
the conversion from CN to MCI or AD. In 2010 Chen et
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al. [7], compared the decline of brain metabolic rate over 12
months in CN, MCI and AD patients reporting significant
group differences. Despite of the findings in [6] and [7],
when the utility of incorporating longitudinal information
was tested by Hinrichs et al. [8] in their multimodality
approach, the results obtained suggested that longitudinal
data alone are not sufficient to accurately identify AD. Two
approaches using FDG-PET data were considered (voxel-
wise temporal differences and voxel-wise temporal ratio) and
both performed worse than cross-sectional data. In 2012,
Gray et al. [1] proposed a multi-region approach to evaluate
the combination of cross-sectional with longitudinal FDG-
PET imaging data. They reported a classification accuracy
improvement by using regional signal intensities combined
with regional change over a 12 month period. The aim of the
present work is to extend the method proposed in [1] to the
analysis of the whole brain voxel pattern for the classification
of CN vs AD and CN vs MCI. Since our method uses a
voxel-wise approach, the procedure of segmenting the brain
into regions of interest is avoided.

II. MATERIALS AND METHODS

A. Subjects

The data used in this study were retrieved from
the Alzheimer’s disease neuroimaging initiative (ADNI)
database (http://adni.loni.usc.edu/). The ADNI study enrolls
CN, MCI and AD subjects and its primary goal is to develop
imaging, clinical, genetic and biochemical biomarkers for
early detection and tracking of AD. For our study, data from
participants with baseline and 12-month follow-up FDG-
PET scans were used. Imaging data from 223 subjects were
used, 66 were from CN subjects, 109 from MCI subjects
and 48 from AD subjects. Some demographic and clinical
information (CDR - Clinical Dementia Rating, MMSE -
Mini-Mental State Examination) at baseline of the study
population is presented in TABLE I. Age and gender of
the different clinical groups do not vary significantly (p-
value>0.05) according to the t-test performed between the
different group pairs (CN vs AD, CN vs MCI, MCI vs AD).

B. Image Processing

1) Registration: In order to make voxel-wise compar-
isons, all images were warped into the MNI152 standard
space. The warping procedure used PET and MRI images,
both of which had undergone a sequence of preprocessing
steps by ADNI researchers to eliminate meaningless differ-
ences. Firstly, the brain tissue in all MR images was extracted
(skull-stripping) and then segmented into white-matter (WM)
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TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE STUDY

POPULATION (MEAN ± STANDARD DEVIATION)

. Group CN MCI AD
No. of subjects 66 109 48
Gender (M/F) 41/25 69/40 27/21

Age, mean ± SD 75.9 ± 4.5 74.8 ± 7.1 76.5 ± 6.7
CDR, mean ± SD 0.0 ± 0.0 0.5 ± 0.0 0.8 ± 0.2

MMSE, mean ± SD 29.1 ± 1.0 27.2 ± 1.6 23.4 ± 2.0

and gray-matter (GM). The extraction of brain tissue was
performed with FreeSurfer [9] and tissue classification was
conducted with SPM8 [10]. Secondly, all PET images were
co-registered with the corresponding skull-stripped MR im-
ages using SPM8. In order to conduct these co-registrations
rigid-body transformations (6 degrees of freedom) and an ob-
jective function based on the ”sharpness” of the normalized
mutual information between the two images was used [11].
Thirdly, the MR images acquired at baseline and month 12
for each subject were non-linearly registered into a subject-
specific template using the DARTEL toolbox from SPM8
[12]. Finally, all MR images taken during the screening
visit were non-linearly registered to an inter-subject template
using DARTEL. The template was then mapped to the MNI-
ICBM 152 non-linear symmetric atlas (version 2009a) [13]
using an afine transformation. After completing the above
steps, the original PET and MR images were resampled
into the MNI152 standard space with a 1.5×1.5×1.5 mm
resolution using the appropriate composition of transforma-
tions. The final images were represented by a 121×145×121
matrix.

