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Abstract
Image enhancement is of great importance in medical imaging where image resolution remains a
crucial point in many image analysis algorithms. In this paper, we investigate brain hallucination
(Rousseau, 2008), or generating a high-resolution brain image from an input low-resolution image,
with the help of another high-resolution brain image. We propose an approach for image super-
resolution by using anatomical intermodality priors from a reference image. Contrary to interpolation
techniques, in order to be able to recover fine details in images, the reconstruction process is based
on a physical model of image acquisition. Another contribution to this inverse problem is a new
regularization approach that uses an example-based framework integrating non-local similarity
constraints to handle in a better way repetitive structures and texture. The effectiveness of our
approach is demonstrated by experiments on realistic Brainweb Magnetic Resonance images and on
clinical images from ADNI, generating automatically high-quality brain images from low-resolution
input.
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1. Introduction
Image processing algorithm performances are often limited by the image resolution. Resolution
is for instance a key point in brain segmentation in Magnetic Resonance (MR) imaging for
which partial volume effect is a limiting factor for fine image analysis. Then, it clearly appears
that improving image resolution is still one of the main challenges in medical image processing.
In medical imaging, a so-called low-resolution (LR) 3D image is usually a stack of 2D thick
slices. As a result, 3D data are generally not isotropic. Fig. 1 shows for instance a high-
resolution (HR) T1-weighted image and a LR T2-weighted image of the same patient (in this
case, these images come from the Brainweb database Cocosco et al., 1997). In many cases, it
may be necessary to put HR and LR images into a same coordinate system. In medical imaging,
this is usually done by applying interpolation techniques (Lehmann et al., 1999). Image
interpolation is a very common image processing technique in medical imaging pipelines and
it may have a strong impact on other processing steps such as segmentation or registration.

☆Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(http://www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. ADNI investigators include (complete listing available
at http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf).
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Interpolation methods can be divided into two groups: scene-based and object-based methods
(Grevera and Udupa, 1998). Scene-based approaches use only image intensities to determine
the interpolated intensity (for instance: nearest-neighbor, linear interpolation, spline-based
interpolation). Such scene-based methods produce perceptually unsatisfactory results with
blurred edges and textures. Many edge-preserving interpolation techniques have been reported
to handle this problem. However, these techniques rely on accurate edge information that is
not obtainable from coarse data. In order to guide the interpolation process, object-based
methods make use of additional information extracted from images. As an example, non-rigid
registration techniques have been used to drive interpolation methods between adjacent slices
(Frakes et al., 2008;Penney et al., 2004). However, scene-based and object-based techniques
do not take advantage of a model of the imaging process.

Super-resolution (SR) is another model-based technique which relies on modeling the imaging
processes and using regularization methods describing a priori constraints. The principle of
this approach is usually combining LR images to produce an image that has a higher spatial
resolution than the original images (Bose et al., 2004). In medical imaging, several SR methods
have been proposed to combine LR images to reconstruct one HR image (Peeters et al.,
2004; Carmi et al., 2006; Rousseau et al., 2006) (usually by modifying the acquisition protocol).
SR is a large research field encompassing many applications. The work we present in this paper
is related to the single-frame SR framework (van Ouwerkerk, 2006), meaning that only one
LR image is used to generate an HR image. More specifically, we focus on studies involving
MR imaging for which an anatomical HR image and several other LR images are acquired to
keep acquisition time at an acceptable level for the patient (see Fig. 1). This is the case for
routinely performed clinical MR acquisitions such as follow-up of neurodegenerative diseases,
brain tumor evolution or diffusion tensor imaging. Typically, one isotropic HR T1-weighted
image and several anisotropic LR images (such as T2-weighted, FLAIR or proton density
images) are acquired. One can note that this issue of relative difference in image resolution
may also occur in other clinical settings. For instance, patient follow-up may require an analysis
of scans taken at different magnetic field strength, potentially at different clinical sites.

