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a b s t r a c t

Recently, multi-atlas patch-based label fusion has received an increasing interest in the medical image seg-

mentation field. After warping the anatomical labels from the atlas images to the target image by registra-

tion, label fusion is the key step to determine the latent label for each target image point. Two popular types

of patch-based label fusion approaches are (1) reconstruction-based approaches that compute the target la-

bels as a weighted average of atlas labels, where the weights are derived by reconstructing the target image

patch using the atlas image patches; and (2) classification-based approaches that determine the target label

as a mapping of the target image patch, where the mapping function is often learned using the atlas image

patches and their corresponding labels. Both approaches have their advantages and limitations. In this pa-

per, we propose a novel patch-based label fusion method to combine the above two types of approaches via

matrix completion (and hence, we call it transversal). As we will show, our method overcomes the individual

limitations of both reconstruction-based and classification-based approaches. Since the labeling confidences

may vary across the target image points, we further propose a sequential labeling framework that first labels

the highly confident points and then gradually labels more challenging points in an iterative manner, guided

by the label information determined in the previous iterations. We demonstrate the performance of our novel

label fusion method in segmenting the hippocampus in the ADNI dataset, subcortical and limbic structures

in the LONI dataset, and mid-brain structures in the SATA dataset. We achieve more accurate segmentation

results than both reconstruction-based and classification-based approaches. Our label fusion method is also

ranked 1st in the online SATA Multi-Atlas Segmentation Challenge.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Parcellation of the human brain structures is a key image pro-

essing step in many medical imaging studies related to computa-

ional anatomy and computer aided diagnosis (Li et al., 2014; Li et al.,

010; Nie et al., 2013; Nie et al., 2011). Manual annotation of anatom-

cal structures is tedious and very time consuming, which makes it

mpractical in most of the current medical studies involving large

mounts of imaging data. Therefore, high-throughput and accurate

utomated segmentation methods are highly desirable.

In the last two decades, multi-atlas segmentation (MAS) has

merged as a promising automated segmentation technique for seg-

enting a target image by propagating the labels from a set of

nnotated atlases. The use of multiple atlases makes MAS more capa-

le of accommodating higher anatomical variability than using a sin-
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le atlas. Moreover, as demonstrated in (Collins and Pruessner, 2009;

sgum et al., 2009; Rohlfing et al., 2004b), segmentation errors made

y each individual atlas tend to be corrected when using multiple at-

ases. Generally, MAS consists of the following three steps: (1) the at-

as selection step, where a subset of best atlases is first selected for

given target image based on a certain pre-defined measurement

f anatomical similarity (Aljabar et al., 2009; Collins and Pruessner,

009; Isgum et al., 2009; Rohlfing et al., 2004b; Sanroma et al., 2014a;

u et al., 2007); (2) the registration step, where all selected atlases

nd their corresponding label maps are aligned to the target image

Klein et al., 2009; Shen and Davatzikos, 2002; Vercauteren et al.,

009; Wu et al., 2011); and finally (3) the label fusion step, where

he registered label maps from the selected atlases are fused into a

onsensus label map for the target image (Artaechevarria et al., 2009;

ardoso et al., 2013; Coupe et al., 2011; Hao et al., 2013; Jia et al., 2012;

im et al., 2013; Rousseau et al., 2011; Wang et al., 2011b; Warfield et

l., 2004; Zikic et al., 2013). A great deal of attention has been put

nto the label fusion step, which is also the focus of the present paper,

ince it has a great influence on the final segmentation performance.

http://dx.doi.org/10.1016/j.media.2015.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2015.06.002&domain=pdf
mailto:dgshen@med.unc.edu
http://dx.doi.org/10.1016/j.media.2015.06.002
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Fig. 1. Illustration of reconstruction-based and classification-based label fusions. Top:

a dictionary of atlas image patches (red squares) and their center labels (red circles)

are used to estimate the target label (blue circle) in the center of the target image

patch (blue square). Bottom-left: reconstruction-based approaches estimate the tar-

get label as a weighted average of the atlas labels, where atlas patches with higher

similarity are assigned higher weights. Bottom-right: classification-based approaches

estimate the target label by applying the relationships learned using the dictionary

of atlas patches and labels. (See Sec. 3.1 for details about how the reconstruction and

classification functions are computed.)
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During the label fusion step, each target point is often indepen-

dently labeled by using its own dictionary composed of the atlas

patches and their labels selected from a neighborhood of the to-be-

labeled target point (Coupe et al., 2011; Hao et al., 2013; Rousseau

et al., 2011) (see the top panel in Fig. 1). Two recently popular la-

bel fusion approaches are the following: (1) reconstruction-based

approaches, and (2) classification-based approaches. Reconstruction-

based approaches are a particular type of weighted voting meth-

ods. As such, the target label is computed as a weighted average

of the atlas labels (see the bottom-left panel in Fig. 1). Specifi-

cally, reconstruction-based approaches assign the weights based on

the coefficients obtained by the linear reconstruction of the target

patch using the dictionary of atlas patches (Tong et al., 2012; Zhang

et al., 2012). This follows the idea of the image-similarity approaches,

which assign higher weights to the atlas patches with more simi-

larity to the target patch (Artaechevarria et al., 2009; Coupe et al.,

2011; Rousseau et al., 2011). On the other hand, classification-based

approaches use the dictionary of atlas image patches and their cor-

responding labels as the training set to learn the relationships be-

tween image appearance and anatomical labels (Hao et al., 2013)

(Wang et al., 2011b). Then, in the labeling stage, the target label is

estimated by directly applying the learned relationships to the target

image patch (see the bottom-right panel in Fig. 1).

However, both reconstruction-based and classification-based ap-

proaches have their own limitations. Reconstruction-based ap-

proaches assume that the weights optimized based on patch-wise

similarity are also optimal to fuse the labels. Unfortunately, as

demonstrated in (Sanroma et al., 2014a), there is not always a clear

relationship between appearance similarity and label consensus,

and therefore similar atlas image patches could bear different la-

bels. On the other hand, classification-based approaches overcome

this limitation by specifically learning a mapping function from the

image appearance domain to the label domain. However, all the

atlas patches in the dictionary are given the same importance dur-

ing the learning procedure, which may not be optimal since not

all patches in the dictionary are equally representative for the tar-

get patch. Reconstruction-based approaches overcome this issue by

adaptively weighting each atlas patch according to their estimated

relevance in predicting the label of a particular target image point. In

light of this, we present a novel label fusion method with the follow-

ing contributions:
• We combine the advantages of both reconstruction-based and

classification-based approaches by formulating label fusion as a

matrix completion problem (but our method restricts to the lin-

ear sub-type of approaches). First, we build an incomplete matrix

containing the target image patch as well as the atlas patches

and their labels, where all the to-be-estimated target labels are

missing. Based on the observation that there are high correla-

tions among image patches and labels, we employ a low-rank

constraint to estimate the missing elements in the above ma-

trix. This entails taking full advantage of both row-wise and

column-wise correlations (Candès and Recht, 2009), correspond-

ing to the correlations in the vertical and horizontal directions of

the matrix, respectively. As we will show, both reconstruction-

based and classification-based approaches are particular cases

where only row-wise (i.e., vertical) or column-wise (i.e., hori-

zontal) correlations are exploited, respectively. By exploiting both

types of correlations, our transversal method inherits the prop-

erties of both reconstruction-based and classification-based ap-

proaches, namely, (1) the property of the reconstruction-based

approaches of representing the target patch as a weighted com-

bination of the atlas patches, and (2) the discriminative ability of

the classification-based methods in modeling the dependence of

anatomical labels on the image appearance.
• We note that the labels at some parts of the image (e.g., deep in-

side the structures) can be determined more reliably than other

parts (e.g., at boundaries of the structures), due to their anatom-

ical characteristics and also due to their robustness to registra-

tion errors. However, most patch-based label fusion methods do

not acknowledge this fact and label each target point indepen-

dently. In this paper, we argue that it is more reasonable to let the

high-confident points guide the labeling procedure of nearby less-

confident points. Specifically, we embed our label fusion method

into a sequential labeling framework that first labels the most

confident target points and gradually labels those less-confident

points iteratively. In this way, the anatomical labels estimated

from the previous iterations can be used to help select more

anatomically similar atlas patches to build the dictionary for im-

proving the labeling.

