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Christoph M. Friedrich 

 

Abstract After the completion of Human Genome Project in 2003, it is now possible to convey 

the research studies to associate genetic variations in the human genome with common and 

complex diseases. The Single Nucleotide Polymorphism (SNP) biomarkers across the complete 

sets of DNA, or genomes, of 11 different populations are scanned for revealing genetic risk factors 

and quantitative traits associated with human diseases. The current challenge is to utilize the 

genome data efficiently and to develop tools that improve our understanding of etiology of 

complex diseases. Many of the algorithms needed to solve these problems are strongly supported 

by management science and operations research (OR) methods. One application is to select a 

subset of SNPs from the whole SNP set that is informative and small enough to convey subsequent 

association studies. In this paper, we present an OR application for representative SNP selection 

that makes use of our novel Simulated Annealing (SA) based feature selection algorithm. We hope 

that our work will facilitate reliable identification of SNPs that are involved in the etiology of 

complex diseases and ultimately supporting timely identification of genomic disease biomarkers, 

and development of personalized medicine approaches and targeted drug discoveries. 
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The human genome can be viewed as a sequence of 3.3 billion letters 
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include different nucleotide occurrences, called 
olymorphisms (SNPs – ‘snips’) if occurred in more than
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number of multiple nucleotide repetitions (see Figure 1). 

 
 

A C/T Polymorphism between two DNA Sequences1 

Recently, there has been increasing research to find genetic markers, 
potentially other variables that together contribute to a disease 

serve as good predictors of the observable disease phenotypes. Complex 
diseases are typically associated with multiple genetic loci and several external 
(e.g., environmental) factors. Therefore, it is essential to investigate all 
polymorphisms located in the functional regions of candidate genes
integrate the information about the network of genes involved in biological 
systems of major physiological importance, such as lipid metabolism, cellular 
adhesion, inflammation, and others [32] for thorough analysis of these kind of 

Association studies are among the promising ways of dealing with the 
problem of finding disease causing variants and such association studies typically 

SNPs as they are the most common form of genetic variations and 
they can represent an individual’s genetic variability in greatest detail 

enormous number of SNPs (estimated more than 11 million) makes 
gather information and perform analysis on all the SNPs 

human genome. Thus, while performing a disease association study, the geneticist 
would want to experimentally test for association by only considering a subset of 
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the entire SNP set and not all SNPs, thereby considerably saving resources 
(alternatively, increasing the power of the statistical tests by increasing the 
number of individuals) as well as making the problem computationally feasible. 
Therefore, selecting a subset of SNPs that is informative enough to perform 
association studies but still small enough to reduce the analysis workload, to 
which we refer as representative SNP selection, has become an important step for 
disease-gene association studies. 

Reducing biological and statistical redundancy from hundreds of 
thousands of SNPs is the key for representative SNP selection. Dealing with many 
dependent association tests is one of the emerging issues on the statistical and 
computational side. SNP vs. disease data, in addition to being large, redundant, 
diverse and distributed, has three important characteristics posing challenges for 
the data analysis and modeling: (1) heterogeneity, (2) a constantly evolving 
biological nature and (3) complexity. Therefore intelligent methods are needed to 
find SNPs associated with the disease and extract biologically relevant subsets. 
The problem of SNP selection has been proven to be NP-hard in general [2] and 
current selection methods possess certain restrictions and require use of heuristics 
for reducing the complexity of the problem. 

OR methods have been used recently to the problem of representative SNP 
selection [10, 34, 35, 36, 37, 38, 39]. In this paper, we present a method for 
selecting representative SNP subset for stronger association with complex disease 
after following an integrative biological scoring and filtering approach. An OR 
class novel feature selection method based on Simulated Annealing (SA) has been 
developed for representative SNP selection, in which we try to maximize tagged 
SNP prediction while minimizing cardinality of the selected SNP subset.  The 
methods introduced in this paper intend to contribute to a better understanding of 
the etiology of complex diseases and support reliable and timely identification of 
disease causing variants. It is also our aim to encourage future efforts to make 
modern optimization methods, supported by OR and its scientific community, 
become useful in the research subject of this paper and in computational biology, 
bioinformatics, medicine and heathcare in general. 