2) FDG-PET Normalization: Intensity normalization of
FDG-PET images is usually performed relative to the cere-
bral global mean. However, this procedure requires that the
cerebral global mean does not vary significantly between the
subjects under study, which usually does not occur in neu-
rodegenarative disorders such as AD. Hence, this procedure
conducts to an attenuation of the differences between clinical
groups, since the intensity signal of FDG-PET images from
patients are artificially scaled up while those from healthy
individuals are scaled down. Therefore, this type of normal-
ization results in an apparent hypometabolism for healthy
subjects in regions that are known to be relatively preserved
in AD, such as the brainstem, cerebellum, basal ganglia
and sensorimotor cortex [14]. Recent studies suggest that
using these preserved regions instead of using the cerebral
global mean for normalization leads to an improvement
of the clinical groups discrimination [15]. However, these
methods require that the regions are defined a priori without
knowing if in fact these regions are the most preserved in the
group of subjects under study. In 2009, Yakushev et al. [16]
proposed a different approach to define a reference cluster
for normalization. This method relies on defining a reference
cluster a posteriori, and consists of 2 iterations. In the first
iteration, a cerebral mean global normalization is performed.
Then, in the second iteration a t-test is conducted in order to
find the apparently hypermetabolic (p-value<0.05) regions

in the patient group compared to the healthy one, and these
regions are chosen to be the reference cluster. This procedure
relies on the principle that the apparently hypermetabolic
regions found in the pathological group compared to the
healthy control one are in fact preserved regions. In our
work, intensity normalization of the FDG-PET images was
conducted performing this reference cluster method.

C. Feature Selection

Two different types of features were tested for clas-
sification. One of the sets was based on a multi-region
approach, using only the mean intensity of brain regions as
features. The other set included intensity of all brain voxels
as features. These two different approaches are explained
below:

1) Multi-region analysis: In order to obtain regional fea-
tures, an atlas developed by Desikan et al. [17] was used
to automatically segment the whole brain into 69 anatomical
regions. The atlas was used to segment both baseline and 12-
month follow up images. The mean of the signal intensity
of each region was extracted for the two imaging time-
points. Furthermore, the regional change over a 12 month
follow-up was determined. Two different sets of features
were used for classification. One set contained only cross-
sectional information (signal intensities of the baseline or at
12-month follow-up images), and the other set contained the
cross-sectional combined with the longitudinal information
(regional change over 12-month follow-up) by simple con-
catenation. A 10-fold cross validation strategy was used to
assess the classification accuracy, i.e., the dataset was split,
90% was used for training and 10% was used for testing. This
process was repeated 10 times in order to avoid any bias due
to the random partition of the dataset in cross-validation.

2) Voxel-based analysis: For the voxel-based analysis,
the signal intensity of intracerebral voxels were used as
features, summing up a total of 486353 voxels. In order
to select the most discriminative voxels between clinical
groups, a feature ranking method was applied. The rank
score was the t-test performed between two different pairs
of clinical groups (CN vs MCI and CN vs AD). The t-value
obtained reflects the rate of atrophy of the AD and MCI
patients in each voxel compared to the CN. Voxels with
larger absolute t-values correspond to higher atrophy rates
thus with higher discriminative power. For our classification
experiment, sets with varying number of features were used,
starting with 1000 features (the 1000 voxels with higher
absolute t-values), and in each iteration 1000 features were
added, going up to a maximum of 15000 features. Similarly
to what was done in the multi-region analysis, two types
of features were used. In one of the sets, the features were
simply the voxels selected by our feature selection method
in a single time-point imaging data (baseline or 12-month).
The second set also included the longitudinal information,
i.e., the change over the follow-up period of the 15000
features selected in a single-time point. The longitudinal
change was obtained by subtracting the intensity of each
voxel at the baseline from the intensity of the correspondent
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voxel at month 12. Moreover, in order to select the most
discriminative longitudinal features from the 15000 features
selected in the single time-point, an additional step was
performed. Assuming that voxels with higher differences
along the follow period correspond to brain regions with
higher atrophy rate due to the progress of the disease,
the longitudinal differences of each feature were sorted in
descending order. Hence, in each iteration, voxels with higher
differences between the two-time points were selected first
for the classification. In this set each subject had 2000 (1000
cross-sectional features plus 1000 longitudinal features) up
to a maximum of 30000 features for classification. The
cross-sectional and longitudinal information were combined
by simple concatenation of features. Again a 10-fold cross
validation strategy was performed to assess the classification
accuracy, and the result was averaged over the 10 folds. This
process was repeated 10 times.

D. Classification

A support vector machine (SVM) was used as classi-
fier implemented on LIBSVM matlab toolbox [18]. For
the multi-region analysis, since the number of features is
relatively well balanced with the number of subjects, a
radial basis functions (RBF) kernel was used along with
the optimization of the C (range: 10E-6 to 10E2) and γ

(range: 10E-5 to 5E-2) parameters by performing a grid-
search using 5-fold cross validation within the training set.
For the voxel-based features, since the number of features
were much larger that the number of subjects, a linear kernel
was chosen. The C parameter value (range: 10E-6 to 10E2)
of the SVM algorithm was also tuned using a 5-fold nested
cross validation strategy.