We evaluate the label fusion performance of our proposed

ethod on the ADNI, LONI, and SATA segmentation challenge

atasets. We show that our proposed matrix completion based

abel fusion method outperforms both reconstruction-based and

lassification-based approaches. Moreover, we show that the sequen-

ial confidence-guided labeling scheme further improves our pro-

osed method. Most importantly, our proposed method is ranked 1st

n the online SATA Segmentation Challenge.

Note that a preliminary version of this work was presented in

anroma et al., (2014b). The current paper (1) extends our previous

ork with the sequential confidence-guided labeling approach as de-

cribed in Sec. 3.2, and ( 2) provides more exhaustive descriptions as

ell as illustrative examples of our extended method. We extensively

3) evaluate each component of our extended method by using addi-

ional datasets, and (4) compare it with the state-of-the-art methods.

. Related work

With the advent of MAS, label fusion has become an increasingly

ctive area of research. Label fusion is the key step that aims to seg-

ent the target image by finding a consensus among a set of reg-

stered atlas labels. The way in which the atlas information is used

o derive the consensus segmentation has given rise to many differ-

nt label fusion flavors. The simplest way, known as majority voting

MV), simply assigns each target point the label that appears most

requently among all corresponding atlas points (Heckemann et al.,

006; Rohlfing et al., 2005).
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Another type of label fusion methods computes the target label

s a weighted average of atlas labels, where weights are derived us-

ng local image similarity measurements. For example, local weighted

oting (LWV) (Artaechevarria et al., 2009) is an example of this type of

ethods, which only uses the corresponding atlas points after regis-

ration to compute the label on each target point. Non-local weighted

oting (Coupe et al., 2011; Rousseau et al., 2011) (NLWV) extends LWV

y including all the atlas points within a small neighborhood, thus

ffering more flexibility to registration errors. Note that NLWV was

riginally inspired by image denoising ideas, where patches in the

oisy image (i.e., target image) are reconstructed as a weighted aver-

ge of patches in the database of images (i.e., atlas images). The only

ifference is that the label fusion methods reconstruct the target la-

els, instead of the target image. Motivated by the success of sparse

epresentations in computer vision, sparse coding has also been stud-

ed in the context of label fusion (Tong et al., 2012; Zhang et al., 2012).

he main idea is to reduce the number of contributing atlas labels

o only a few relevant ones, thus offering better robustness to pos-

ible errors. The main idea behind all reconstruction-based methods

s to first represent the target patch as a weighted combination of

tlas patches, so that the target labels can be directly estimated us-

ng the ensemble of atlas labels according to the weights used in the

epresentation.

On the other hand, Warfield et al. proposed a label fusion method,

TAPLE (Rohlfing et al., 2004a; Warfield et al., 2004), that simul-

aneously estimates the target labels and the global performance

f each atlas by means of the Expectation-Maximization algorithm

Dempster et al., 1977). Image appearance information has also

een introduced into STAPLE to enhance the statistical modeling of

he atlas performances. For example, non-local STAPLE (Asman and

andman, 2013) reformulates STAPLE to include priors based on the

mage similarity measurements. More recently, STEPS (Cardoso et al.,

013) introduces a local ranking strategy based on the image patch

imilarity into the STAPLE formulation.

Besides, there has been a wide interest in tackling the label fu-

ion problem as a classification problem. In this case, the target la-

el is computed as a function of the image features, where such a

unction models the dependency of atlas labels on the observed im-

ge patches. Different machine learning techniques have been used

n this context of label fusion, such as support vector machines (Hao

t al., 2013), polynomial regression (Wang et al., 2011b), random

orests (Zhang et al., 2014; Zikic et al., 2013), and auto-context models

Kim et al., 2013). The main idea behind these methods is to learn a

unction that can discriminate among different possible labels based

n the image appearance information.

Both reconstruction- and classification-based approaches follow

two-step approach, i.e., (1) the optimization step, where either

he representation weights or the mapping functions are computed,

nd (2) the labeling step, where the target labels are estimated.

ur method proposes a combination of reconstruction- and (linear)

lassification-based approaches by using matrix completion tech-

iques (Candès and Recht, 2009), thus integrating the advantages of

oth approaches. Moreover, both optimization and labeling processes

re carried out in a single step in our method.

However, in certain regions, the appearance information may be

nly weakly related to the underlying structural labels. In such case,

t may be useful to rely on the putative anatomical information to

educe the ambiguity. For example, (Cardoso et al., 2013; Warfield

t al., 2004) use Markov random fields (MRF) to enforce nearby target

oints to bear the same labels. Zhang et al. (Zhang et al., 2011) uses a

imilar assumption in a sequential labeling approach, where labels of

ore confident points are determined at earlier iterations and then

he less confident points at later iterations are encouraged to bear the

ame labels as their neighboring more confident points.

Thus, we also embed our label fusion method into a sequential

onfidence-guided labeling framework by gradually labeling target
oints in decreasing order of confidence. However, instead of simply

mposing neighboring points to bear the same labels, we use label

nformation from previous iterations to select more meaningful atlas

atches for labeling each target point.

. Method

Our method is presented in two parts below. In Section 3.1, we

resent our label fusion method using matrix completion, and, in

ection 3.2, we describe the sequential confidence-guided labeling

ramework. We denote images and label maps in bold capital letters,

atrices in capital letters, vectors in lowercase letters with an over-

ead arrow, and scalars in lowercase letters.

.1. Label fusion by matrix completion

.1.1. Problem formulation

Suppose that we have a target image T and a set of m atlas images

k along with their respective label maps Lk (k = 1 . . . m), which

ave been already registered to the target image. The conventional la-

el fusion approaches estimate the target label f at each voxel x ∈ �

f target image T in a patch-wise manner. Let �t ∈ R
p × 1 denote

(column) vector containing the intensity values in the target im-

ge patch centered at voxel x, and matrix A = [�a1, . . . , �ai, . . . , �an] ∈
p × n denote a dictionary of n candidate atlas image patches with

he highest similarity to the target image patch in a search neigh-

orhood of x (See Appendix A.3 for the details about building the

ictionary). Following the same column order as the matrix A, �g =
l1, . . . , li, . . . , ln]ᵀ ∈ R

n × 1 is a (column) vector of ground-truth la-

els at the atlas patch centers, with each element li ∈ {−1, 1} indi-

ating either the absence (i.e., background) or the presence (i.e., fore-

round) of a given structure at the center of the respective atlas image

atch �ai.