In such context, we propose a new approach for image SR by using information from an HR
MR image to drive the image reconstruction of the LR MR image. The general framework
developed in this paper can be applied to other domains where image resolution is an important
issue, such as remote sensing. This paper is built on previously published work (Rousseau,
2008). Many experiments have been added in order to provide further insight to the proposed
approach. In Section 2, we present the image SR problem using a model-based framework and
some recently proposed example-based approaches. Section 3 details our non-local approach
for image SR using an HR reference MR image. In Section 4, results obtained on realistic
brainweb images are presented and discussed.

2. Image super-resolution
In this section, we present the model-based framework for image SR which leads to an ill-
posed inverse problem. Then, recently proposed regularization approaches are described.

2.1. Model-based framework
Contrary to interpolation approaches, model-based approaches use a generic observation model
such as:

(1)
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where y denotes the LR image, x is the HR image, n represents observation noise, D is the sub-
sampling matrix, B a blur matrix, W is the geometric transformation.

The three operators can be combined into a single matrix H: H = DBW. The matrix H thus
incorporates motion compensation, degradation effects, and sub-sampling for the LR image
y. In this paper, we assume that the degradation operator H and the noise characteristics are
known and we focus only on the reconstruction step.

Based on this observation model, the SR image can be estimated by minimizing a least-square
cost function such as:

(2)

For such an inverse problem, some form of regularization plays a crucial role and must be
included in the cost function to stabilize the problem or constrain the space of solutions (Idier,
2008). Thus, the HR image is computed by considering the following equation:

(3)

 is a data fidelity term related to the physical model that penalizes inconsistency
between the estimated HR image x and the observed LR image y. This term depends on the
observation model used. In our case, the data fidelity term is simply defined as following:

(4)

 is a regularization term. A common approach for regularization is to take explicitly into
account the image geometry and to introduce a global weight λ that balances the contribution
of prior smoothness terms and a fidelity term.

2.2. Image regularization
Examples of popular pixel-based regularizers are:

•
Tikhonov regularization:  where cp are positive coefficients,
Ω is the domain of integration (all the voxels) and x(p) is pth-order derivative of x.

•
Variational approach:  where q is different from 2 (q = 2 is the
Tikhonov regularization).

•
Markov random field a priori image model: 
where ϕ can be a L2L1 function for instance.

However, the use of such a regularization term assumes a specific image model: for instance,
variational approaches can be based on the assumption that images are made of smooth regions
separated by sharp edges. Such prior regularization approach introduces then strong constraints
into the reconstruction process.

Explicit models for the many regularities and geometries seen in local patterns are needed to
develop better image reconstruction algorithms. In contrast to the pixel-based regularization
approach discussed above, example-based methods consists of modeling non-local pairwise
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interactions from training data or a library of image patches. The principle of example-based
SR methods is to add a similarity constraint between the voxels of HR image and the nearest
examples present in the learning database (Baker and Kanade, 2002; Datsenko and Elad,
2007). Such an approach suggests that the reconstructed image should locally look like
examples existing in the learning database. The regularization term can then be defined in a
general way as follows:

(5)

where f(x(v)) is an operator on the HR image x at the voxel v, Ω(v) is a neighborhood of v; 
is the learning database,  is a element of  related to v and wv,k is a local weight. It is
important to note that in example-based methods the regularization term  depends on the
learning database . For instance (see Baker and Kanade, 2002), f(x(v)) can stand for the
gradient value of the SR image x at the voxel v and  would be the gradient value of the best
matching pixel with respect to v in the learning database.

Although the possibility to introduce new image priors makes the example-based approach
very attractive, the key point (which can be a major drawback depending on the application)
is the need of a relevant learning database.

In this work, we proposed to take advantage of the existence of an HR reference image in the
MR imaging context and to investigate the use of a patch-based approach without any learning
database by assuming that there exist related patterns in the LR anisotropic image and an HR
isotropic image of the same patient. From the point of view of example-based techniques, the
HR iso-tropic image can be seen as a specific learning image database since information present
in the HR image is used to constrain the ill-posed reconstruction problem.

