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Alzheimer disease (AD) is a progressive neurode-
generative disease associated with accumulation 

of amyloid plaques and neurofibrillary tangles in spe-
cific brain regions of AD patients. These pathologic 
markers are produced because of the aggregation of 
amyloid β peptide in the brain and tau hyper-phos-
phorylation within neurons. These pathologic phenom-
ena are the cause of neuronal death and structural 
changes in the brain, which lead to the clinical syn-
drome of AD characterized by cognitive deficit, neu-
ropsychiatric symptoms, and impaired activities of 
daily living. Current treatments for AD treat the 

cognitive manifestations of AD, but none of them delay 
the progression of the disease. AD is characterized by 
reduced cholinergic activity in the brain, and 3 acetyl-
cholinesterase inhibitors (AChEIs), donepezil, galan-
tamine, and rivastigmine, are approved as symptomatic 
treatments for AD. Similarly, neuronal excitotoxicity 
related to the glutamatergic neurotransmission is 
thought to be associated with AD pathogenesis. Meman-
tine is another approved agent that acts by blocking 
glutamate overstimulation and has been shown to be 
moderately effective for the treatment of moderate to 
severe AD.

An improved understanding of cognitive decline in 
AD is clinically important for individuals and their 
families for prognosis and planning and is critically 
needed for clinical research to measure drug effects, 
particularly for dugs aimed at disease modification. A 
key measure of cognition in AD is the cognitive com-
ponent of the Alzheimer’s Disease Assessment Scale 
(ADAS-cog), which is considered the gold-standard 
primary outcome instrument for AD registration trials.1,2 

The objective of this analysis was to develop a semi-
mechanistic nonlinear disease progression model using an 
expanded set of covariates that captures the longitudinal 
change of Alzheimer’s Disease Assessment Scale (ADAS-cog) 
scores from the Alzheimer’s Disease Neuroimaging Initiative 
study that consisted of 191 Alzheimer disease patients 
who were followed for 2 years. The model describes the 
rate of progression and baseline disease severity as a func-
tion of influential covariates. The covariates that were 
tested fell into 4 categories: (1) imaging volumetric measures, 
(2) serum biomarkers, (3) demographic and genetic factors, 
and (4) baseline cognitive tests. Covariates found to affect 
baseline disease status were years since disease onset, hip-
pocampal volume, and ventricular volume. Disease progres-
sion rate in the model was influenced by age, total cholesterol, 

APOE ε4 genotype, Trail Making Test (part B) score, and 
current levels of impairment as measured by ADAS-cog. Rate 
of progression was slower for mild and severe Alzheimer 
patients compared with moderate Alzheimer patients who 
exhibited faster rates of deterioration. In conclusion, this 
model describes disease progression in Alzheimer patients 
using novel covariates that are important for understanding 
the worsening of ADAS-cog scores over time and may be 
useful in the future for optimizing study designs through 
clinical trial simulations.
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Modeling the longitudinal changes in ADAS-cog is the 
primary goal of this analysis, and it offers several poten-
tial benefits. It may allow for a more precise understand-
ing of the natural history of cognitive decline in the 
disease and thereby allow optimization of trial designs 
to detect disease-modifying effects of drugs. In addition, 
it may allow for more precise correlation of cognitive 
states with structural or chemical biomarkers that also 
change with disease. An adequate ADAS-cog model 
may facilitate identification of risk factors, demograph-
ics, and other covariates that affect baseline disease 
status and the rate of disease progression, which may 
serve as stratification variables in future clinical trials. 
Finally, the model can estimate the between-subject 
variability and residual variability associated with dis-
ease progression in AD, which is a critical factor in 
determining adequate sample size for clinical trials.

Historically, AD progression rate has been modeled 
as a linear process.3-5 Availability of long-term data from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
public database from https://www.loni.ucla.edu/ADNI 
now allows assessment of the linear disease progres-
sion assumption for AD. In ADNI, as of November 7, 
2009, 129 AD patients have ADAS-cog measurements 
available at baseline, year 1, and year 2. Initial screen-
ing of the data indicated that the mean difference in 
progression rate between years 1 and 2 is 1.74 points 
(95% confidence interval, 0.31-3.17), which is statisti-
cally significant (P < .05). This suggests that the rate 
of decline is nonlinear and incorporation of nonlin-
ear effects would provide an improved model of AD 
progression.

Two recent groups have published important disease 
progression models for naturalistic studies in AD. 
Ito et al4 analyzed the ADNI data using a linear AD 
progression model based on a population-based mixed 
effects approach, whereas Ashford and Schmitt6 applied 
a logistic model to characterize disease progression in 
AD. These analyses represent a significant advance-
ment over previously published disease progression 
models. The study by Ito et al tested covariate effects 
on disease progression, whereas Ashford and Schmitt 
explored a model other than linear disease progression. 
Despite these advances, several opportunities offered 
by the richness of the ADNI data remain to be explored. 
ADNI allows for the testing of linear versus nonlinear 
rates of progression because of the relatively large num-
ber of well-characterized AD patients with longitudinal 
assessments. In addition, information on an expanded 
list of potential covariates of interest is available from 
the patients enrolled in ADNI, which will be explored 
further in this analysis.

In this analysis, we focused on the AD population 
within ADNI rather than build a model that incorporates 

information from mild cognitive impairment (MCI) 
patients, who represent a rather heterogeneous popula-
tion.7 In addition, recent reports have shown that elderly 
normal controls and patients with MCI in ADNI show 
bimodal distributions with respect to their biomarker 
profiles and disease progression characteristics (ie, con-
verters vs nonconverters).8 To accommodate bimodal 
distributions, disease progression analysis using mix-
ture modeling approaches for the other ADNI popula-
tions could be the objective of future research.

The objectives of the current analysis are to develop 
a nonlinear mixed effects model for disease progres-
sion in AD, which allows estimation of the typical 
disease progression parameters in the target popula-
tion along with their inter- and intraindividual vari-
ability and incorporates the effects of influential 
covariates on disease progression. Moreover, the pres-
ent investigation expands the knowledge gained from 
previously published models and assesses previously 
untested assumptions about linear disease progression 
in AD. Finally, the present investigation also offers a 
differing perspective by evaluating an expanded set 
of previously untested covariates on disease progres-
sion parameters.