The reminder of this paper is organized as follows. In Section 2, we give a 
formal definition of the problem. In Section 3, we review some of the existing 
methods for representative SNP selection. In Section 4, we present our 
methodology and algorithm. In Section 5, we describe our data sets and give 
comparative analysis of our work and existing feature selection schemes. Finally 
we conclude the paper in Section 6 and discuss future research directions.  

2 Problem Definition  

The aim of the representative SNP selection approach is to find a minimal subset 
of SNPs, whose allele3 information can explain the whole set of SNPs in the 
candidate region under study (a whole chromosome, or a target region) to the 
greatest detail. A formal definition of the problem can be stated as follows: Let S  

= { SNP1 , ..., SNPn } be a set of n SNPs in a candidate region and G = {g1, ..., 

gm} be a data set of m genotypes, where each genotype gi consists of the 
consecutive allele information of the n SNPs: SNP1 , ... , SNPn. For simplicity we 
represent gi  ∈ G be a vector of size n whose vector element is 0 when the allele of 

                                                 
3 An allele is defined as one of two or more forms of the DNA sequence of a particular gene.  
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a SNP is homozygous dominant4, 1 when it is heterozygote5 and 2 when it is 
homozygous recessive6. Alternatively, data can be gathered from a case-control 
study. In this case, researcher would also have a hand on the phenotype data for 
the particular patient and this information can be matched with genotype 
information. Phenotype variable will be represented by P and it takes the value -1 
if it belongs to case group and 1 if it belongs to control group. Matrix A in Figure 
2 represents such data.  

Suppose that the maximum number of SNPs that can be selected is k 

(which can be alternatively be a variable for the problem), and a function f(R|G,P) 
evaluates how well the allele information of SNPs in subset R  ⊂  S  retains the 
allele information of all SNPs in S based on the genotype data G and classification 
performance of selected set R on disease phenotype are.  
 

SNP1 SNP2 SNP3 ........ SNPn P

g1 0 0 0 ........ 1 1

g2 2 1 1 ........ 1 1

g3 2 0 0 ........ 2 -1

. . . . ........ . .

. . . . ........ . .

. . . . ........ . .

. . . . ........ . .

. . . . ........ . .

gm 1 0 2 ........ 1 1  

Fig. 2 SNP-Genotype Matrix A 

 
Given S, G, P and k the Representative SNP Selection problem is the 

following optimization problem: 

max F(R|G,P) 

subject to:  R ⊂  S, 

                  |R | ≤ k, 

                  k > 0, 

                  k integer. 

To solve Representative SNP Selection problem, one needs to find an 
optimal subset of SNPs, R, of size less than or equal to k, based on the given 
evaluation function F(R|G,P). From a set theoretic point of view, it is 
computationally intractable to examine all possible subsets of the given set of 
SNPs to select a set of representative markers, except for very small data sets. The 
problem is proven to be NP-hard [2]. To cope with this difficulty, it is possible to 

                                                 
4 An individual that is homozygous dominant for a particular trait carries two copies of the allele 

that codes for the dominant trait. 
5 A person possessing two different forms of a particular gene, one inherited from each parent. 
6 An individual that is homozygous recessive for a particular trait carries two copies of the allele 

that codes for the recessive trait. 
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divide Representative SNP selection into three largely independent steps: (1) 
identifying genomic segments where the selection will be performed; (2) defining 
a measure to quantify how well a set of SNPs can predict all observed and/or 
unobserved SNPs; and (3) searching a minimum set of Representative SNPs that 
meets a desired threshold. 