3. Proposed approach
3.1. Overview

The main idea of this work is to reconstruct an HR image using one LR image and intermodality
priors from another HR image (see Fig. 2). In this context, we propose to use a non-local patch-
based approach to define the regularization term in order to take into account complex spatial
interactions within images. Moreover, in contrast to example-based approaches for image
modeling, the proposed method is unsupervised and thus uses no image patch learning database
and no computationally intensive training algorithms.

The three key points of the proposed approach are:

• a non-local regularization functional which can handle repetitive patterns in the image
domain,

• the assumption that an HR reference image  of a patient may contain relevant
examples which should be used to reconstruct an HR image x from a LR image y of
the same patient,

• no use of external learning database.

The principle of non-local techniques is briefly described in Section 3.2. Section 3.3 presents
how the patterns of the reference image  are used to drive the reconstruction process of x.
An overview of the algorithm is provided in Section 3.4.
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3.2. A non-local approach
Recently, Buades et al. (2005) have proposed a very efficient denoising algorithm relying on
a non-local framework. Since then, this non-local strategy has been studied and applied in
several image processing applications such as non-local regularization functionals in the
context of inverse problems (Rousseau, 2008; Mignotte, 2008; Kinderman et al., 2005; Gilboa
and Osher, 2007; Peyré et al., 2008).

Let us consider a weighted graph w that links together voxels v, k over the image domain with
a weight w(v, k). This weighted graph w is a representation of non-local interactions between
image elements. In Buades et al. (2005), the graph w is used for denoising purpose using a non-
local neighborhood averaging strategy (called non-local means (NLM)):

(6)

where dNLM(x(v)) is a denoised version of x(v). The computation of the weighted graph is
described in Appendix A.

Buades et al. have shown that, for 2D natural images, the NLM filter outperforms state-of-the-
art denoising methods such as the Rudin–Osher–Fatemi Total Variation minimization scheme
or the Perona–Malik Anisotropic diffusion. The NLM method tries to take advantage of the
high degree of redundancy of any natural image and appears to be an unsupervised example-
based denoising method.

In Rousseau (2008) and Mignotte (2008), a non-local regularization functional for inverse
problems has been proposed relying on a NLM denoised version of the reconstructed image:

(7)

Such a regularization functional has the advantage over popular variational regularization
functionals to handle in a better way repetitive structures and texture without incorporating
strong priors on the reconstructed image.

3.3. A non-local regularization functional using intermodality priors
We propose to introduce into the regularization term a similarity constraint between local
patterns of the reconstructed HR image x and the HR reference image .

Let  the weighted graph estimated on the HR reference image  and wx the weighted graph
estimated on the HR reconstructed image x.

A naive approach to use intermodality priors for SR would be to directly compute the weighted
graph  and to estimate the SR image using the regularization functional defined in Eq. (7).
In this case, the denoised version of the reconstructed HR image x would be computed using
the weighted graph  in Eq. (6):

(8)
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This simple strategy relies on the assumption that local patterns in the HR reference image
 could be directly used as examples to regularize the reconstructed HR image x.2 However,

there are some cases where this assumption may not hold. In the context of MR imaging, images
 and y are not acquired with the same MR sequence. Multimodal MR data do not reveal the

same tissue specificity; for instance, Multiple Sclerosis (MS) lesions are clearly visible in T2-
weighted images but not in T1-weighted images (see Fig. 3). In this case, the HR T1-weighted
image may not be a relevant candidate to guide the reconstruction process. In order to handle
the case of possible outliers, we propose to modify the regularization term by locally analyzing
the correlation between the two graphs wx and .