Methods

Study Details

Data used in the preparation of this article were obtained 
from the ADNI database (www.loni.ucla.edu/ADNI). The 
ADNI was launched in 2003 by the National Institute on 
Aging, the National Institute of Biomedical Imaging and 
Bioengineering, the Food and Drug Administration, 
private pharmaceutical companies, and nonprofit orga-
nizations as a $60 million, 5-year public-private part-
nership. The primary goal of ADNI has been to test 
whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can 
be combined to measure the progression of MCI and early 
AD. Determination of sensitive and specific markers of 
very early AD progression is intended to aid researchers 
and clinicians to develop new treatments and monitor 
their effectiveness, as well as lessen the time and cost of 
clinical trials. The principal investigator of this initiative 
is Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California–San Francisco. ADNI is the result 
of efforts of many coinvestigators from a broad range 
of academic institutions and private corporations, and 
participants have been recruited from more than 50 sites 
across the United States and Canada. The initial goal of 
ADNI was to recruit 800 adults, ages 55 to 90 years, to 
participate in the research—approximately 200 cognitively 
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normal older individuals to be followed for 3 years, 
400 people with MCI to be followed for 3 years, and 
200 people with early AD to be followed for 2 years. For 
up-to-date information, see www.adni-info.org.

All AD patients had clinical/neuropsychological 
assessments and 1.5T MRI measurements. AD patients 
were assessed at 0, 6, 12, and 24 months. ADNI allows 
public access to all accumulating data; the data set 
available on November 7, 2009, from the ADNI data-
base (www.loni.ucla.edu/ADNI) consisted of 191 AD 
patients and was used in the current analysis. The 
availability of individual data makes it possible to 
evaluate covariate effects on disease progression in 
AD along with an assessment of between-subject vari-
ability in the disease progression parameters.

Population Analysis Software

Data set preparation, exploration, and visualization 
were performed using S-Plus 6.0 Professional Release 
2 software (Insightful Corporation, Seattle, Washington). 
ADAS-cog data were used for nonlinear mixed effect 
modeling by extended least squares regression using 
NONMEM Version VI with an Intel FORTRAN 10 
compiler.9

Selection of the Structural Model

The model-building exercise employed the first-order 
conditional estimation method (FOCE) in NONMEM 
while using log-transformed data (see Random Effects 
Model). A sequence of models was tested and the 

results compared to select the best model. The simplest 
linear progression model was chosen first for model 
fitting. This was followed by a series of logistic models10 
to characterize the inflection point characteristic of 
disease progression observed in AD. The disease pro-
gression is characterized by an initially increasing rate 
of progression with increasing scores followed by 
slowing of the disease progression rate as scores 
approach an asymptote of 70. The generalized logistic 
model10 that represents the rate of disease progression 
(in the form of a differential equation) is as follows:

	
d ADAS

dt
r ADAS 1

ADAS
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cog
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
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where r is a rate parameter to adjust for each individual’s 
progression velocity, ADAScogmax is fixed at the maximum 
possible score of 70, ADAScog0 is the baseline score, 
and α, β, and γ represent the shape/steepness factors 
that also control the inflection point. To test a series 
of logistic models, first α, β, and γ were all set to 1, 
which represents logistic model 1 with an inflection 
point at half-maximal score.10 For logistic models 2, 
3, and 4, γ, β, and α were not set to 1; they represented 
1 additional estimated parameter in their respective 
models (see Table I). Ashford and Schmitt6 have used 
a 2-power coefficient model with α and γ for modeling 
disease progression with MMSE scores. However, 
attempts to fit more than 1 power coefficient in the 

Table I  Summary of Structural Models

Model 
Description Progression Rate

Inflection 
Point

Inflection 
Point Estimate

Number 
of θs

AIC 
Value
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NA, not applicable
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current analysis led to model instability or lack of 
convergence. It should be noted that there are insuf-
ficient data from patients with severe AD (only 5% of 
the data are above an ADAS-cog score of 40), and this 
may prevent estimation of 2 shape parameters from 
the current data. Thus, estimation of more than 1 power 
coefficient was not investigated further. The mathe-
matical relationships tested for the structural model 
were often nonnested and sometimes had the same 
number of parameters. The selection of the best struc-
tural model was therefore guided by the Akaike infor-
mation criterion (AIC), which is equal to the NONMEM 
objective function value plus twice the number of 
parameters in a given model. Another important cri-
terion for selection of the structural model was its 
ability to capture the inflection point. The linear model 
does not have an inflection point, but the inflection 
point for logistic models 1 to 4 is described by explicit 
functions provided in Table I.10 The model that gave 
an inflection point closest to the literature reported 
value5,6,11 of 40 to 42 was given a preference. A few 
other criteria that were used to compare different can-
didate models were (1) decrease in the residual error, 
(2) more random distribution in the weighted residuals 
against the predicted score and time, (3) more random 
distribution of the observed versus predicted scores 
across the identity line, and (4) precision of the param-
eter estimates. The model selected based on these 
criteria is referred to as the base structural model.

Random Effects Model

Between-subject variability on ADAScog0 was evaluated 
using an exponential error model:

	 ADAS ADAS ecog0j cog
*

0
j= × η ,	 (2)

where ADAScog0j is the true value of the baseline param-
eter for the jth subject, ADAS*cog0 is the population 
typical value (TV) for the parameter, and ηj is an inter-
subject random effect that distinguishes the jth sub-
ject’s true value from the population TV and is assumed 
to follow a Gaussian distribution. The model for 
between-subject variability on ADAScog0 assumes that 
the variance is constant with respect to the log of the 
TV of the parameter, and this parameterization is 
needed to prevent baseline scores from becoming nega-
tive. Furthermore, the observed baseline score ranges 
from 7 to 43, and an exponential error model helps to 
capture the long right tail of the distribution.