As mentioned, label fusion can be regarded as a reconstruction or

lassification problem. As said, the reconstruction case is a particular

ype of weighted voting methods. As such, each target label f is com-

uted as a linear combination of the atlas labels (Artaechevarria et al.,

009; Coupe et al., 2011; Rousseau et al., 2011; Zhang et al., 2012) as

ollows:

f = �uᵀ�g (1)

here �u ∈ R
n × 1 is a weighing vector to combine the atlas la-

els. (Note that, the resulting continuous label can be discretized to

−1, 1} using the sign function). Weights in �u encode the importance

f each candidate atlas image patch in predicting the target label, and

re computed so that the target patch �t can be approximately recon-

tructed using the atlas patches in A (Tong et al., 2012; Zhang et al.,

012). This is,

min
�u

{
Crec

([
�t
1

]
,

[
A
�1ᵀ

]
�u

)}
⇒

⇒
[
�t
1

]
≈

[
A
�1ᵀ

]
�u

(2)

here Crec( · ) is the data fitting term penalizing reconstruction errors

f the target patch. Note that the trailing 1’s in the target and atlas

atches encourage the weighting vector �u to add up to one.

On the other hand, in the (linear) classification case, given a target

mage patch �t , its center label is determined based on the learned

unction, denoted as �v ∈ R
p × 1, aimed at mapping the appearance of

he atlas image patch to its center label (Hao et al., 2013; Wang et al.,

011b). Assuming a linear function, the target label can be obtained

y the following equation:

f =
[
�t
1

]ᵀ
�v (3)
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Fig. 2. Illustrative example of how the weights �u and the mapping function �v are computed in the reconstruction-based and classification-based approaches, respectively. Note

that the vectors of trailing ones have been omitted for simplicity.

Fig. 3. Each quadrant of the four-quadrant matrix is a sub-matrix, consisting of (1)

stacked vectors of the atlas image patches (red), (2) stacked vectors of atlas label

patches (yellow), (3) target image patch (light blue), and (4) to-be-estimated tar-

get labels (dark blue circles), respectively. Reconstruction-based methods utilize the

correlations along the columns of the four-quadrant matrix, whereas classification-

based methods utilize the correlations along the rows, as indicated by the horizontal

and vertical shaded arrows, respectively. By imposing the low-rank constraint on this

four-quadrant matrix, our method can simultaneously leverages the full row-wise and

column-wise correlations for estimating the target labels, as indicated by the transver-

sal shaded arrow.
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t

where the trailing 1 allows to include the bias term of the linear map-

ping in the last entry of �v (as in the reconstruction case, the discrete

label {–1,1} can be obtained using the sign function). The linear map-

ping function �v encodes the relevance of each image feature in pre-

dicting the anatomical label and can be learned by minimizing the

discrepancies between the predicted labels and ground-truth labels

in the training set. This is,

min
�v

{
Ccls

(
�g,

[
A
�1ᵀ

]ᵀ
�v
)}

⇒

⇒ �g ≈
[

A
�1ᵀ

]ᵀ
�v

(4)

where Ccls( · ) is a term penalizing the atlas label prediction errors

(i.e., training errors). The procedures of reconstruction-based and

classification-based methods are illustrated in Fig. 2.

3.1.2. Label fusion by matrix completion

We pose label fusion as a matrix completion problem, where the

labels of to-be-estimated target patches are the missing entries in a

specially constructed matrix. Furthermore, instead of predicting only

the label at the center of each target patch, we also estimate all labels

in the entire target image patch. Following the same order as in the

atlas image matrix A = [�a1, . . . , �ai, . . . , �an] ∈ R
p × n, we arrange the

label vector �li of each atlas patch �ai into the atlas label matrix L =
[�l1, . . . , ,�li, . . . ,

�ln] ∈ R
p × n.

Consider the four-quadrant matrix Z =

⎡
⎢⎣

[
A
�1ᵀ

] [
�t

1

]
L �f

⎤
⎥⎦,

where each quadrant is a sub-matrix consisting of: (1) the atlas im-

age matrix A ∈ R
p × n, (2) the atlas label matrix L ∈ R

p × n, (3) the

target image patch �t ∈ R
p × 1, and (4) the to-be-estimated target la-

bel patch �f ∈ R
p × 1 (similarly defined as �li). The main idea of the

reconstruction-based approaches implies that the target image patch

can be expressed as a linear combination of the atlas image patches,

whereas the main idea of the (linear) classification-based approaches

implies that the label can be expressed as a linear combination of the

image intensity values (with the vectors �u and �v in Fig. 2 containing

the mixing coefficients in the reconstruction and classification cases,

respectively). All these, in turn, imply that the four-quadrant matrix Z

is highly correlated in both column-wise and row-wise fashions, and

thus it is low-rank. We exploit this fact to recover the missing en-

tries through rank minimization of the four-quadrant matrix (Candès

and Recht, 2009). As we will see, this is equivalent to jointly using

the properties of both reconstruction-based and classification-based
pproaches when estimating the target labels. In other words, we es-

imate the target labels by using both an ensemble of atlas labels and

learned discriminative function. Furthermore, by jointly estimating

he labels for the whole target patch, we provide additional useful

ources of correlation among the observed data to be leveraged by

atrix completion. Fig. 3 illustrates the idea of our method.

.1.3. Optimization

As denoted in Eq. (2), reconstruction-based methods assume that

ach target-patch column can be represented as a linear combina-

ion of all atlas-patch columns. On the other hand, as denoted in
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q. (4), classification-based methods assume that each label-patch

ow can be represented as a linear combination of all image-patch

ows. Such row- and column-wise dependences imply that the ma-

rix Z is low-rank. This allows us to formulate the recovery of the

issing target labels in �f as a matrix rank minimization problem.

y doing so, our method combines both reconstruction-based and

lassification-based methods, thus posing the recovery of target la-

els as a blend of row-wise and column-wise combinations. Since

olumn-wise correlations describe the relationships between atlas

mage patches and target image patches, and row-wise correlations

ncode the dependence of the labels based upon the appearances of

mage patch, our MC-based label fusion method inherits the proper-

ies of both reconstruction-based and classification-based methods.

The key step in our approach is then finding the missing en-

ries in �f so that the rank of Z is minimized. Following Cabral et al.,

2011), Goldberg et al., (2010), we seek a new matrix Ẑ which sat-

sfies the following conditions: (1) the rank of Ẑ is low; and (2) the

esidue between the estimated and observed data in Ẑ and Z is small.

ue to the different natures of the two types of data in the matrix,

e use two different cost functions to evaluate the residues: one for

he image appearance, and another for the anatomical labels. There-

ore, we define �I and �L as the sets of indices pointing to the en-

ries in Z (i.e., pairs of row and column coordinates), corresponding

o the observed image and label data, respectively (note that the in-

ices of the to-be-estimated target labels in �f are excluded from �L).

ccordingly, za,b, (a, b) ∈ �I , denotes the image-intensity value at

osition (a, b) in matrix Z (i.e., either red or blue quadrants of Fig. 3),

nd za,b, (a, b) ∈ �L, denotes the label value at position (a, b) in ma-

rix Z (i.e., yellow quadrant of Fig. 3). The above objectives for finding

he missing target labels can be formulated into the following convex

ptimization problem:

min
Ẑ

{
η‖Ẑ‖∗ + 1

|�1|
∑

(a,b) ∈ �I

cI(ẑa,b, za,b)

+ λ

|�2|
∑

(a,b) ∈ �L

cL(ẑa,b, za,b)

}
(5)

here ‖ · ‖∗ denotes the nuclear norm (Candès and Recht, 2009) (i.e.,

he convex relaxation of the rank operator), | · | denotes the cardi-

ality of the set, and cI( · ) and cL( · ) are the loss functions penaliz-

ng the estimation errors in the observed image and label entries, re-

pectively. These two last terms follow the same idea as Crec( · ) and

cls( · ) of the reconstruction and classification approaches of Eqs. (2)

nd (4), respectively. We use the squared loss to penalize the error

etween the estimated image-intensity value ẑa,b and the observed

ne za,b ((a, b) ∈ �I), i.e., cI(ẑa,b, za,b) = (ẑa,b − za,b)
2/2, since it is

uitable for the continuous values in the intensity images, and the lo-

istic loss to penalize the label estimation errors, i.e., cL(ẑa,b, za,b) =
og(1 + exp(−za,bẑa,b)), ((a, b) ∈ �L), since it is suitable for the bi-

ary values in the labels.