3 Related Work 

Application of statistical hypothesis-testing procedures is the basic approach for 
finding genotype-phenotype associations. The null hypothesis to be tested is that 
there is no difference between two study groups with respect to the genotype 
frequencies (i.e. genotype proportions) observed in each group. The chi-square 
and Fisher’s exact tests may be applied in this task [23]. Odds-ratios are also 
commonly used to indicate differences between groups on the basis of their 
genotype frequencies. Methods for multiple testing (such as Bonferroni or False 
Discovery Rate) in high-dimensional settings can be applied when many SNPs are 
considered simultaneously. 

In addition to statistical hypothesis testing in which causative SNPs are 
identified, one may chose use classification models for genotype-phenotype 
association modeling. This can be done by representing different genotypes for a 
particular SNP as inputs and phenotype as label. Different statistical and machine 
learning techniques, such as logistic regression and support vector machines, can 
be applied for this purpose. Not only the genotype information extracted from 
multiple SNPs but also information related to environmental exposure factors and 
other biomarkers can be incorporated by introducing multivariable statistical and 
machine learning models in this context. Tagging and different feature selection 
procedures are useful to improve the prediction performance of multiple-SNPs 
models. The former can be applied to problems with a large number of SNPs in 
which haplotype data is present. Feature selection is recommended to reduce the 
number of highly-correlated SNPs, in which high Linkage Disequibrium7 (LD) 
makes it difficult to select true disease causing variant. These methods are 
presented in the subsequent sections.  

3.1 Statistical Methods 

In order to select a subset of SNPs in genome-wide complex disease association 
studies, various statistical measures and testing based approaches have been 
introduced specific to problem domain. The paper [25] proposes a sliding window 
approach, which made use of combination of p-values from multiple independent 
tests by making use of 

�� � �2 � 	
��
�� ~ ��� ��
��� . 

 Here, 
� denotes p-value of association between ���� and disease 
presence and m is the number of SNPs in the sliding window. It is shown that test 
statistic �� follows a Chi-square distribution with 2m degrees of freedom. The 
basic advantage of this approach is that it takes into account the ordering of SNPs 
on the chromosome and allows detection of chromosome regions with significant 
associations by merging adjacent windows [9, 29]. However an implicit 
assumption is made that the distance between any two adjacent SNPs is constant.  
                                                 
7 Linkage disequilibrium is the non-random association of alleles at two or more loci. 
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Other scan statistics have been developed that also considers the ordering 
and spacing of SNPs on the chromosome [8, 12, 21, 31]. For example in [31] a 
two step procedure was presented for calculating chromosomal scan statistic:  

(1) identify SNP clusters,  
(2) extract clusters with significant disease association.  
It is assumed here that position of each SNP follows a Poisson distribution. 

Therefore length between two adjacent SNPs is assumed to have exponential 
distribution and distance between two particular SNP is assumed to follow a 
Gamma distribution. Using these assumptions one can identify the clusters of 
SNPs by testing the hypothesis that whether the observed length between a set of 
SNPs is equal or less than the expected length. If the hypothesis is rejected then 
this group of SNPs is identified as a cluster. Then to test the significance of 
disease association for a particular cluster Pearson Chi-square p-values are 
calculated. However this type of scan approaches has the disadvantage that they 
do no incorporate gene-gene interactions.  
 

3.2 Tagging and Machine Learning Methods 

One obvious observation from the formal definition of representative SNP 
selection problem is the selected subset’s dependence on the function F. In the 
literature, various objective functions have been defined to represent the allele 
information of genotypes in G using SNPs in S and solve the problem 
accordingly. One can classify the proposed approaches into three categories 
according to how they try to measure the allele information of genotypes: (1) 
Haplotype Diversity based approaches, (b) Pairwise Association based 
approaches, (3) Predicting Tagged SNPs.     