For each voxel v, we define a scalar α as the correlation between the two weighted graphs
wx and . To handle outliers (such as MS lesions), we propose an adaptive scheme by
modifying the way to compute the denoised version of the HR reconstructed image x:

(9)

 is now a weighted average of two denoised versions of x(v). The first term is
the denoised version of x(v) computed by using the HR reference image  and the second
term is a denoised version of x(v) obtained with the current estimate of the reconstructed HR
image x. If the two weighted graphs are correlated, the HR reference image  is likely to be
a relevant candidate to guide the reconstruction process and thus, α is close to 1. If the weighted
graphs are uncorrelated, the presence of outliers is detected and α is close to 0. Defining

 in such way allows us to choose the best examples to regularize the
reconstructed HR image x.

We define then a regularization functional  taking advantage of intermodality priors
as follows:

(10)

where  is a denoised version of x(v) using the HR reference image  (see Eq.
(9)).

3.4. Overview of the algorithm
Require: LR image y, starting estimate of HR image x, HR reference image 

1. Compute the weighted graph 

2. repeat

3. Compute the weighted graph wx

4. Update α

5. Estimate 

6. Update x by minimizing 

2It is important to note that in example-based SR methods, the elements of the learning database used for reconstruction are image
intensities. In the proposed approach, the elements of the learning database are weighted graphs, which describe non-local interactions
between image voxels.
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7. until convergence

4. Results
To explore the ability to reconstruct high-resolution images of realistic typical anatomical brain
structures, we applied the algorithm on MRI images of Brainweb (Cocosco et al., 1997) and
real images (ADNI data).

4.1. Brainweb images
Brainweb is a simulated brain database which is often used as a gold standard for the analysis
of in vivo MR data. Using the HR image provided by Brainweb, we have generated LR images
with an in-plane resolution of 1 mm × 1 mm and a slice thickness of 3 mm, using the observation
model described by Eq. (1). As in the Brainweb simulator, the point spread function is modeled
with a boxcar function. Intensities of HR Brainweb images have been normalized between 0
and 255.

The database contains simulated brain MRI data based on two anatomical models: normal and
multiple sclerosis (MS lesions have been extracted from real MRI data). We also have
investigated the influence of Gaussian noise (in this case, both LR images and HR reference
images are corrupted with Gaussian noise). The proposed methodology has been implemented
on four cases:

1. normal anatomical model without noise,

2. multiple sclerosis anatomical model without noise,

3. normal anatomical model with Gaussian noise (σ = 10),

4. multiple sclerosis anatomical model with Gaussian noise (σ = 10),

To investigate the influence of the parameters, we use the PSNR in decibels (dB) to quantify
the quality of reconstructed images:

(11)

where MSE is the mean square error and d is the dynamic range of the image x(d = max(x) –
min(x) = 255).

In all experiments, a gradient descent method is used to optimize the cost function. The
parameter λ is set to 0.01 (this value has been estimated in order to maximize the PSNR of the
recovered image on Brainweb database).

By comparing the ground truth image with the reconstructed HR brain images, the Brainweb
dataset allows us to evaluate the influence of each parameter of the proposed approach.

4.2. Influence of the smoothing parameter β
b

Fig. 4 shows the influence of the smoothing parameter β for the computation of non-local
weights wNLM. For denoising purpose, Buades et al. (2005) show that this parameter should
be set to 1. Using the Brainweb image ground truth for normal and pathological cases, we
investigate different values of β. Based on this experiment, it appears that a small value of β
(such as 0.1 or 0.25) may significantly decrease the quality of the reconstructed image.
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However, for higher values of β, the quality of the reconstructed image does not seem to be
strongly affected which leads to the assumption that the proposed non-local approach is not
very sensitive to this setting.

4.3. Influence of the size of the search volume and the neighborhood
Figs. 5 and 6 show the influence of the size of the search volume and the local neighborhood.
Increasing the number of voxels in the search volume does not seem to affect the PSNR when
the half-size of the search volume is greater than 3. Practically, using a small value for search
volume size prevents useless computations. Concerning the patch size, it clearly appears that
a patch of 3 × 3 × 3 is of optimal size with respect to the PSNR and the computation time.