Between-subject variability on parameter r was 
evaluated using a proportional error model:

	 r r (1 j)j
*= +. η ,	 (3)

where rj is the true value of the rate parameter for the 
jth subject, r* is the population TV for the parameter, 
and ηj is an intersubject random effect that distin-
guishes the jth subject’s true value from the population 
TV and is assumed to follow a Gaussian distribution. 
The model for between-subject variability on the 
r parameter assumes that the variance is proportional 
to the TV of the parameter. Rate of disease progression 
may be either positive or negative (disease may worsen 
and improve over time) in an individual patient, and 
it is therefore important to use a proportional error 
model for this random effect so that both types of 
progression can be captured.12

Residual variability in ADAS-cog was evaluated 
using an additive error model after natural logarithmic 
transformation of the observed scores and model pre-
dictions as follows:

	 ln ADAS-cogobs = ln ADAS-cogipred + ε,	 (4)

where ADAS-cogobs is the observed score, ADAS-cogipred 
is the corresponding model-predicted individual 
value, and ε is an independent normally distributed 
random variable with zero mean and variance, σ2. 
Based on visual inspection, the scores are more vari-
able as the absolute value of the scores increases (see 
Results section), and naturally ADAS-cog scores are 
nonnegative. Both these characteristics of the data 
(heteroscedasticity and nonnegative values) are appro-
priately captured using the log-transform both-sides 
approach for the residual error.

Building a Covariate Model

An initial list of 34 covariates was considered in this 
analysis (for covariate description and abbreviations, 
see Table II). These covariates fell into the following 
4 categories: (1) MRI volumetric measures, (2) serum 
biomarkers, (3) demographic and genetic factors, and 
(4) cognitive tests at baseline/screening.

Covariate search was guided by the following prin-
ciples. Only relatively uncorrelated covariates were 
assessed in this analysis to avoid the detrimental effects 
of collinearity on the precision and accuracy of the 
model parameter estimates.13,14 To assess and confirm 
correlation between the predictors, an absolute correla-
tion coefficient value |r| > 0.3 was used as the cutoff 
criterion.13,14 If important covariates were correlated, 
then a single summary variable was created to represent 
correlated predictors (see the following).13 Cognitive 
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test scores were not tested as covariates on baseline 
ADAS-cog score because the objective of this analysis 
was not to find if ADAS-cog is correlated with other 
scores. However, baseline cognitive test scores that 
were not strongly correlated (|r| < 0.3) with the base-
line ADAS-cog score were tested as covariates on the 
progression rate parameter.

The covariate analysis proceeded via 3 steps. The 
first step of the analysis was driven by prior knowledge 
about covariate effects on AD progression parameters 
r and ADAScog0.

15 Based on prior knowledge, APOE 
ε4 genotype, serum cholesterol, and age influence r, 
whereas 2 other factors (age and age at AD diagnosis) 
affect ADAScog0.

4,16,17 However, age and age at AD onset 
(AAGE) were highly correlated, and a new summary 
variable, YSO (AGE – AAGE), was created to represent 
years since onset of the disease. These prior covariates 
were introduced on the typical values of the param-
eters in the base structural model to produce the base 
reference model:

Table II  Summary of Covariate Characteristics

Variable Name (Abbreviation), Units
Mean 
or % SD

Magnetic resonance imaging 
volumetric measures

Brain volume (BVOL), mL 998 107
Ventricular volume (VVOL), mL 54.3 28
Hippocampal volumea (HVOL), mm3 2895 525

Serum biomarkers
Fasting serum glucose (FSG), mg/dL 99 22
Mean corpuscular volume (MCV), fL 91 5
Serum cholesterol (CHOL), mg/dL 198 39
Serum triglycerides (TG), mg/dL 154 93
Vitamin B12 (B12), pg/mL 545 348

Demographic and genetic factors
Age at Alzheimer disease diagnosis 
(AAGE), y

72 8

Age (AGE), y 76 7
Apolipoprotein E genotype status 
(APOE4), %

0 Alleles 34.0 NA
1 Allele 47.1 NA
2 Alleles 18.8 NA

Body mass index (BMI), kg/m2 25.6 4
Diastolic blood pressure (BP), mm Hg 73 9
Family history of dementia (FHD), %

None 58.1 NA
Father 7.3 NA
Mother 29.3 NA
Both 5.2 NA

Gender (SEX), %
Male 52.9 NA
Female 47.1 NA

Years of education (EDU) 15 3
Baseline/screening cognitive tests

Baseline Alzheimer’s Disease 
Assessment Scale (ADAS-cog)

18.6 6

Activities of daily living score 
(ADL)

13.0 7

American National Adult Reading 
Test (ANAR)

15.8 10

Auditory verbal learning delayed 
recall (AVD)

0.744 1.6

Boston Naming Test (BNT) 22.5 6
Category Fluency Test: animal 
names (CATA)

12.4 5

Category Fluency Test: vegetable 
names (CATV)

7.83 3.3

Clinical dementia rating global 
score (CDR), %

0.5 Score 51.8 NA
1 Score 48.2 NA

(continued)

Variable Name (Abbreviation), Units
Mean 
or % SD

Clock drawing test (CDT) 3.39 1.3
Digit symbol substitution test 
(DSST)

27.0 13

Digit span backwards test (DSB) 4.97 1.8
Global depression  
total score (GDT), %

0 Score 22.5 NA
1 Score 32.5 NA
2 Score 19.9 NA
3 Score 13.1 NA
4 Score 8.9 NA
5 Score 2.6 NA
6 Score 0.5 NA

Logical memory:  
delayed (LDEL)

1.26 1.9

Logical memory:  
immediate (LIMM)

4.08 2.9

Mini-Mental State Exam (MMSE) 23.4 2
Neuropsychiatric Inventory (NPI) 3.47 3.3
Number cancellation (NOC) 1.78 1.3
Trail Making Test: part A (TRAA), s 66.9 36
Trail Making Test: part B (TRAB), s 196 84

Derived covariate
Years since AD onset  
(YSO = AGE – AAGE)

4 2

NA, not applicable
a. Average of left and right hippocampal volume.