Haplotype Diversity based approaches are inspired by the fact that DNA 
can be partitioned into discrete blocks such that within each block high LD is 
observed and between blocks low LD is observed [7, 26]. As a result of this 
feature, number of distinct haplotypes consisting of the SNPs is very small across 
a population. Hence, one would try to find the subset of SNPs, which are 
responsible for the “limited haplotype diversity” in order to find the representative 
SNP set. Different studies have been conveyed to see how well diverse haplotypes 
can be distinguished depending on a selected “diversity measure” and chose the 
best one. A detailed explanation on the different type of measures used in the 
literature can be seen in [11, 14, 15, 17]. The usual approach in these methods is 
to exhaustively list and search through every subsets of H. Therefore, only a small 
number of SNPs can be analyzed. To cope with this problem, efficient heuristics 
have been proposed using Dynamic Programming [34, 35, 36, 37, 38], Principal 
Component Analysis [13, 22, 24] and Greedy Algorithm [39]. Although haplotype 
diversity based methods are simple to implement they depend on the block 
partitioning method used for a target locus. In addition, the union of the candidate 
SNP sets for each block may not be an optimal set for the overall locus. 

Pairwise Association based approaches are based on the principle that all 
the SNPs in the target locus are highly associated with at least one of the SNPs in 
the selected SNP subset. This way, although a SNP that can be used to predict a 
disease causing variant may not be selected as a representative SNP, the 
association may be indirectly assumed from the selected SNP that is highly 
associated with it. The association between SNPs can be estimated using LD. The 
common solution approach for these methods is to cluster the SNPs into different 
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subsets and choose a representative SNP (or SNPs) from each cluster [1, 4, 5]. 
Although with their O(cgs

2) complexity (c being number of clusters, g being 
number of  genotypes and s being number of SNPs) pairwise association methods 
are so much faster than haplotype diversity based methods, they have a major 
shortcoming as they cannot explain multi-SNP dependencies [2] and they tend to 
select more tag SNPs [16]. 

Predicting Tagged SNPs is motivated by the idea of reconstructing the 
genotype data from an initial set of selected SNPs in order to minimize the error 
of prediction for unselected SNPs. Those prediction methods have a certain 
advantage over Pairwise Association methods as they would take multi-SNP 
dependencies into consideration. The paper [2] proposes a measure called 
“Informativeness” and used dynamic programming to solve the problem of 
finding the optimal subset of SNPs that can best predict the remaining (tagged) 
SNPs. Let Es

i,j  be the event that genotypes gi and gj  have a different allele at SNP 
s, and E

S
i,j be the event that genotypes gi and gj have a different allele at some 

SNP in S. To measure how well a set of SNPs, S = {SNP1, ...,SNPk}, can predict 
the SNP, s, the used measure is as follows:  

I(S,s) = Pi≠j(E
S

i,j |E
s
i,j). 

A more recent approach for use of dynamic programming is proposed by 
[10] by fixing the number of representative SNPs for each tagged SNP to 2. The 
paper [20] improves over the current predicting based method by allowing multi-
allelic prediction (instead of bi-allelic) and not restricting the number of 
representative SNPs. They proposed a heuristic algorithm that uses the 
probabilistic framework of Bayesian networks to effectively identify a set of 
predictive SNPs. 

Our proposed algorithm falls into last group of methods and explained in 
detail in Section 4. 

4 Proposed Methodology 

Figure 3 depicts the overall methodology used to achieve representative SNP set. 
We first apply initial filtering based on quality control measures Minor Allele 
Frequency, missingness and Hardy-Weinberg equilibrium. After that we calculate 
multiple testing adjusted p-values of association. We then filter biologically 
relevant SNPs. Lastly, we apply our feature selection algorithm on different 
chromosomes and merge the selected SNP subsets to find representative SNP set. 
 

 

Fig. 3 Process Steps for Finding Representative SNP Set 
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4.1 Filtering Biologically Relevant SNPs 

In order to gain insight from a Genome Wide Association Study (GWAS) in 
which hundreds of thousands SNPs are genotyped from subjects that are 
diagnosed with a disease (case) and healthy people (control) one needs to decrease 
the dimension to a manageable value. Unfortunately even with classification 
schemes that are optimized for large scale data it takes too much time to perform 
analysis. Therefore there is a need to extract biologically relevant data as an initial 
pass for analysis. This would be achieved by incorporating information from 
biological databases so that biologically relevant SNPs, such as those in genes 
related to the phenotype or with potentially non-neutral effects on gene expression 
such as a splice sites, are given higher priority.  