The first term in Eq. (5), which is controlled by the regularization

arameter η, is responsible for decreasing the rank of the matrix Ẑ.

ower ranks tend to remove noisy variations in the matrix Z, thus im-

roving the row-wise and column-wise correlations. This means that

ow rank minimization encourages each column to be represented as

linear combination of the other columns, and each row to be repre-

ented as a linear combination of the other rows, which correspond

o the objectives of the reconstruction-based and classification-based

pproaches of Eqs. (2) and (4), respectively. Note that neither the

eighting vector �u nor the mapping function �v are explicitly com-

uted, as their computations are implicit in the minimization of the

atrix rank. The second term in Eq. (5) is a feature error term which

enalizes the discrepancy between the observed image data and the

stimated image data in Ẑ. Having in mind that matrix Ẑ is low-rank

nd thus contains significant column-wise correlations, this term en-
ourages that the target patch is represented as a weighted average

f the atlas patches, and then the atlas labels are transferred to the

arget by following the same representation. The third term in Eq. (5),

hich is controlled by the regularization parameter λ, is a label er-

or term that penalizes the discrepancy between the ground-truth

tlas labels and the estimated ones in the matrix Ẑ. Considering that

atrix Ẑ contains significant row-wise correlations, this term encour-

ges that the dependencies between the atlas images and labels are

ffectively captured and, as consequence of the rank minimization, it

lso ensures that the missing target labels are filled-in following the

ame dependencies. We determine the values of η and λ empirically.

The optimization of Eq. (5) can be solved by an iterative algo-

ithm that alternates between a gradient step and a shrinkage step

Goldberg et al., 2010). Specifically, in the gradient step, the matrix is

pdated so as to decrease the residual error, while, in the shrinkage

tep, the rank of the matrix is reduced. Since it is a convex optimiza-

ion problem, the convergence to global optimum is guaranteed.

.1.4. Summary

The matrix-completion based label fusion method can be repre-

ented as a function �f = MatComLF(�t, A, L) that estimates the labels

f a target patch in �f using the target image patch in �t and the dictio-

ary of atlas image patches and labels in A and L, respectively. Since

e estimate the label for the entire image patch and there are over-

aps between image patches, we end up with multiple estimations for

ach target point. Accordingly, we first combine the multiple overlap-

ing patch estimations into a continuous label map F , as described in

ppendix A.1, and then discretize the continuous label map to obtain

he estimated target labels D, as described in Appendix A.2. Table 1

hows a summary of our proposed algorithm for labeling an entire

mage.

.2. Sequential confidence-based labeling

Selection of an appropriate dictionary is a key issue affecting the

abel fusion performance (Coupe et al., 2011; Hao et al., 2013). Re-

all that in �f = MatComLF(�t, A, L), we obtain the dictionary (A, L)
ased on the image similarity between the target image patch and

he neighboring atlas image patches (please refer to Appendix A.3).

owever, building the dictionary based solely on image similarity can

ndermine the label fusion performance, especially in challenging

egions such as the boundaries of the structures, where similar at-

as patches may bear different labels. To overcome this limitation we

ropose to use the prior knowledge about the labels on the target im-

ge to select the dictionary based on both image and label similarity

ith the target patch. Specifically, we adopt a sequential confidence-

ased labeling strategy where we first label the most confident target

oints (based on the magnitude of the continuous label values in F )

nd then use this partial label information to refine the dictionaries

sed for labeling the less confident points at later iterations. As result,

or each target patch �t , we obtain a refined dictionary (Ã, L̃) ⊂ (A, L)
ontaining a subset of atlas patches with both high image similarity

nd high label similarity. This process is summarized in Fig. 4.

.2.1. Problem formulation

Assume that, at iteration s, we want to label a target image patch,

enoted as �t , centered at x. We build the dictionary in a two-step

pproach: First, we build a dictionary of neighboring atlas image

atches with high image similarity to the target image patch �t , de-

oted as A = [�a1, . . . , �an] and L = [�l1, . . . ,�ln]. Next, we refine it based

n the label similarity with the target label patch.

Let us denote the partial target label map from the previous iter-

tion as D(s − 1). We extract the partial labels for the target patch at

teration (s − 1), denoted as �d, consisting of a vector with entries in

−1, 1,⊥}, where −1, 1 and ⊥ indicate background, foreground and

nlabeled point, respectively. We then build the refined dictionary
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Table 1

Algorithm for labeling one entire image using matrix-completion based label fusion.

Input: Target image T , along with the atlas images and label maps Ik and Lk , k = 1 . . . m

Output: Estimated continuous and discrete target label maps F and D, respectively

F = ∅ #set for aggregating the overlapping estimations

For Each voxel x ∈ � in the target image domain, do
�t = GetImgPatch(T , x)

(A, L) = BuildDictionary(Ik, Lk,�t, x), k = 1 . . . m #see Appendix A.3
�f = MatComLF(�t, A, L)

F = F ∪{�f }
End For

F = CombineOverlappingLabels(F) #see Appendix A.1

D = Discretize(F) #see Appendix A.2

Fig. 4. Overview of the sequential confidence-guided labeling framework: (1) We label

each target point x using the original dictionaries, denoted as (A, L)x . Note that, instead

of obtaining a discrete label map, we obtain a continuous label map F indicating the

label confidence values. (2) We obtain a partial segmentation, consisting of the most

confident labels by discretizing the continuous labels using a pre-defined threshold τ ,

and then decrease the threshold. (3) We label the remaining unlabeled target points x

by using the refined dictionaries (Ã, L̃)x obtained with the help of the confident labels

from previous iterations. We repeat steps (2)–(3) until all the target points have been

labeled.
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(Ã, L̃) using only the set of atlas patches with high label similarity to

the partial target label patch, as defined in the following:{
�ai,

�li | sim
(
�li, �d

)
≥ ρ

}
(6)

where 0 ≤ ρ ≤ 1 is a label similarity threshold and sim(�li, �d) mea-

sures the similarity between the atlas label patch �li and the partial

target label patch �d. We define the label similarity measurement as

the number of coincident labels in the atlas and target patches, nor-

malized by the number labeled target points in the patch. More for-

mally,

sim(�li, �d) = |id(�li) ∩ id( �d)| /|id( �d)| (7)
Fig. 5. Partially labeled target patch (i.e., blue square in the left-hand side). Atlas patches in

the atlas patches in the dictionary with low label similarity to the partially labeled target pat
here id( �d) is the indicator function denoting the set of indices in �d

ontaining foreground labels, and | · | denotes the cardinality of the

et.

As result, the refined dictionary used to label the target image

atch �t , denoted as (Ã, L̃), is composed by the atlas patches in the

eighborhood of�t satisfying both the image similarity criterion in Ap-

endix A.3 (Eq. (A.2)) and the label similarity criterion of Eq. (6). Fig. 5

llustrates the dictionary refinement based on label similarity.