Table II  (continued)
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where the exponent Apoe is 0 for APOE ε4 noncarri-
ers and 1 for APOE ε4 carriers, the exponent Chol is 
0 if cholesterol (CHOL) is less than 200 mg/dL and 1 
if CHOL ≥200 mg/dL, and the various thetas (θ) reflect 
fixed effect parameters. There were not sufficient sub-
jects with 0, 1, and 2 APOE ε4 alleles, and therefore 
APOE ε4 was dichotomized into carrier (1 or 2 alleles) 
and noncarrier status. With the exception of YSO and 
CHOL, the continuous covariates were introduced 
through a power equation after centering on the 
median, whereas categorical covariates were repre-
sented as fractional shifts for risk factors being inves-
tigated. YSO can assume a value of 0 at which the 
power equation for a continuous covariate would be 
undefined, and therefore an exponential function was 
used. Estimation of the cholesterol effect as a continu-
ous covariate led to poor precision of the parameter 
estimate and model instability. This may suggest that 
only hypercholesterolemic patients exhibit faster dis-
ease progression. CHOL was categorized into a dichot-
omous variable based on the high cholesterol cutoff 
value of ≥200 mg/dL, and this parameterization sta-
bilized the model.

The second step of the covariate search involved a 
screening procedure.18 Screening was performed by gen-
eral additive modeling (GAM) with the statistical pack-
age R-2.10.1 for Windows (http://www.r-project .org). 
The R version of the script has been incorporated into 
version 4 of the software package Xpose.19 The empirical 
Bayes (“post-hoc”) estimates of ηs for each parameter 
generated from the previous step and the individual 
covariates were used as input for the GAM analysis.

Only the independent covariates were tested during 
the screening procedure as indicated previously. 
Brain volume (BVOL) was correlated with both ven-
tricular volume (VVOL; |r| = 0.29, P < .001) and hip-
pocampal volume (HVOL; |r| = 0.53, P < .001), and 
therefore BVOL was not considered further. Similarly, 
serum triglycerides (TG) were correlated with CHOL 
(|r| = 0.38, P < .001), and AGE-related variables were 
already incorporated on the 2 key parameters (AGE on 
r and YSO on ADAS-cog0). Thus, TG and AAGE were 
not considered further. Finally, only 6 cognitive tests 
at baseline/screening were not strongly correlated with 
ADAS-cog0, and these 6 tests (ANAR, AVD, DSB, LDEL, 
NPI, and TRAB; see Table II for abbreviations) were 

tested as covariates on the r parameter. SEX, FHD, APOE4, 
VVOL, HVOL, BP, EDU, B12, MCV, FSG, BMI, and CHOL 
were tested on ADAS-cog0 using GAM. Similarly, SEX, 
FHD, VVOL, HVOL, BP, EDU, B12, MCV, FSG, BMI, 
ANAR, AVD, DSB, LDEL, NPI, and TRAB were tested 
on the r parameter using GAM. The 2 covariates that 
could not be assessed in this analysis were race and global 
depression total score (GDT) because too few subjects 
were available in the database for these variables (>92% 
of the ADNI AD population was white, and depressed 
patients [GDT ≥6] were excluded from the study).

In the final and third step, NONMEM was used to 
optimize and finalize the population model18 using a 
step-up procedure involving the likelihood ratio test. 
Covariates identified by GAM were tested one by one 
on top of the base reference model. Continuous covari-
ates were introduced through a power equation after 
centering on the median, categorical covariates were 
represented as fractional shifts, and continuous covari-
ates with possible 0 values were parameterized as 
exponential relationships (see equations (5) and (6)). 
A covariate was included in the model if it were sig-
nificant (P < .01; decrease of >6.6 points in the objec-
tive function value) and led to the greatest drop in the 
objection function value. The process was repeated 
until no significant covariates could be found.

Model Evaluation

To verify the precision and stability of the models, the 
final parameter estimates were subjected to internal 
model evaluation. The evaluation consisted of a non-
parametric bootstrap and a predictive check. Bootstrap 
analysis was performed using the package Perl Speaks 
NONMEM (Version PsN-3.1.0).20 For that purpose, 
1000 bootstrap replicates of the data set were obtained. 
Each bootstrap data set consisted of N random draws 
of individual subject data (with replacement) from 
the original data set, and the final model was refitted 
to each new data set. Bootstrap methodology has been 
implemented in PsN, which automatically creates the 
bootstrap data sets, runs that model in NONMEM 
using these bootstrap data sets, and then computes 
the percentiles of the bootstrap parameter estimates. 
The stability of the final model was evaluated by visual 
inspection of the distribution of parameter estimates 
from the new data sets and by comparison with the 
parameter estimates obtained from the fit of the origi-
nal data set. Bootstrap runs with unsuccessful mini-
mization were excluded from further analysis. The 
final model parameter estimates were compared with 
the median and 90% confidence intervals of the non-
parametric bootstrap replicates.
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To assess the predictive performance of the obtained 
model, data sets were simulated based on the fixed 
and random effect estimates of the final model. Visual 
predictive check was performed using the parameter 
estimates and variability parameters from the original 
data as the simulation template as described previ-
ously.21 The 5th, 50th, and 95th percentiles were cal-
culated from the simulated profiles for the predictive 
checks and were superimposed on the raw data to 
allow assessment of model predictability.

The following measures were defined a priori as 
model verification and evaluation criteria: (1) param-
eter estimates should have biological plausibility, 
(2) comparison of the overlap of the simulated distri-
bution (ie, predictive checks) with the observations 
should show considerable similarity without signifi-
cant over- or underprediction, and (3) model stability 
is evaluated by inspection of the distribution of the 
model parameters obtained through bootstrapping. 
The estimates from the original data set were expected 
to lie within the 90% confidence interval obtained 
from the bootstrap replicates. The model can be con-
sidered precise if the parameters from the original 
data set are similar to the median of the parameter 
distribution from the bootstrap replicates.