4.4. Influence of the image correlation
Fig. 7 shows the correlation map computed between the HR T1-weighted image and the HR
T2-weighted image for the multiple sclerosis Brainweb case. This figure shows that for regions
containing outliers (i.e. MS lesions), α is low. For these regions, the final image is only
reconstructed using information of LR T2-weighted image. Moreover, we also report results
obtained with fixed values of α in Table 1 (α = 0 or 1). When α = 0 (which corresponds to the
case of SR single-frame with non-local regularization), the quality of the reconstructed image
is better than using interpolation methods. However, better results are obtained using an HR
reference image during the reconstruction process (adaptive α using graph correlation or α =
1).

4.5. Quantitative comparison with interpolation methods on Brainweb images
We have reported PSNR results obtained with the different methods in Table 1. Results
obtained with the proposed approach compare favorably with B-spline interpolation. Figs. 8
and 9 show the results for non-pathological and pathological MR Brainweb images for axial,
coronal and sagittal views. Fig. 10 is a zoom in on reconstruction results and allows a better
visual comparison between interpolation method (trilinear and cubic B-spline) and the
proposed SR method. It can be seen that details have been recovered and contrast between
structures has been improved. Typical interpolation artefacts (see the skull for instance) are
less visible on images reconstructed using the proposed method.

Fig. 11 shows the difference between the T2-weighted ground truth image and the reconstructed
images (non-pathological case). It highlights the fact that the proposed framework provides a
better reconstructed image, specifically at boundaries of brain structures. As pointed out in
Section 3.3, the presence of brain lesions might introduce bias in reconstructed images using
intermodality priors. Fig. 12 shows results in MS lesion areas. Again, it appears that the
proposed method using intermodality priors compares favorably with interpolation methods.
More specifically, no spurious artefacts have been detected in reconstructed images. These
results tend to show that our reconstruction method is robust to outliers such as MS lesions.

In MS, lesions are usually less visible in T1-weighted images than in T2-weighted images. To
verify that our algorithm does not add any reconstruction artefacts, an HR T1-weighted image
has been reconstructed using an HR T2-weighted image as reference image in a pathological
case. Fig. 12 shows details of reconstructed images in a MS lesion area. It seems that the
proposed method does not add “hallucinated” (or false) lesion. This particular point is discussed
in Section 5.

In addition to PSNR values and visual assessment, an error analysis has been done in MS lesion
areas. Figs. 13 and 14 show the histograms of error reconstruction for a reconstructed T2-
weighted image (using an HR T1-weighted image as reference) and a reconstructed T1-
weighted image (using an HR T2-weighted image as reference). In both cases, the standard
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deviation of the error reconstruction distribution is smaller for our method than for interpolation
method. This tends to confirm that the proposed method allows a better reconstruction
(specifically at boundaries) and that it is robust to outliers such as MS lesions.

4.6. Results on ADNI images
Data used in the preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer's Disease (AD). Determination of
sensitive and specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time
and cost of clinical trials. The Principle Investigator of this initiative is Michael W. Weiner,
M.D., VA Medical Center and University of California, San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the US and Canada.
The initial goal of ADNI was to recruit 800 adults, ages 55–90, to participate in the research
– approximately 200 cognitively normal older individuals to be followed for 3 years, 400 people
with MCI to be followed for 3 years, and 200 people with early AD to be followed for 2 years.
For up-to-date information see http://www.adni-info.org.

The image size and resolution are, respectively, 160 × 192 × 192 voxels and 1.2 mm × 1.250
mm × 1.250 mm for the T1-axial T2-weighted image. The weighted image, and 228 × 256 ×
55 voxels and 0.938 mm × 0.938 mm × 3.000 mm for the LR T1-weighted image is first
registered to the LR T2-weighted image using a rigid transform and then the proposed SR
technique is applied. Figs. 15 and 16 show typical results obtained on the ADNI data using a
T1-weighted image as the reference image to drive the reconstruction process of an axial T2-
weighted image (the resolution of the reconstructed T2-weighted image is then: 0.938 mm ×
0.938 mm × 0.938 mm). We can observe on these figures that for the reconstructed image using
the proposed approach, the contrast of brain structures is higher than using interpolation
techniques. Typical interpolation artefacts (like staircase artefact) are less visible on the
reconstructed image. Moreover, it can be noticed that the non-local regularization framework
allows to jointly denoise and reconstruct the T2-weighted image.