.2.2. Summary

The whole iterative procedure is carried out as follows. At the

rst iteration, we compute the continuous label estimates F (which

lso represent the labeling confidence of the whole image) by us-

ng our proposed matrix-completion based label fusion method in

ection 3.1. In the discretization step, we only assign labels to the

ost confident points according to a threshold τ , leaving the rest of

oints unlabeled. In the subsequent iterations, we re-compute the la-

el confidences in the unlabeled parts by using the information of the

abeled parts to refine the dictionary, as previously described. Note

hat we only need to re-compute the continuous labels in the unla-

eled target points near to the labeled parts. In the end of each itera-

ion, we discretize the new continuous estimates to obtain the partial

abel map D(s), where we gradually decrease the confidence thresh-

ld τ across iterations. As result, we progressively estimate the labels

or the less confident points with the guidance from labels of more

onfident points estimated in the previous iterations. This process

as some similarity to simulated annealing (Sanroma et al., 2012a;

012b), where a temperature parameter used to control the optimiza-

ion process is gradually decreased and also the result from the pre-

ious iteration is used to initialize the next iteration. Fig. 6 shows an

xample of the evolution of the continuous label estimates across it-

rations, along with the resulting discrete confident labels. As we can

ee, the agreement of the continuous labels with the ground-truth

abels improves across the iterations. In Table 2, we describe the al-

orithm of our full method.
the original dictionary (i.e., red and green squares in the right-hand side). We exclude

ch (i.e., those red squares in the right-hand side).
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Fig. 6. Top-left: initial continuous label estimates of MC-based label fusion. Bottom-left: initial partial labels (with confidence threshold τ = 0.6). Top-middle: evolution of the

continuous label estimates across iterations using the information from confident labels. Bottom-middle: partial labels with the decreasing confidence threshold across iterations.

Top-right: ground-truth target labels. Bottom-right: estimated target labels in the end of the sequential confidence-based labeling procedure.

Table 2

Algorithm of the sequential confidence-guided label fusion by matrix completion.

Input: Target image T , atlas images and label maps Ik and Lk , k = 1 . . . m, initial discretization threshold τini , and patch selection threshold ρ

Output: Estimated target label map D

D(0) = Initializetounlabeled

τ = τini

s = 0

While there are unlabeled points remaining in D(s) , do

s = s + 1

F = ∅ #set for aggregating the overlapping estimations

For Each voxel x ∈ � in the target image T , do

(�t, �d) = GetImg&LabelPatch(T , D(s−1)
, x)

(A, L) = BuildDictionary(Ik, Lk,�t, x), k = 1 . . . m #see Appendix A.3

(Ã, L̃) = RefineDictionary(A, L, �d, ρ) #Eq. (6)
�f = MatComLF(�t, Ã, L̃) #Section 3.1

F = F ∪{�f }
End For

F = CombineOverlappingLabels(F) #see Appendix A.1

D(s) = Discretize(F , τ ) #see Appendix A.2

τ = τ/β , β ≥ 1

End While

D = D(s)
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. Experiments

We evaluate the performance of the proposed method by con-

ucting human brain anatomical segmentation experiments in a va-

iety of datasets. In Section 4.2, we present hippocampus segmenta-

ion experiments in the ADNI1 dataset. In Section 4.3, we segment all

6 subcortical and limbical structures in the LONI LPBA402 dataset

Shattuck et al., 2008). Finally, in Section 4.4, we provide segmen-

ation results in the online SATA3 Segmentation Challenge dataset,

onsisting of segmentations of 14 mid-brain structures.
1 http://www.adni-info.org/
2 http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id=12
3 https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page

4

l

In the ADNI and LONI-LPBA40 datasets, we conducted the follow-

ng three pre-processing steps on all images before label fusion: (1)

kull stripping by a learning-based meta-algorithm (Shi et al., 2012);

2) N4-based bias field correction (Tustison et al., 2010); (3) ITK-based

istogram matching for normalizing the intensity range. Prior to seg-

entation, we use FLIRT (Jenkinson et al., 2002) to perform linear

affine) alignment between each pair of images followed by non-rigid

egistration with diffeomorphic demons (Vercauteren et al., 2009).

he images in the SATA dataset were already skull-stripped and the

airwise non-rigid registration was also performed.

.1. Comparison methods

We compare our proposed label fusion method to a variety of re-

ated methods. As for the reconstruction-based methods, we compare

http://www.adni-info.org/
http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id1012
https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page
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Table 3

Parameter values used in all the comparison methods.

Parameter Details

Number of atlases m In all the methods, we use the best m = 15 atlases selected according to mutual information, as this

number of atlases has achieved an optimal performance in similar studies (Aljabar et al., 2009).

Patch size We tried with isotropic patch sizes of 3, 5 and 7 voxels, and found that 5 yielded the best results.

Neighborhood radius ε We tried with radius of ε = 1, 2 and 3 and found that ε = 1 performed the best in all the cases. By

definition, we adopted the value of ε = 0 for LWV.

LogReg and SPBL sparsity regularization α We found that, the best amount of regularization for LogReg and SPBL was αc = 0.5 and αr = 0.01,

respectively.

MCfull and MCdeg regularization parameters η,λ We tried values in the range η = 10−5 . . . 1 and λ = 10−3 . . . 10, respectively, and we found that λ = 0.05

and η = 10−4 yielded the best results in all datasets.

Label similarity threshold ρ In the full version of our method (MCfull), we found ρ = 0.9 was the best value for the label similarity

threshold, suggesting that enforcing high anatomical similarities in selection of atlas patches is

beneficial for the segmentation performance.

Initial confidence threshold and decay parameter τini, β We set the value of the initial confidence threshold τini according to the experiments in the beginning of

Section 4.2. The decay parameter is fixed to β = 1.5.

STEPS (Cardoso et al., 2013) There are three parameters to be tuned in STEPS, namely (1) the kernel size to measure image similarity

in the local region (related to image patch size), (2) the number of local labels, and (3) the amount of

MRF regularization. We tried with a range of values around the recommended values, and we kept the

ones performing the best, which are the kernel size of 1.5, the number of local labels equal to 11, and

the amount of MRF regularization equal to 4. Regarding MRF regularization, STEPS authors

recommended a value in the range 0 . . . 5, which suggests that, in the present experiments, the MRF

regularization has an important role for improving performance.

Fig. 7. Evolution of Dice ratio with iterations of MCfull for different values of τini . In-

termediate segmentation results at each iteration are obtained by thresholding the

continuous label map at τ = 0 in order to obtain a completely segmented image. Note

that such completely labeled map is only used for obtaining the intermediate segmen-

tation performance, while the partially labeled map according to the current value of

the threshold is normally passed to the next iteration, as described in our method. Re-

sults at iteration 0 correspond to MCdeg, where the whole target image is labeled in

one-pass without using any support from the high confident labels.
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with Sparse Patch-based Labeling (SPBL) (Tong et al., 2012; Zhang

et al., 2012) and some related image-similarity based methods such

as Local Weighted Voting (LWV) (Artaechevarria et al., 2009) and

Non-Local Weighted Voting (NLWV) (Coupe et al., 2011; Rousseau et

al., 2011) label fusion. Note that the only difference between LWV and

NLWV is the use of the neighborhood radius ε to build the dictionary,

i.e., with ε > 0 in NLWV while ε = 0 in LWV. As for the classification-

based methods, we have implemented a method that uses multi-task

logistic regression (termed LogReg) for learning the mapping func-

tion between the appearance and the labels of Eq. (4). See Appendix B

for more details.