Results

Patient Characteristics

The characteristics of the ADNI AD patients are shown 
in Table II. Patients (n = 191) were between ages 55 
and 91 years (mean ± standard deviation [SD], 76 ± 7 
years) and had AD for an average duration of 4 ± 2 years. 
The patients were well educated, with an average of 
15 ± 3 years of education. Eighty (42%) patients had a 
family history of dementia with at least 1 parent having 
the disease. There was an apparent pattern for maternal 
transmission of the disease because 66 of the 80 patients 
with a family history had mothers with dementia. Com-
pared with women, the decreased longevity in men 
could lead to disproportionately fewer paternal cases 
of dementia in the ADNI AD population, and this could 
give rise to the apparent pattern for maternal AD trans-
mission. However, this observation of maternal trans-
mission of the disease is consistent with earlier reports 
in the AD literature.22,23 Of the AD patients, 66% were 
APOE ε4 carriers, and this confirms that APOE ε4 is a 
significant risk factor for AD (0 alleles: 34%; 1 allele: 
47%; 2 alleles: 19%). AD patients also had relatively 
high cholesterol, with the mean cholesterol level in 
this population being 198 ± 39 mg/dL, which is very 
close to the high cholesterol cutoff of ≥200 mg/dL.

Development of Disease Progression Model

The results of the structural model search are provided 
in Table I. AIC monitoring for structural models indi-
cated that the logistic model 4 with the alpha exponent 
had the lowest AIC value. This base structural model 
also yielded an inflection point of 44, which is very 
close to the literature reported value of 40 to 42.5,6,11 
This model was taken forward for the development of 
the submodel consisting of covariate effects on progres-
sion rate parameter and baseline disease status. Covari-
ate model building began with incorporation of prior 
knowledge into the base structural model. Addition of 
4 parameters (θYSO, θAGE, θAPOE, θCHOL) led to an improve-
ment in the NONMEM objective function value by 
27 points. A likelihood ratio test was performed where 
the difference in objective function was compared with 
the chi-square distribution, with the number of degrees 
of freedom (df) equal to the number of additional param-
eters in the updated model (P = .00002; df = 4). The 
P value is highly significant, indicating that incorpo-
ration of prior knowledge improved the base struc-
tural model.

The empirical Bayes (“post-hoc”) estimates of ηs 
for the parameters from the updated model (base ref-
erence model) were used as the basis for GAM analy-
sis. The GAM screening procedure indicated that 
HVOL and VVOL could be potential covariates on 
ADAScog0. Similarly, digit span backward test, delayed 
logical memory, and part B of the Trail Making Test 
(Trails B test) could be potential covariates on the r 
parameter. This was followed by a step-up procedure 
in NONMEM: (1) in the first step, HVOL was selected 
as a covariate on ADAScog0 and led to a decrease in 
objective function value of 14 points. (2) The second 
step led to an improvement of 8 objective function 
points by incorporation of the Trails B test as a covari-
ate on the r parameter. (3) In the final step, VVOL 
was the chosen covariate on ADAScog0, which was 
associated with an objective function improvement 
of 8 points. Addition of more covariates did not lead 
to a further improvement in the model.

As an alternative, instead of testing covariates indi-
vidually in NONMEM, all of the influential covariates 
from the GAM procedure were added to the base refer-
ence model using the appropriate functional forms 
(see Methods section). Covariates introduced into the 
full covariate model were then tested formally using 
backward elimination, a procedure described by 
Wählby et al.24 This method produced the same covari-
ate model as produced by the step-up method, which 
further supported the suitability of the final covariate 
model. Figure 1 shows the goodness-of-fit plots for the 
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final model, and Table III provides the final estimates 
from the population-based disease progression model.

Model Verification

The results of the nonparametric bootstrap analysis 
(Table III) supported the parameter estimates of the 
model. The final parameter estimates are similar to the 
median value obtained from the bootstrap analysis and 
are within the 90% confidence interval. The observed 
scores, the visual predictive check, and median model 
prediction as a function of time are displayed in Figure 2A. 

These results confirm that the model is able to describe 
the individual temporal profiles because the majority 
of the observations fall within the 90% prediction inter-
vals (Figure 2A). Figure 2B exhibits the AD progression 
rate as a function of ADAS-cog scores and patient 
covariates. Progression rate is given by the function 
r · ADAScog1.52 · (1 – ADAS-cog/70). Individual estimates 
of r and observed ADAS-cog scores from the ADNI AD 
patients were used to compute observed progression 
rates, and the predictions were from 1000 simulated 
data sets. The progression rate plot (Figure 2B) exem-
plifies the signature pattern of a logistic model. The 
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Table III  Population Parameters and the Stability of the Parameters Using Nonparametric Bootstrap

Original Data Set Bootstrap Replicates (n = 934)

Parametera Estimate 90% CI Median 90% CI

θADAScog0 16.3 15.4 17.2 16.4 15.4 17.3
  θYSO × 102 2.19 0.835 3.55 2.20 0.712 3.75
  θVVOL 0.119 0.050 0.188 0.120 0.048 0.194
  θHVOL −0.479 −0.699 −0.259 −0.468 −0.691 −0.245
θr × 102 4.94 0.170 9.71 5.18 1.37 21.0
  θAGE −2.14 −3.26 −1.02 −2.14 −3.25 −0.912
  θTRAB 0.430 0.188 0.672 0.438 0.191 0.711
  θAPOE 1.06 0.817 1.30 1.07 0.847 1.39
  θCHOL 1.19 0.912 1.47 1.20 0.927 1.53
αb 1.52 1.23 1.81 1.49 1.06 1.93
SD of ηADAS-cog0

c 0.279 0.252 0.304 0.275 0.249 0.302
SD of ηr

c 0.522 0.207 0.709 0.517 0.258 0.734
SD of ε 0.170 0.155 0.183 0.169 0.154 0.182

a. These equations describe the relationships between covariates and the typical value of the parameters in the final model:
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r . AGE
76

. TRAB
187

. .*
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AGE TRAB

= 
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
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
θ θ θ

θ θ
ool

where Apoe and Chol are 0/1 exponents depending on APOE ε4 noncarrier/carrier status and normal/high cholesterol status, respectively. HVOL, VVOL, 
TRAB, and CHOL refer to hippocampal volume, ventricular volume, Trails B test, and serum cholesterol, respectively.
b. Final estimated inflection point is 42 based on the formula α.70/(1 + α).
c. Between the base model and final covariate model, the between-subject variability SD estimates improved from 0.308 and 0.640 to 0.279 and 0.522, 
respectively.
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progression rate increases up to the estimated inflec-
tion point of 42 (estimate from the final model), after 
which it declines and decreases to zero at the maximal 
possible score of 70.