SPOT8 recently introduced the genomic information network 
(GIN) method [28] for systematically implementing this kind of strategy. GIN is a 
directed graph whose nodes are features from a biological database. The GIN 
represents a process: it begins with a SNP and ends in the terminal node with the 
determination of its overall prioritization score S. The overall score is a 
cumulative measure of biological relevance obtained by combining 
information across multiple domains. For example, if a SNP is in a gene then it 
will link to the gene node, which will increase the overall score.  Once the overall 

score S determined, they rank SNPs from a GWAS for further study by �
���. We 

used SPOT for extracting biologically relevant SNPs from the whole SNP set after 
performing Case Control Association study to find p-values.  

4.2 Simulated Annealing Based Feature Selection Scheme 

In Section 2, we state that the optimal SNP subset depends on the selected 
evaluation function. It is also pointed out that maximizing the prediction accuracy 
of selected SNPs over unselected SNPs is an approach used in the literature for 
representative SNP selection. We set our goal as to find a minimum size set of 
representative SNPs and a prediction algorithm, such that the prediction error is 
minimized. Then our objective function becomes: 

� ���� !�" #�$% ,
'()

���
$*+� , ���� !�" #�$% , ��, 

where GR denotes genotype data related with representative SNP set R, $*+ 
denotes genotype data related with ���� ∈ �\. and  

NaiveBayes(F,L) = �/�0�12 ��3 � 	� ∏ 
�5� � 6�|3 � 	�'���  
denotes a Naive Bayes classifier where F is the feature set (SNP set in our 
context) and L is the label. We calculate 5-fold Cross Validation (CV) based 
classification and find classification accuracy.  

We used Simulated Annealing (SA) [18], which is a local search 
algorithm, to solve our problem. SA strives for the best solution starting of a 
randomly created solution. Each step of the SA algorithm replaces the current 
solution by a "nearby" solution. The new solutions are chosen depending on an 
evaluation function and a global parameter T (temperature). T value is gradually 
decreased during the process. Fundamental to the SA structure is the binary 
coding scheme. Let Ci represents ith coding where each code containing n SNPs 

                                                 
8 https://spot.cgsmd.isi.edu/submit.php 
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(dimension). Each code of  the  length n  is  a  sequence  over  {0,  1}n  (0  
represents a non-selected SNP and 1 represents a selected SNP). For example, 
assume there is a code represented by Ci = {1, 0, 1, 0, 0, 1, 0}. In this encoding 
scheme SNP1, SNP3 and SNP6 are selected SNPs. A neighbor for a coding scheme 
Ci is another coding scheme, which is one bit different than Ci. 

We create a random binary coding of size n as an initial solution and test 
the accuracy of the solution using Naive Bayes by calculating the mean 
classification error for (n-k) supervised learning iterations, where k is the number 
of selected SNPs in a particular iteration. We run the algorithm for a certain 
amount of steps (user defined). We use a tradeoff between accuracy and the 
number of SNPs in the representative SNP set. Therefore we also try to minimize 
the number of chosen SNPs (k).  The pseudocode of the algorithm is given in 
Algorithm 1. 

 
Alg. 1 Simulated Annealing Representative SNP Selection Algorithm 

 
Input: 
s0   initial randomly selected SNP set 
t       simulated annealing parameter temperature.  
d      simulated annealing parameter decreasing factor.  
cmax   number of iterations.  
 