In both reconstruction-based and classification-based ap-

proaches, we have tried either estimating only the center label for

each target patch, or the whole patch. In order to keep the results as

concise as possible, we only report the best estimation result (point-

wise or patch-wise) for both reconstruction- and classification-based

approaches. In most cases, we have found little difference between

point-wise and patch-wise label estimation. Note that SPBL, NLWV

and LogReg use exactly the same dictionary as our proposed method,

thus providing fair comparison for these different label fusion

methods.

We also compare with the state-of-the-art method STEPS4

(Cardoso et al., 2013), which incorporates image similarity measure-

ments into a statistical model of atlas performance to estimate the

target labels. Moreover, it uses Markov Random field regularization to

add spatial consistency by encouraging the neighboring target points

to bear the same anatomical labels.

In order to assess each of our contributions, we further include

two versions of our method in the comparison: (1) a degraded ver-

sion (MCdeg) that uses only the matrix completion to label a target

image in one-pass, as described in the algorithm of Table 1, and (2)

the full version of our method (MCfull), as described in the algorithm

of Table 2, which uses the sequential confidence-guided framework

to refine the atlas dictionary.

Table 3 shows the values of the parameters used in all the com-

parison methods.

4.2. ADNI dataset

The ADNI dataset is provided by the Alzheimer’s disease neu-

roimaging initiative and contains the segmentations of the left and
4 As part of the NiftySeg package downloadable from: sourceforge.net/projects/
niftyseg/

4

fi

ight hippocampi which were obtained by a commercial brain map-

ing tool (Hsu et al., 2002). The size of each image is 256 × 256 × 256.

e use 30 randomly selected subjects to test the performance of

ach of the segmentation methods. Due to the random selection, the

revalence of disease in our samples is similar to that in the original

ataset, which is approximately 1/4 of Alzheimer’s disease patients,

/4 of healthy subjects, and 1/2 of subjects with mild cognitive im-

airment. In each segmentation experiment, one image is regarded as

he target subject and the remaining 29 as the atlases. This process is

epeated 30 times by regarding each image as target image once. Seg-

entation performance is assessed by the Dice ratio between manual

nnotations and automatic segmentations.

.2.1. Sensitivity study to the initial confidence threshold

First of all, we evaluate the sensitivity of our method to the con-

dence threshold parameter τ . In Fig. 7, we show the segmen-
ini
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Table 4

Dice ratio (%) in the ADNI dataset. We denote with markers ∗ and + the statistically best and second best results among all the

methods, respectively (according to a paired t-test at 5% significance level).

STEPS LWV NLWV SPBL LogReg MCdeg MCfull

Left HC 81.46 (2.27) 81.26 (2.35) 82.42 (1.98) 82.61 (1.91) 82.83 (2.13) 83.56 (2.01) + 84.02 (2.15)∗

Right HC 81.99 (2.72) 81.67 (2.93) 82.86 (2.35) 82.75 (2.21) 83.13 (2.42) 83.64 (2.36) + 84.15 (2.31)∗

Overall 81.73 (2.50) 81.47 (2.64) 82.64 (2.17) 82.68 (2.05) 82.98 (2.26) 83.60 (2.17) + 84.08 (2.22)∗

Fig. 8. Each column shows two consecutive slices of a typical example of hippocampus segmentation result by each method. Green labels denote coincidence between manual and

automated segmentations (i.e., true positives), blue labels denote the parts of manually-segmented structures not detected by the automated method (i.e., false negatives), and red

labels denote the parts of the automated segmentation that do not appear in the manual segmentation (i.e., false positives).
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ation performance with iterations in the annealing procedure of

Cfull, by using different initial values τini = {0.2, 0.4, 0.6, 0.8} (See

ppendix A.2 for details about the confidence-based discretization).

As we can see, segmentation performance increases w.r.t. the in-

rease of the iteration number regardless the initial value of the con-

dence threshold, thus confirming the benefit of obtaining supports

rom the previously labeled points. Regarding the initial value of the

hreshold, results suggest to better start labeling only a few most con-

dent points and then gradually labeling the rest of points in a sup-

orted way (i.e., τini = 0.6 and 0.8) rather than taking a higher risk at

he beginning by labeling a large number of points in an unsupported

ay (i.e., τini = 0.2 and 0.4). On the other hand, using higher thresh-

lds results in higher computational times because a larger number

f points need to be considered at each iteration. The average compu-

ational times for completely labeling both left and right hippocampi

n one subject for the confidence threshold values τini = 0.2, 0.4, 0.6

nd 0.8 are 134, 214, 291 and 370 s, respectively5. In the case of

ini = 0.2, the method usually completes the labeling of the subject

efore the 7th iteration. Taking into account both the performance

nd computational aspects, we choose the value τini = 0.6 in the rest

f experiments.

.2.2. Quantitative comparison

In Table 4, we show the segmentation performance by all the com-

arison methods for the left and right hippocampi (HC). Each value in

he table shows the mean Dice ratio (and standard deviation) across

0 leave-one-out cross-validation experiments.

As we can see from these results, our proposed method (MC-

ull) achieves the best performance among all the methods, fol-

owed by the degraded version (MCdeg) which outperforms the

est of competing methods (according to a paired t-test at 5% sig-

ificance level). Specifically, our proposed method (MCfull) outper-

orms both the reconstruction-based (LWV, NLWV and SPBL) and
5 Computational times of MATLAB/mex scripts on 4 Intel Core i7 CPUs at 2.5 GHz

I

1

he classification-based (LogReg) approaches by ∼1.5% and 1.1%, re-

pectively. Regarding the degraded version of our method (MCdeg),

e can see that it also outperforms both SPBL and LogReg by ∼1%

nd ∼0.6%, respectively, thus confirming the superiority of our com-

ined, matrix-completion based approach, compared to the separate

econstruction-based and classification-based approaches. By com-

aring the results of the two versions of our method, we can see

hat the sequential confidence-guided framework provides a further

mprovement of ∼0.5% with respect to MCdeg. Another interesting

bservation is that NLWV outperforms LWV by >1%, thus confirm-

ng the advantage of including neighboring atlas patches in label fu-

ion as already noted by Rousseau et al. (2011). This has to be taken

nto account when interpreting the results of STEPS, which, like LWV,

oes not include the neighboring atlas patches in the dictionary.

hus, the ∼0.3% performance improvement of STEPS over LWV is due

o both the superior statistical estimation technique and the MRF-

ased regularization. Regarding the comparison of SPBL and LogReg,

e observe that the classification-based approach outperforms the

econstruction-based approach by an average of ∼0.3%. Each column

n Fig. 8 shows two consecutive slices with the typical segmentation

esults by each comparison method.

The arrows point to the areas with the most significant differ-

nces among the methods. In general, the proposed methods, MCdeg

nd MCfull, show the highest true positives (green). Particularly,

econstruction-based methods tend to have more false negatives

blue). Comparing the results by STEPS and LWV, we can see that

TEPS manages to reduce the false negatives in the area pointed by

he purple arrow, probably due to the MRF regularization. LogReg ob-

ains worse results than the proposed methods, MCdeg and MCfull,

n the areas pointed by the black and purple arrows, respectively.

.3. LONI dataset

The LONI LPBA40 dataset is provided by the Laboratory of Neuro-

maging at UCLA and contains 40 brain images of size 220 × 220 ×
84. Each image contains the annotations of 56 anatomical structures.
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Fig. 9. Example segmentation results of the right gyrus rectus by all comparison methods. Green labels denote coincidence between manual and automated segmentations (i.e.,

true positives), blue labels denote the parts of the manually segmented structure not detected by the automated segmentation (i.e., false negatives), and red labels denote the parts

of the automated segmentation that do not appear in manual segmentation (i.e., false positives).