Discussion

Differences Between Previously Published 
Models and the Current Analysis

Two excellent models have recently been published 
that characterize AD progression in naturalistic stud-
ies.4,6 Ito et al4 have modeled AD progression via a linear 
process where the slope at time zero was influenced by 
the baseline ADAS–cog score through a curvilinear rela-
tionship. The slope stayed constant for the 2-year study 
duration for AD patients in the ADNI. An improvement 
provided by Ito et al consisted of the inclusion of covari-
ate effects on the disease progression parameters. 
However, in this analysis, covariates were not tested 
on baseline disease status, and relatively few covariates 
were tested on disease progression rate. The baseline 
ADAS-cog score was correlated with the Mini-Mental 
State Examination (MMSE) score, whereas age, APOE 
ε4 genotype, gender, family history of disease, years of 
education, and baseline severity were tested as covari-
ates for progression rate. Finally, random effects on the 
baseline disease score and residual variability were 
both assumed to be normally distributed. We aimed to 
update a variety of the modeling aspects reported by 
Ito et al. Several different structural models (linear and 
nonlinear) for disease progression were tested in the 
current analysis. In addition, an expanded list of care-
fully chosen covariates was assessed in our analysis 
given the richness of the ADNI database. Last, certain 
random effect components were updated because a 
log-normal distribution might be more appropriate for 
baseline disease score and residual variability.

Ashford and Schmitt6 have recently used a logistic 
model to characterize disease progression in AD. The 
only limitation of the Ashford and Schmitt analysis, 
which involved the logistic model of AD, is that the 
work did not incorporate covariate effects on disease 
progression, whereas our model incorporated covari-
ates. Logistic models have traditionally been used in 
pharmacodynamic models of tumor growth.25 However, 
the application of logistic models to AD disease progres-
sion is appropriate for several reasons. The logistic 
model assumes that the rise in disease scores increases 
exponentially during the early phase of the disease. 
Progression rate is initially proportional to the score 
through a rate constant r. As the score approaches the 

maximal limit (ie, 70 for ADAS–cog), the progression 
rate slows down. As AD worsens, the patients experi-
ence a loss of language skills.26 Therefore, performance 
on the ADAS–cog is subject to floor effects26 that make 
it hard to measure the change in disease status in severe 
AD patients, leading to the plateauing of scores, which 
is also captured by the logistic model. These models 
are also characterized by an inflection point, which in 
the case of ADAS–cog is the point at which the progression 
rate is the fastest. At scores above and below the inflec-
tion point, the progression rate is slower. Stern et al11 
have reported an inflection point at a score of 40 in their 
ADAS-cog analysis. Similarly, Ashford and Schmitt6 
modeled MMSE scores and reported an inflection point 
of 10 on the MMSE scale. An MMSE score of 10 corre-
sponds to an ADAS-cog score of 42.5 Our current analy-
sis also found that the logistic model best described the 
progression of AD in ADNI patients, and the final model 
that implemented covariate effects estimated an inflec-
tion point of 42. Thus, the use of a logistic model allows 
characterization of the inherent nature of disease pro-
gression that has been observed in AD. The logistic 
model could also find applications to other chronic 
illnesses where disease scores are constrained to lie 
within a certain theoretical range. The logistic model 
has the ability to capture clinician-rated instruments 
for assessing disease status that may act as a saturable 
system, where the intrinsic properties of the functional 
assessment follow a nonlinear path. Indeed, several 
aspects of pharmacodynamic systems follow nonlinear 
and capacity-limited relationships25 rather than linear 
processes, and the logistic model offers a flexible 
approach for capturing these complexities.

Choice of the Covariates Tested in the Model

Covariate data that were available for all patients were 
considered for testing in this analysis. It is for this reason 
that PET and cerebrospinal fluid markers were not 
assessed as covariates because they were captured in 
only a subset of patients in the ADNI. The other property 
that characterizes the covariates in this analysis is that 
they represent baseline/screening descriptors. Thus, 
the influential covariates identified in this analysis 
could potentially be used in the design of future trials, 
identify inclusion/exclusion/stratification criteria, and 
help with modeling outcomes based on patient charac-
teristics. Thus, the baseline MRI measures, serum mark-
ers, vital statistics, and demographics can be justified 
as reasonable choices for covariate model building.

The testing of other cognitive performance measures 
as covariates can be justified because these baseline/
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screening tests represent domains that are probably 
not captured by ADAS-cog. It is widely acknowledged 
that ADAS-cog has limitations for monitoring patients 
with mild illness, as it focuses only on a few domains 
(language, memory, and praxis) and does not adequately 
cover other domains such as delayed recall and execu-
tive function.27,28 We therefore tested cognitive scores 
that were poorly correlated with ADAS-cog as covari-
ates to understand how impairment in other domains 
could influence disease progression. These cognitive 
tests were chosen by correlating their baseline values 
with baseline ADAS-cog and picking only those tests 
that had showed |r| < 0.3. Because these cognitive 
tests are poorly correlated with baseline ADAS-cog, 
they were not tested further as covariates on ADAScog0 
but were tested on the progression rate parameter.

Prior Knowledge About  
AD Progression Covariates

APOE ε4 is the single most significant risk factor identi-
fied to date for late-onset AD.29-31 Ito et al4 and others 
have shown that carriers of the APOE ε4 gene show 
faster disease progression, although this has not been 
replicated in all studies. APOE ε4 and cholesterol are 
biologically related because APOE acts as a cholesterol 
transporter in the brain. Elevated cholesterol is widely 
recognized as a risk factor in the pathogenesis of AD, 
and this has led several investigators to assess the role 
of cholesterol-lowering statins in the treatment of 
dementia (it should be noted, though, that statins have 
no benefit on outcome measures such as ADAS-cog).32 
In addition, Notkola et al16 found that elevated total 
serum cholesterol level is a risk factor for AD indepen-
dent of APOE ε4. Finally, Ito et al4 have recently shown 
that patients diagnosed with AD at a younger age exhibit 
faster disease progression. With respect to the baseline 
disease score, Doraiswamy et al17 found that baseline 
cognitive performance is correlated with both AGE 
and AAGE. This means that if the patient has had AD 
for a long time, then his or her baseline score would be 
high, which is expected because AD is a progressive 
disorder. However, AGE and AAGE are highly correlated 
(|r| = 0.95, P < .001), and therefore the new summary 
variable YSO was created to represent these correlated 
predictors. Given the progressive nature of AD, YSO 
was found to be a predictor of baseline ADAS-cog score.