Output: 
sbest   representative SNP set 
 
1. 0; ( )s s e E s← ←  

2. best;bests s e e← ←  

3. For   max1 to  c c=  

neighbor( ) news s←  

( )new newe E s←  

4. new beste e>if    then  

5. ;best new best news s e e← ←  

6. ( , )if  random()  then newP e t <  

7. ; ; *  new news s e e t t d← ← =  

8. cNext    
9. return bests  

 

 Here, s0 is the initial randomly selected SNP set (R) and E(s) is an 
evaluation function denoted by:     
  E�#� � 8�� ���� !�" #�$% ,'()

��� $*+� , ���� !�" #�$% , ��� , �1 � 8�k 

presenting our objective function.  Cardinality of the representative SNP set is 
denoted by k. We use two user specified arguments for the algorithm: cmax denotes 
the number of iterations and w �0 ; 8 ; 1� denotes weight that specifies 
tradeoff. The smaller the w, the less SNPs will be chosen to represent overall SNP 
set S. Lastly, t, d and P(E(S),t) (energy) denotes the simulated annealing 
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parameters. Temperature is defined by t and decreasing factor is denoted by d. 
P(E(S),t) is calculated by: 

��<�#�, =� � exp �� A�B�
C �. 

5 Experimental Study 

5.1 Data Sets 

We used two data sets for evaluation purposes. The first data set is whole genome 
association Rheumatoid Arthritis (RA) data from the North American Rheumatoid 
Arthritis Consortium (NARAC) including 868 cases and 1194 controls. The data 
was used in Genetic Analysis Workshop 16 (GAW 16). It consists of 545.080 
SNP-genotype fields from the Illumina 550K chip. The second data set is whole 
genome association data for Alzheimer’s disease (AD). The data was obtained 
from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database 
(www.loni.ucla.edu/ADNI). The used subset of the ADNI data includes 149 AD 
cases and 182 controls. It consists of 555.963 SNP-genotype fields from the 
Illumina 610Quad chip. We applied an initial quality control based filtering with 
PLINK [27] tool for both data sets and we have excluded those SNPs whose 
minor allele frequency is less than 0.01, missingness rate is greater than 0.1 and 
those individuals whose genotype missingness rate is greater than 0.1. 
Additionally, we excluded those SNPs whose Hardy-Weinberg p-value is less 
than 0.001. By doing that we managed to reduce the SNP size for first data set to 
501.463 and second data set to 517.180. We also applied imputation to cope with 
missing alleles by using BEAGLE [3]. 

5.2 Biological Prioritization 

We used SPOT for extracting biologically relevant SNPs from the whole SNP sets 
following a genome-wide association run. For our analysis we used multiple test 
adjusted p-values (False Discovery Rate) to calculated weighted p-value through 
SPOT. We used SPOT default values for ECR node scoring parameters, Gene 
node scoring parameters - link indexes for SNP/gene functional properties. We 
used 0.25 as p-value threshold for the first data set. We used first 10,000 SNPs 
from prioritization results of second data set (as using a multiple adjusted p-value 
threshold of 0.25 filtered out almost all of the SNPs). After removing 
heterozygous haploid genotypes for both data sets finally there remain 9,083 
SNPs in the first data set and 9,998 SNPs in the second data set. 

5.3 Results 

In order to test the classification performance of the representative SNP set on 
phenotype variable, we first applied an initial split (80%-20%) on the filtered 
biologically and statistically relevant data and seperate training and testing set for 
our model. Therefore, we have randomly selected 1,650 patients for the training 
set and 588 patients for the test set for RA data and 265 patients for the training 
set and 66 patients for the test set for AD data.  Following that, we ran our 
simulated annealing based representative SNP selection algorithm on the training 
set. As the algorithm is based on the idea of selecting the subset of SNPs, which 
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best predicts the remaining SNPs for a particular genomic region; we ran the 
algorithm for each chromosome and merged the selected SNPs as the overall 
representative SNP set. The prediction performance (mean accuracy) of the 
selected SNPs (on unselected SNPs) for each chromosome is presented in Tables 
1-3 below for each data set: 
 
Table 1 Prediction Performance of Representative SNP Selection Algorithm: w = 0.3, t = 10, 

d = 0.1, cmax = 1,000  

  Rheumatoid Arthritis Alzheimer's Disease 

Chromosome Initial Selected Prediction Accuracy Initial Selected Prediction Accuracy 