III. RESULTS

A. Classification Experiments

In Fig.1, the results of the voxel-based approach for the
classification of CN vs AD are presented. The upper plot
shows the classification accuracy using the signal intensity
of the voxels at the baseline and the classification accuracy
using the signal intensity of the voxels at the baseline
combined with the change of the signal intensity over a 12-
month period. As one can observe, better results are achieved
by combining cross-sectional and longitudinal information.
According to the t-test, these two results are significantly
different (p-value<0.05). The bottom plot exhibits the clas-
sification accuracy obtained when using the signal intensities
of the voxels at 12-month follow-up images as features, and
the classification accuracy using this information combined
with the change over the follow-up period. In this case,
the results of the t-test performed to the differences in the
classification results using these two sets of features show
that these are not statistically different (p-value>0.05).

Fig.2 presents the same results as Fig.1 but now for the
CN vs MCI classification. The upper plot represents the
results using the signal intensity of the voxels of the baseline
images and results of the combination of this information
with the change of the signal intensity over 12-month. Again,

Fig. 1. Classification accuracy for CN vs AD as a function of the number
of features. The averaged accuracy and the standard deviation were obtained
using 10-fold cross validation repeated 10 times.

higher classification accuracy is achieved when combing
the cross sectional and longitudinal information, and these
differences are statistically significant according to t-test (p-
value<0.05). The bottom plot shows the classification results
when using the imaging data at the 12-month, and also this
information combined with the change over the 12-month
follow-up period. The differences of the results using these
two different sets of features are statistically significant (p-
value<0.05).

Fig. 2. Classification accuracy for CN vs MCI as a function of the number
of features. The averaged accuracy and the standard deviation were obtained
using 10-fold cross validation repeated 10 times.

Classification results using the multi-region approach are
displayed in Table II. In order to compare this method
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with the voxel-based approach, the results obtained using
voxels as features are also shown in Table II. These results
were obtained by performing an optimization of the num-
ber of features within the training set adopting a 10-fold
nested cross validation strategy and performing 10 iterations.
For both approaches, the combination of single time and
longitudinal data led to higher classification results (with
statistical significance, p-value<0.05), in all cases except
CN vs AD at month 12. Furthermore, the voxel-based
approach outperforms the multi-region method for all the
classification experiments. The best results were achieved
for the classification of CN vs AD performing a voxel-based
approach.

TABLE II
CLASSIFICATION ACCURACY (MEAN ± STANDARD DEVIATION) OVER 10

10-FOLD CROSS VALIDATION RUNS, USING DIFFERENT FEATURES.

Group CN/AD CN/MCI

Multi-Region
Analysis

Baseline 81.1 ± 11.1 68.5± 9.5
Baseline + Change 83.3 ± 9.7 68.9 ±9.7

12-Month 87.4 ± 9.8 65.1 ±11.3
12-Month + Change 87.8 ± 9.1 65.6 ±9.6

Voxel-Based
Analysis

Baseline 84.2 ± 10.0 68.1 ± 10.6
Baseline + Change 91.2 ± 8.0 69.3 ± 10.9

12-Month 92.8 ± 6.3 69.7 ± 10.6
12-Month + Change 92.6 ± 6.7 70.2 ± 9.0

B. Selected Features

The most discriminative features (selected with our feature
ranking method more than 75% of the times) both for
CN vs AD and CN vs MCI, included regions in inferior
temporal gyrus, temporal fusiform cortex, temporal pole
and parahippocampal gyrus. These results are in agreement
with previous FDG-PET studies (for example, [5], [6]) that
reported the temporal area as one of the most affected by
the disease.

IV. DISCUSSION AND CONCLUSION

The combination of cross-sectional and longitudinal infor-
mation led to higher classification accuracy compared with
using only the cross-sectional data, for both AD and MCI
identification. Furthermore, the best results were achieved
using the signal intensity of the voxels as features instead
of using the mean signal intensity of the anatomical regions.
Similarly to the work of Gray et al. [1], our results suggest
that longitudinal data can provide useful complementary
information to improve the classification accuracy. Addition-
ally, our voxel-based method outperforms (92.6% for CN
vs AD) their multi-region approach (88.4% for CN vs AD)
using data from the same database, and does not require
segmentation of the images into regions of interest.

Despite these encouraging results, more suitable methods
for longitudinal feature selection and extraction should be
further investigated.
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