Incorporation of prior known factors in the model led 
to a significant improvement in the model fit. To allow 
visualization of the effect that these covariates have on 
ADAS-cog profiles, a simple diagnostic plot was created 
(Figure 3). For the purposes of this plot, the continuous 

covariates were dichotomized (> median and ≤ median) 
to create roughly 2 equal groups (median YSO and AGE 
were 3 and 76 years). Categorical covariates APOE4 and 
CHOL were also dichotomous (see Methods section), 
and so all prior covariate effects could be plotted as a 
binary variable on the disease progression plots. The 
diagnostic plot indicates that YSO affects the baseline 
disease status because AD is a progressive disease, 
whereas AGE, APOE4, and CHOL influence the rate of 
disease progression. The effect of age on disease progres-
sion appears to be greatest, followed by cholesterol, 
which in turn is followed by APOE ε4 status (Figure 3).

It should be noted that the APOE ε4 effect on the 
progression rate parameter in our final model is some-
what lower (6%; Table III) than the 22% effect reported 
by Ito et al.4 This can be attributed to 3 factors: (a) there 
is a difference in the methodology by which the pro-
gression rate is modeled in the current report versus 
the analysis presented by Ito et al.4 Ito et al assume linear 
disease progression, whereas our analysis assumes 
that progression is nonlinear. (2) Notkola et al16 have 
shown that APOE ε4 and cholesterol both influence 
AD but also found that the association between AD 
and APOE ε4 became weaker after adjustment for 
serum total cholesterol. Because our model includes 
both APOE ε4 and cholesterol, the magnitude of the 
APOE ε4 effect could be attenuated as previously seen 
by Notkola et al. (3) The statistically significant covari-
ates in our analysis were age, APOE ε4 status, serum 
cholesterol, and Trails B test, whereas Ito et al4 identi-
fied age and APOE as the predictors of progression 
rate. Because we identified a few more covariates, the 
absolute value of the parameter estimates may be some-
what different between the 2 analyses.

Correlation Between APOE4 and AGE

Among the 3 covariates (APOE4, AGE, and CHOL) that 
were introduced in the model based on prior knowledge, 
AGE and APOE4 were correlated (Figure 4A). The median 
age for APOE ε4 carriers and noncarriers at baseline was 
75 and 80 years, respectively. This observation is not 
surprising because it is well established that the pres-
ence of the APOE ε4 genotype is associated with a lower 
age of onset for AD.30 To assess whether the AGE and 
APOE4 effects were independent, APOE ε4 carriers 
and noncarriers were further dichotomized into a low 
and high age categories based on the median age for the 
respective groups. The temporal profile for ADAS-cog 
for the following 4 subgroups is presented in Figure 4B: 
lower age APOE4 carriers, lower age APOE4 noncarriers, 
higher age APOE4 carriers, and higher age APOE4 
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noncarriers. Comparison of the age effect in the APOE4 
noncarriers clearly indicates that AD patients in the 
lower age group, even without this risk factor, show 
faster disease progression. This is suggestive of the fact 
that the AGE effect is independent of the APOE4 geno-
type. Similarly, comparison of the lower age group and 
higher age group shows that the APOE4 effect is present 
in both clusters, which may be an indication that the 
APOE effect is independent of AGE.

Additional Covariates Identified  
in the Current Analysis

The analysis identified additional covariates such as 
HVOL and VVOL on ADAScog0 and Trails B test on r. 

Hippocampal atrophy and ventricular enlargement 
were associated with poor baseline cognitive perfor-
mance. This is characterized by negative and positive 
exponents associated with HVOL and VVOL, respec-
tively (Table III). The influence of HVOL and VVOL is 
depicted in Figure 5A,B, where these covariates were 
dichotomized for visualization purposes as described 
in the previous section. These findings for HVOL and 
VVOL are consistent with the MRI literature where 
cognitive decline has been shown to be associated with 
changes in volumetric measures on the MRI.33,34

Inspection of Figure 5A,B may suggest that results 
are somewhat inconsistent with the normal expecta-
tion for AD progression. Low HVOL and high VVOL 
patients exhibit higher ADAScog0 but progress at 

M
ea

n 
A

D
A

S
-c

og
 S

co
re

 ±
 S

E

A

Fewer years since AD onset

Longer time since AD onset

0.0 0.5 1.0 1.5 2.0

16
19

22
25

28
31

B

Lower age group

Higher age group

0.0 0.5 1.0 1.5 2.0

16
19

22
25

28
31

Time (year)

M
ea

n 
A

D
A

S
-c

og
 S

co
re

 ±
 S

E

C

APOE4 non-carrier

APOE4 carrier

0.0 0.5 1.0 1.5 2.0

16
19

22
25

28
31

Time (year)

D

Normal cholesterol

High cholesterol

0.0 0.5 1.0 1.5 2.0

16
19

22
25

28
31
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roughly the same rate as patients with high HVOL 
and low VVOL. Interestingly, HVOL was negatively 
correlated with AGE (|r| = 0.33, P < .001), whereas 
the correlation between VVOL and AGE was positive 
(|r| = 0.26, P < .001). These age-related changes in 
HVOL and VVOL observed in the ADNI database are 

consistent with the MRI literature as well.33,35 This 
confounding effect of AGE (higher age is associated 
with slower disease progression) explains why the 
cluster of patients with low HVOL and high VVOL 
exhibit a higher baseline ADAS-cog score but do not 
progress faster.
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Various baseline cognitive tests were screened as 
covariates on AD progression rate. An example of this 
type of covariate effect, which was found to be sig-
nificant in the current analysis, was the influence of 
the Trails B test on ADAS-cog progression (Figure 5C). 
The correlation analysis indicated that the baseline 
Trails B test score is not strongly correlated with base-
line ADAS-cog score (|r| = 0.26), and thus this cogni-
tive test represents a relatively independent metric. 
The Trails B test examines a patient’s executive func-
tion, a domain known to be poorly covered by the 
ADAS-cog.28 The analysis confirmed that patients who 
take a longer time to complete part B of the Trail Mak-
ing Test exhibit faster disease progression.