To understand how the HR T1-weighted is used to drive the reconstruction process, the
correlation map is displayed in Fig. 17. It appears that the parameter α has a high value near
to the edges which means that the HR reference image is mainly used for brain region with
high contrast (interface between white matter and grey matter for instance). Conversely,
uniform and/or textured regions such as caudate nucleus or putamen are only reconstructed
using information existing in the LR T2-weighted image.

Looking at Fig. 15, one can argue that the proposed reconstructed framework leads to an over
smooth image which may not be realistic. As Fig. 18 shows the reconstructed T2-weighted
image has indeed a very similar aspect to the HR T1-weighted image denoised using the Non-
Local Mean algorithm (Buades et al., 2005). Therefore, this property of the proposed algorithm
appears to be beneficial since the proposed processing leads to a denoised HR T2-weighted
MR image.
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5. Discussion
The first contribution of this work concerns a simple idea for image SR which is the use of an
HR reference image to improve the resolution of the LR image. As previously stated, such
approach is directly related to the medical context we are interested in. However, we believe
that such new image SR approach may have a substantial impact in the image processing
research field. Moreover, possible further work can focus on the unification of this framework
with other previously proposed approaches such as object-based interpolation and registration-
based interpolation.

The second contribution is about the modeling of the SR problem introducing a non-local
regularization term. We have shown that example-based approaches such as non-local means
can be embedded into the reconstruction process to enhance the performance of super-
resolution techniques. If an HR brain image of the patient is available, LR images of the same
patient can be enhanced by exploiting non-local pairwise interactions. We believe that this
work is a new original way to tackle the problem of image enhancement in MR imaging by
exploiting the multimodality aspect of MR data. The key point of this work is the use of a non-
local approach to define a new regularization term in the reconstruction process. The proposed
methodology is related to example-based SR methods such as the one developed by Baker and
Kanade (2000) but in our case the learning database is reduced to one reference image.
Moreover, in this work we exploit non-local interactions between voxels by defining non-local
weights w (also called non-local graphs) which take into account non-local interactions in the
reconstructed image and the reference image.

Experimental results show that the developed algorithm compares favorably with interpolation
approaches. The two key points of the proposed approach, with respect to interpolation
methods, are the use of an observation model (as in SR approaches) and the use of a reference
HR image which drives the reconstruction process. Experiments on Brainweb images show
that even with the presence of lesions visible only in the LR T2-weighted image, the
reconstruction method we propose is able to recover such “outliers” without introducing
artefacts which may come from the HR T1-weighted image (where lesions are not clearly
visible). In this particular case, we would have thought that the lesions would disappear.
Although our experiments tend to show that our approach is robust to such outliers, this is a
crucial point that needs to be further investigated (small lesions, tumors, etc.). In general, this
point raises the following question: what is the influence of an interpolation or image SR
algorithm on image analysis (segmentation, detection, etc.)?

This points out that such image enhancement technique needs to be validated using physical
phantoms. Moreover, an evaluation on large database is required to prove that SR based
methods can have a significant impact on medical image processing pipelines (specifically for
registration, segmentation or change detection). Such validation can be application dependent
and thus requires a specific evaluation framework. As it has been shown in Section 4, in addition
to PSNR and visual assessment, there is a clear need to develop standard criteria to measure
image quality reconstruction of SR technique. This is a key point for image enhancement
technique particularly in medical imaging where image artefacts have to be avoided.