Table 5

Dice ratio (%) in the LONI database. We denote with markers ∗ and + the statistically best and second best results among all the methods,

respectively (according to a paired t-test at 5% significance level). Note that we omit the marker∗ when no single method is statistically

superior to the rest.

STEPS LWV NLWV SPBL LogReg MCdeg MCfull

CN 82.10 (5.17) 82.24 (5.20) 82.99 (5.15) 83.64 (4.79) 83.29 (5.04) 83.77 (4.71) + 83.78 (4.67) +
GRe 78.63 (5.16) 78.14 (4.51) 78.81 (4.48) 79.13 (4.52) 79.19 (4.39) 79.67 (4.34) + 80.32 (4.74)∗

HPC 82.73 (2.82) 82.60 (2.74) 83.33 2.69 83.63 (2.55) 83.51 (2.68) 83.69 (2.46) + 83.93 (2.57)∗

PUT 83.22 (3.13) 82.44 (3.10) 82.92 3.10 84.83 (2.91) 83.73 (2.95) 84.42 (2.83) + 84.88 (2.96)∗

LOG 71.10 (8.16) + 69.80 (8.05) 70.48 (8.23) 69.94 (8.23) 70.34 (8.40) 70.33 (8.43) 71.54 (7.80)∗

PHG 79.76 (3.49) 79.23 (3.22) 80.11 (3.22) 80.33 (3.33) 80.26 (3.22) 80.64 (3.24) + 81.25 (3.53)∗

IC 85.30 (2.34) 85.19 (2.15) 85.88 (2.12) 86.30 (2.07) 86.10 (2.10) 86.47 (2.07) + 86.55 (2.26) +
MOG 77.76 (6.42)∗ 76.94 (6.30) 77.46 (6.41) + 77.27 (6.37) 77.29 (6.44) + 77.29 (6.47) + 77.69 (6.50) +
Overall 80.07 (6.43) 79.57 (6.55) 80.25 (6.58) 80.51 (6.79) 80.46 (6.70) 80.79 (6.77) + 81.24 (6.53)∗
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We focus on the 16 subcortical and limbic structures, which consist

of the left and right parts of the following structures: caudate nu-

cleus (CN), gyrus rectus (GRe), hippocampus (HPC), putamen (PUT),

lateral orbitofrontal gyrus (LOG), parahippocampal gyrus (PHG), in-

sular cortex (IC), and middle orbitofrontal gyrus (MOG). As we did

in the ADNI dataset, we compute the segmentation on each of the

40 images by using the remaining 39 as atlases, and this process

is repeated for 40 times by leaving one different image out at each

time. We assess the segmentation performance by using again the

Dice ratio between manual annotations and automated segmenta-

tions by each method. In Table 5, we show the average Dice ra-

tios (and standard deviations) across the 40 leave-one-out cross-

validation experiments by each method in segmenting different

structures.

Overall, our full method (MCfull) outperforms the rest of the

methods, followed by our degraded method (MCdeg) according to a

paired t-test at the 5% significance level. Specifically, it obtains aver-

age Dice ratio improvements of ∼1% with respect to NLWV and 0.7%

with respect to LogReg and SPBL. The degraded version of our method

(MCdeg) obtains average improvements of >0.5% with respect to

NLWV and >0.3% with respect to LogReg and SPBL, demonstrating the

advantages of the combined approach over the reconstruction-based

or classification-based approaches. Furthermore, MCfull achieves an

improvement of >0.4% with respect to MCdeg due to the sequen-

tial confidence-guided framework. Results across different structures

show that our full method achieves the best results in all the struc-

tures except for MOG, where STEPS obtains the best performance

followed by our full method. The degraded version of our method

(MCdeg) also outperforms the remaining methods in all the struc-

tures, except for the LOG and MOG, where MCdeg is outperformed

by STEPS. Similarly, as we observed in the ADNI dataset, STEPS is su-

perior to LWV, partly due to the benefits of using MRF regulariza-

tion. Also, similarly as in the ADNI dataset, NLWV outperforms LWV

by >1%, thus showing the advantages of including the neighboring

atlas patches in the dictionary. Here, there are no significant perfor-

mance differences between reconstruction- and classification-based

approaches, as evidenced by the results of SPBL and LogReg, respec-

tively. The benefit of the linear reconstruction strategy with spar-
ity constraint compared to the image similarity measurement is ev-

denced by differences in performance between SPBL and NLWV.

In Fig. 9, we further show one example of segmentation results of

he right gyrus rectus by all the comparison methods.

Note the higher false negatives by all other methods in labeling

he bottom part, except our proposed methods MCdeg and MCfull,

s indicated by the blue regions pointed by the blue arrow. Both

Cdeg and MCfull show improvement in this area with respect to

ther methods. Furthermore, MCfull shows the most accurate results,

hus demonstrating the benefit of using the sequential confidence-

uided framework. By comparing the segmentation results between

TEPS and LWV as indicated by the black arrow, we can observe the

ncrease in false positives perhaps due to the use of MRF regulariza-

ion. We can also see that the MRF regularization is not able to correct

he aforementioned false negatives as pointed by the blue arrow.

In order to give more insights on the performance of our full

ethod, in Fig. 10, we further show the evolution of the segmenta-

ion performance with iterations. Similarly as in the ADNI dataset, we

an see that the segmentation performance increases most signifi-

antly during the first 3 iterations, after which it stabilizes. The slight

erformance decrease at iterations 5 − 7 (although not statistically

ignificant) is possibly due to the fact that the newly labeled points

t these iterations have lower confidence values and thus introduce

ome ambiguity. Recall that our ‘annealing-like’ approach uses the

upport of previously labeled points in a decreasing order of their

onfidence values. Therefore, points at the early iterations provide a

ore reliable support than points at the latest iterations. Note also

hat the minority of ambiguous points at the latest iterations cannot

ndermine the dramatic performance improvement achieved during

he early iterations.

In order to give a visual insight of the proposed method, in Fig. 11

e also show the evolution of the continuous labels with iterations

n labeling the right gyrus rectus. Our main purpose here is to show

ow the continuous label maps evolve with iterations after getting

he supports from those confident labels of previous iterations.

The green circles denote the area where the initial estimate of

he continuous label map highly disagrees with the manual segmen-

ation. As we can see in the label maps of further iterations, our
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Fig. 10. Evolution of Dice ratio with iterations of our full method.
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Table 6

Dice Ratio (%) and Hausdorff distance in the SATA

challenge.

Method Mean DR (std) Mean HD (std)

MCfull 86.72 (2.83) 3.449 (0.650)

MCdeg 86.55 (2.88) 3.511 (0.718)

PICSL 86.43 (3.51) 3.458 (0.839)
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roposed method automatically corrects the disagreement in the

entioned area, while leaving the practically unchanged values for

he rest of the (correct) areas.

.4. SATA dataset

The SATA Segmentation Challenge Dataset is a publicly available

ataset composed of 35 training and 12 testing brain MR images, re-

pectively. Our main goal here is to evaluate the performance of our

ethods in an online challenge. Training images contain the manual

nnotations of 14 mid-brain structures, including the left and right

arts of the accumbens area, amygdala, caudate, hippocampus, pal-

idum, putamen and thalamus proper. Testing images do not con-

ain any label, so the estimated segmentations were submitted to the

ATA Challenge website, where the performance statistics were com-

uted and published in the leaderboard6. Pairwise non-rigid registra-

ions between the images are also provided.