Interplay Between Multiple Covariates  
on Disease Progression Rate

Figure 2B was used to identify 6 patients who progressed 
at a rate >15 points/y (generally, early AD progression 
proceeds at a rate of 5.5 points/y4,5), and the description 
of these fast-progressing patients is provided in Table IV. 
Examination of these patients reveals that over time, 
ADAS-cog scores increase and the progression rate accel-
erates (patients 88 and 366) until scores exceed the 
inflection point of 42, after which progression rate 
decelerates (patient 1397). Of note, the 6 patients with 
the fastest progression rate have combinations of the 
risk factors predicted by the model to predispose them 
to faster progression. Specifically, these patients have 
(1) a combination of poor Trails B test score and APOE 
ε4 genotype (patients 88 and 343), (2) a combination 
of high cholesterol and APOE ε4 genotype (patient 109), 
(3) a combination of poor Trails B test score and earlier 
age of AD onset (patient 366), (4) a combination of earlier 
age AD onset and APOE ε4 genotype (patient 627), and 
(5) a combination of poor Trails B test score and earlier 
age of AD onset (patient 1397).

Limitations of the Current Analysis

There are also a few limitations of the current analysis. 
Some of the usual covariates that might be expected to 
influence AD disease progression were not significant 
in the current analysis. These covariates include gender, 
years of education, family history of dementia, and 
various metabolic parameters (blood pressure, fasting 
serum glucose, and body mass index). One of the pos-
sible reasons for this finding could be that the sample 
size for the current analysis is somewhat limited (n = 
191). Because the ADNI trial is still ongoing, these 
effects could be reassessed when the full data set 
becomes available in the next few years. Another pos-
sible reason is that the magnitude of the covariate effect 
relative to the sample size could limit the ability to 
detect some covariate effects (eg, gender could influ-
ence baseline disease score, but the expected mean 
difference in baseline score by gender is about 2 
points).17 Detecting such a small difference in a study 
with a sample size of n = 191 with a rather variable end 
point such as ADAS-cog would be somewhat difficult. 
Last, certain covariates may have a limited or narrow 
distribution among the study participants, which could 
hamper the detection of covariate effects (eg, the ADNI 
AD population was rather well educated, and the maxi-
mum baseline diastolic blood pressure observed in the 
current study was 90 mm Hg). An additional limitation 
is that the model is built on a limited racial representa-
tion because of the characteristics of the data set. 
Finally, this model of cognitive decline is based on 
measuring cognition by ADAS-cog, a well-known scale 
with certain limitations for the early stages of the dis-
ease and for more severe AD patients.26,27 Scales with 
a broader dynamic range than ADAS-cog may be more 
suitable for model building in the future.

We did not analyze comedication effects in the cur-
rent analysis. AChEIs are the mainstay of pharmacologic 

Table IV  Description of 6 Patients Exhibiting a Progression Rate >15 Points/y

Patient ID Time, y ADAS-cog Trails B Test*, s Age*, y APOE ε4 Status Cholesterol*, mg/dL Progression Rate, y−1

88 0.5 29.0 300 66 2 Alleles 272 15.9
88 1.0 41.3 300 66 2 Alleles 272 19.0
109 2.0 41.7 165 71 1 Allele 280 15.1
343 2.0 46.7 300 72 1 Allele 219 15.6
366 1.0 34.3 300 57 0 Alleles 249 15.2
366 2.0 40.0 300 57 0 Alleles 249 16.1
627 2.0 34.7 196 59 2 Alleles 189 15.2
1397 0.5 40.3 300 55 0 Alleles 145 21.7
1397 1.0 47.0 300 55 0 Alleles 145 21.3

* Value of the covariate at baseline. ADAS-cog, Alzheimer’s Disease Assessment Scale; Trails B Test, Trail Making Test, part B.
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treatment for dementia. The prevalence of AChEI use 
was quite high in the ADNI AD patients, and almost the 
entire patient population (85% to 86%) reported the use 
of these medications.36,37 Because there are too few 
patients not using AChEIs, the effect of these medications 
on disease progression could not be investigated in this 
analysis. Moreover, Ito et al5 have recently investigated 
the AChEI effect, which was found to be symptomatic 
in nature and not disease modifying, where the rate 
of cognitive decline was parallel to that observed in 
untreated patients. Finally, the naturalistic nonrandom-
ized nature of the ADNI study further prevents the study 
of comedication effects on AD progression. The average 
number (mean ± SD) of medications per ADNI participant 
was 8 ± 4.36 There is rarely information available about 
the dosing time or schedule of administration of the 
comedications (comedications are checked as being pres-
ent during regularly scheduled visits, but no information 
is collected to make sure that they were given continu-
ously during the whole study). Furthermore, the number 
of patients on a specific medication is often low. Finally, 
the comedication information has been entered as a mix-
ture of brand and generic names, which complicates the 
creation of the NONMEM database when some patients 
in ADNI have been on as many as 23 different comedica-
tions.36 This would make the identification of individual 
medication effects on AD progression rather difficult.

Conclusion

In summary, the developed semi-mechanistic logistic 
model is suitable for describing the progression of dis-
ease in AD. Covariates that were found to influence 
baseline disease score were years since AD onset, base-
line hippocampal volume, and baseline ventricular 
volume. Similarly, factors that influence disease pro-
gression rate are age at baseline, APOE ε4 carrier status, 
baseline serum cholesterol, current ADAS-cog score, 
and baseline Trail Making Test (part B) score. The 
model could represent a suitable tool for clinical trial 
simulations and could aid in the design of efficient 
clinical trials in the future.
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