On one hand, this work shows that SR based techniques provides higher MR image quality
than standard interpolation algorithms. On the other hand, interpolation techniques do not
require any rigid registration step and are less time consuming (SR based methods may require
several hours per reconstruction). Based on our experiments (not shown in the paper),
registration does not introduce artefacts in the reconstructed images using the proposed
approach. If images are not correctly registered, the correlation coefficient α tends to zero
which means that the reconstruction process is only driven by the T2-weighted image.
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High-resolution imaging is a key point for MR brain image analysis in order to study anatomical
details. Since few brain image analysis algorithms take into account an observation model such
as in Eq. (1), the proposed reconstruction approach may have a substantial impact on
segmentation or registration. Therefore, such model-based HR image reconstruction algorithm
may represent an important step towards multimodal brain analysis at fine scale.

While in this work we are only focused on brain MR image reconstruction, the proposed
approach relying intermodality priors might have potential applications to other medical image
modalities. Future work would involve studying a similar method for multimodal images
(computerized tomography, diffusion MRI, ultrasound, etc.). Depending on the intended
medical application, such approach could allow to save time of data acquisition by enabling
image quality improvement as a post-acquisition step. The corner stone would concern then
the criterion for linking the different modalities (How to calculate the local correlation map?
What type of information can be used between the imaging modalities?.)
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Appendix A. A Computation of weighted graphs wx and wEx
wx and  are computed in the same way. For the sake of clarity, we describe only the
computation of wx.

The weight wx(v, k) between two voxels v and k is computed as follows (Coupé et al., 2008):

(A.1)

where P(x(k)) is a 3D patch of x centered in voxel k and P(x(v)) is the 3D patch of x centered
in voxel v; Zv is a constant of normalization; Ni is the number of voxels of a 3D patch. The
distance between the 3D patches is the sum over voxels of patches of intensity differences
using the L2 norm. The specific case concerning the central point of the patch is computed as
in Kinderman et al. (2005). With the assumption of Gaussian noise in images, β is set to 1 (see
Buades et al., 2005 for theoretical justifications) and the standard deviation of noise is estimated
via pseudo-residuals εv as defined in Gasser et al. (1986). For each voxel v of x, let us define:
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(A.2)

where Ω(v) is the 6-neighborhood at voxel v. The standard deviation of noise is computed as
the least-square estimator:

(A.3)

where n is the number of voxels of x.

Moreover, as suggested by Mahmoudi and Sapiro in Mahmoudi and Sapiro (2005), voxel
preselection can avoid useless computation and also improve the result of denoising. The
preselection of relevant voxels is based on the mean and variance of patches (Coupé et al.,
2008). wx(v, k) is set to 0 if one of these conditions is not fulfilled:

(A.4)

(A.5)