Note that one of the methods participating in the challenge, de-

oted as PICSL, is the ensemble method, composed of Joint La-

el Fusion method by (Wang et al., 2013) and the learning-based
6 In the leaderboard, our methods are named “UNC MCseq” (MCfull) and “MCnoseq”

MCdeg), respectively. masi.vuse.vanderbilt.edu/submission/leaderboard.html

f

p

o

(

Fig. 11. From left to right: manual labels and the evolution of the continuous label maps
ost-processing step for systematic error correction by (Wang et al.,

011a).

In Table 6, we show the mean DR and the mean Hausdorff distance

D (in mm) obtained by the comparison methods.

As we can see, our proposed full method outperforms the rest of

he methods in terms of both Dice ratio and Hausdorff distance. It

s worth noting that our proposed full method (MCfull) achieves the 1st

osition in the overall ranking, whereas the degreaded version of our

roposed full method (MCdeg) achieves the 3rd position (out of 14

ethods). Specifically, our proposed full method obtains an improve-

ent of ∼0.3% with respect to the state-of-the-art ensemble method

ICSL in both mean DR and HD, while having also lower standard

eviations.

To give a further insight on the performance of our method,

ig. 12 shows the box plots across the different structures obtained by

Cfull.

As we can see, the segmentation results of our method are quite

ccurate with the mean results on all the structures above 80%, and

n some structures above 90%.

. Conclusions

We have presented a novel label fusion method that combines

he reconstruction-based and classification-based approaches by for-

ulating label fusion as a matrix completion problem. Latent la-

els on the target image are regarded as the missing entries in a

our-quadrant matrix, which are estimated by imposing the low-rank

onstraint. Furthermore, we have presented a sequential confidence-

uided framework that gradually estimates labels at each iteration

n decreasing order of confidence, while leveraging the support from

he more confident labels of previous iterations. This reduces the

mbiguity in the dictionary, thus leading to a significant perfor-

ance improvement as confirmed by the experimental results. Our

ull method outperforms all other comparison methods in all the ex-

eriments presented. Also importantly, it outperforms all the meth-

ds listed in the website of the online SATA Segmentation Challenge

MICCAI 2013). The proposed matrix-completion based approach
obtained by the first 3 iterations of the sequential confidence-guided framework.
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Fig. 12. Dice ratio and Hausdorff distance (in mm) achieved by our full method (MCfull) across different structures in the SATA Challenge dataset.
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outperforms both the purely reconstruction-based methods and the

purely classification-based methods, thus confirming the benefit of

our transversal approach. Another interesting conclusion is that in-

cluding the neighboring atlas patches into the dictionary leads to per-

formance improvements, as shown by the comparison between LWV

and NLWV and also confirmed by other studies (Rousseau et al., 2011).

Finally, both the statistical estimation and the MRF-based regulariza-

tion implemented by STEPS have proven beneficial for label fusion, as

deduced when comparing the results of STEPS and LWV.

Appendix A. Implementation details

In this section, we describe the following details of our method,

namely, (A.1) computation of a continuous label map from the over-

lapping estimations, (A.2) discretization based on confidence thresh-

old, and (A.3) construction of the initial tentative dictionary.

A.1. Computation of continuous label map from the overlapping

estimations

As result of matrix-completion based label fusion, we obtain a

low-rank matrix with continuous target labels. Such continuous la-

bels can be interpreted as confidence values, such that the higher

the values above zero, the more likely to represent a foreground
oxel, and the lower the values below zero, the more likely to

epresent a background voxel. Since we predict the label values

or the entire target patch, we end up with multiple estimations (from

he neighboring patches) for each target image point. We average

he multiple estimations of each point in order to obtain a single

alue. The fusion process described here corresponds to the function

= CombineOverlappingLabels(F) in the algorithms of Table 1 and

able 2, where F is the continuous label map obtained by averaging

he overlapping estimations contained in F .

.2. Confidence-based discretization

At the end of each iteration, we compute the discrete label map
(s) by assigning labels to the most confident voxels according to

confidence threshold τ , which is decreased at each iteration. This

rocedure is denoted by the function D(s) = Discretize(F , τ ) in the

lgorithm of Table 2 and is carried out as follows:

(s)(x) =
{

1 if F(x) ≥ τ
−1 if F(x) < −τ
⊥ Otherwise

(A.1)

here F(x) denotes the confidence value at voxel x. Essentially, only

he voxels with higher (in magnitude) confidence values above or be-

ow zero are assigned a label, whereas the voxels close to zero are left
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nassigned. As we decrease the confidence threshold, more ambigu-

us voxels are labeled. In the case of τ = 0, all voxels are assigned a

abel regardless of their confidence values.

.3. Construction of the initial tentative dictionary

Recall that, matrix-completion based label fusion in Section 3.1

ses a dictionary of atlas patches, denoted as (A, L), to label a

pecific target patch centered at position x ∈ �. The sequential

onfidence-guided labeling framework in Section 3.2 further re-

nes this initial tentative dictionary based on the label similar-

ty. The dictionary building is denoted by the function (A, L) =
uildDictionary(Ik, Lk,�t, x) in algorithms in Table 1 and Table 2. Both

patial proximity and appearance similarity to the target patch have

een demonstrated to be good criteria to build the dictionary (Coupe

t al., 2011; Rousseau et al., 2011). According to spatial proximity,

e select the patches in the neighborhood of the target patch from

ll the atlases. That is, we build the dictionaries A = [�a1 . . . �aqm] and

= [�l1 . . .�lqm] from q patches of each of all m atlases in the neighbor-

ood of the target patch. According to image similarity, we exclude

he neighboring atlas patches whose appearance similarity with the

arget patch is below a certain image similarity threshold γ . Using

he same criterion as in (Coupe et al., 2011), we only keep the atlas

atches �a j satisfying the following equation:

2μ�tμ�aj

μ2
�t

+ μ2
�aj

× 2σ�tσ�aj

σ 2
�t

+ σ 2
�aj

> γ (A.2)

here μ�t and σ�t denote the mean and standard deviation of image

atch �t and 0 ≤ γ ≤ 1 is the image similarity threshold.

ppendix B. Details of the classification-based method

As representative of the classification-based methods, we have

mplemented a label fusion variant closely related to our proposed

ethod, i.e., using the logistic regression (LogReg) to learn the re-

ationship between image appearance and anatomical labels of the

tlas patches in the dictionary. The labels on each target patch, de-

oted as �f , are then computed as a mapping of its appearance vector,

enoted as �t , by using the learned relationship, as follows:

�f = logit(Vᵀ�t + �c) (B.1)

here logit( · ) is the logistic function (a smoothed sign function),

nd V and �c are the relationship matrix and bias vector, respectively.

e learn the relationship between atlas appearance and labels using

ulti-task logistic regression7 (Liu et al., 2009), where each label in

he patch is encoded as an individual task. This corresponds to the

ollowing optimization problem:

in
V,�c

CLL

(
L,Vᵀ

[
A
�1ᵀ

]
+ �c

)
+ α‖V‖1/2

(B.2)

here CLL( · ) is the element-wise logistic loss between two matrices,

nd ‖V‖1/2
is the regularization enforcing sparsity across the rows

f the matrix V and thus encouraging the sharing of features across

ifferent tasks (i.e., predictions of multiple labels in the target patch).

he amount of regularization is controlled by the parameter α.
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