with μ = 0.95 and σ2 = 0.5.
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Fig. 1.
Example of MR Brainweb data (Cocosco et al., 1997). First row: high resolution T1-weighted
image (1 × 1 mm2 in-plane resolution, 1 mm slice thickness). Second row: low-resolution T2-
weighted image (1 × 1 mm2 in-plane resolution, 3 mm slice thickness). The purpose of the
proposed approach is to reconstruct a high-resolution T2-weighted image using information
from the T1-weighted image.
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Fig. 2.
Comparison of single image SR framework and the proposed SR approach. Single image SR
techniques aim at estimating an HR image using only one LR image as input. In the proposed
strategy, the SR estimation is done using jointly the LR image and a reference HR image.
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Fig. 3.
Illustration of possible outliers. The MS lesion (in the circle) is less visible in the HR T1-
weighted image than in the LR T2-weighted image. In this case, the assumption that local
patterns in the HR image  could be used as examples to regularize the reconstructed HR
image x does not hold.
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Fig. 4.
Influence of the smoothing parameter β on the PSNR computed with the reconstructed image
compare the Brainweb ground truth. ○, Non-pathological noise free Brainweb image; ◇,
multiple sclerosis noise free Brainweb image; ×, non-pathological noisy Brainweb image; ☆,
multiple sclerosis noisy Brainweb image.
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Fig. 5.
Influence of the size of the search volume on the PSNR computed with the reconstructed image
compare the Brainweb ground truth. ○, Non-pathological noise free Brainweb image; ◇,
multiple sclerosis noise free Brainweb image; ×, non-pathological noisy Brainweb image; ☆,
multiple sclerosis noisy Brainweb image.
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Fig. 6.
Influence of the size of the neighborhood on the PSNR computed with the reconstructed image
compare the Brainweb ground truth. ○, Non-pathological noise free Brainweb image; ◇,
multiple sclerosis noise free Brainweb image, × : non-pathological noisy Brainweb image,
☆: multiple sclerosis noisy Brainweb image.
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Fig. 7.
Estimated correlation map for the multiple sclerosis Brainweb image. First row: HR T2-
weighted image. Second row: HR T1-weighted image. Third row: correlation map (values of
the parameter a. A linear intensity scale between 0 and 1 is used to display α.) Three arrows
show MS lesion locations (axial view).
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Fig. 8.
Reconstruction results (non-pathological case). From left to right: ground truth, trilinear
interpolation, third-order B-spline interpolation, the proposed approach.
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Fig. 9.
Reconstruction results in presence of MS lesions. From left to right: ground truth, trilinear
interpolation, third-order B-spline interpolation, the proposed approach.
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Fig. 10.
Zoom on reconstruction results. From left to right: ground truth, trilinear interpolation, third-
order B-spline interpolation, the proposed approach.
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Fig. 11.
Difference between ground truth image and reconstruction results (non-pathological case, axial
view). From left to right: trilinear interpolation, third-order B-spline interpolation, the proposed
approach. The same linear intensity scale is used for the display of image differences.
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Fig. 12.
Difference between ground truth image and reconstruction results (pathological case). First
row: reconstruction of a T2-weighted image. Second row: reconstruction of a T1-weighted
image. From left to right: trilinear interpolation, third-order B-spline interpolation, the
proposed approach, MS lesion mask. The same linear intensity scale is used for the display of
image differences.
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Fig. 13.
Histogram of error reconstruction (difference between ground truth T2-weighted image and
reconstruction results) in MS lesion mask (pathological case). Mean and standard deviation of
these distributions are: trilinear (0.32; 97.62), cubic B-spline (2.10; 71.17), proposed method
(0.74; 67.72).
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Fig. 14.
Histogram of error reconstruction (difference between ground truth T2-weighted image and
reconstruction results) in MS lesion mask (pathological case). Mean and standard deviation of
these distributions are: trilinear (0.64; 27.68), cubic B-spline (2.34; 18.10), proposed method
(0.83; 7.71).
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Fig. 15.
Reconstruction results on ADNI data (the LR T2-weighted image is firstly registered on the
HR T1-weighted image). First row: nearest-neighbor interpolation. Second row: third-order
B-spline interpolation. Third row: the proposed approach.
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Fig. 16.
Zoom on reconstruction results on ADNI data (coronal view). (A) Nearest-neighbor
interpolation, (B) trilinear interpolation, (C) third-order B-spline interpolation, (D) proposed
approach.
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Fig. 17.
Estimated correlation map for ADNI images. First row: HR T1-weighted image. Second row:
reconstructed T2-weighted image. Third row: correlation map (values of the parameter α. A
linear intensity scale between 0 and 1 is used to display α).
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Fig. 18.
Zoom on reconstruction results on ADNI data (coronal view). (A) Nearest-neighbor
interpolation, (B) proposed approach, (C) T1-weighted image used as reference image, (D)
denoised T1-weighted image.
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Table 1

Performances of image reconstruction methods (PSNR in dB) using noise free Brainweb images. The proposed
method is compared with several interpolation methods. The influence of the correlation map (value of the
parameter α) on the reconstruction results is also reported.

Method Non-pathological image Multiple sclerosis image

Nearest-neighbor interpolation 23.74 20.89

Trilinear interpolation 24.65 21.61

Third-order B-spline interpolation 24.76 21.69

Fifth-order B-spline interpolation 24.73 21.67

Proposed method 32.20 29.48

Proposed method with α = 0 28.30 26.05

Proposed method with α = 1 32.09 29.16
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