1 687 20 0.628 781 35 0.728 

2 790 31 0.620 743 35 0.702 

3 438 11 0.592 813 39 0.709 

4 486 17 0.620 542 17 0.672 

5 542 14 0.590 567 14 0.679 

6 1,410 90 0.725 832 33 0.683 

7 393 11 0.580 532 18 0.717 

8 595 24 0.615 569 19 0.698 

9 461 22 0.614 430 9 0.619 

10 402 10 0.606 478 18 0.675 

11 343 12 0.606 530 19 0.675 

12 345 9 0.601 442 13 0.611 

13 297 5 0.578 311 10 0.622 

14 280 5 0.580 336 7 0.611 

15 258 7 0.583 282 3 0.566 

16 280 7 0.599 297 14 0.653 

17 184 5 0.578 291 12 0.675 

18 179 1 0.582 351 11 0.634 

19 137 4 0.577 167 2 0.585 

20 206 7 0.584 317 11 0.615 

21 132 5 0.588 119 2 0.581 

22 103 1 0.590 127 3 0.581 

23 135 4 0.587 141 3 0.566 

TOTAL 9083 322 9998 347 

 

Table 2 Prediction Performance of Representative SNP Selection Algorithm: w = 0.5, t = 10, 

d = 0.1, cmax = 1,000 

  Rheumatoid Arthritis Alzheimer's Disease 

Chromosome Initial Selected Prediction Accuracy Initial Selected Prediction Accuracy 

1 687 52 0.616 781 73 0.751 

2 790 53 0.622 743 69 0.766 

3 438 40 0.601 813 73 0.736 

4 486 36 0.619 542 56 0.769 

5 542 41 0.612 567 60 0.758 

6 1,410 136 0.723 832 89 0.758 

7 393 19 0.607 532 48 0.759 

8 595 47 0.609 569 50 0.743 



12 

9 461 31 0.593 430 40 0.728 

10 402 20 0.595 478 44 0.755 

11 343 17 0.595 530 42 0.736 

12 345 29 0.615 442 27 0.698 

13 297 20 0.608 311 25 0.698 

14 280 24 0.604 336 27 0.716 

15 258 14 0.600 282 14 0.641 

16 280 18 0.593 297 16 0.642 

17 184 13 0.599 291 14 0.653 

18 179 9 0.582 351 19 0.698 

19 137 4 0.583 167 2 0.585 

20 206 16 0.596 317 22 0.694 

21 132 6 0.581 119 4 0.626 

22 103 3 0.593 127 3 0.536 

23 135 3 0.582 141 5 0.618 

TOTAL 9083 651 9998 822 

 

 

Table 3 Prediction Performance of Representative SNP Selection Algorithm: w = 0.7, t = 10, 

d = 0.1, cmax = 1,000 

  Rheumatoid Arthritis Alzheimer's Disease 

Chromosome Initial Selected Prediction Accuracy Initial Selected Prediction Accuracy 

1 687 114 0.629 781 116 0.823 

2 790 120 0.620 743 100 0.789 

3 438 83 0.592 813 124 0.804 

4 486 91 0.620 542 81 0.770 

5 542 93 0.590 567 70 0.779 

6 1,410 217 0.709 832 126 0.770 

7 393 54 0.612 532 94 0.791 

8 595 97 0.606 569 76 0.752 

9 461 91 0,610 430 69 0.773 

10 402 65 0.606 478 80 0.770 

11 343 62 0.606 530 83 0.809 

12 345 48 0.601 442 61 0.767 

13 297 52 0.578 311 53 0.734 

14 280 39 0.580 336 67 0.728 

15 258 32 0.583 282 45 0.729 

16 280 47 0.599 297 55 0.740 

17 184 20 0.578 291 36 0.716 

18 179 21 0.582 351 41 0.731 

19 137 15 0.584 167 28 0.692 

20 206 29 0.584 317 50 0.737 

21 132 21 0.587 119 10 0.686 

22 103 16 0.590 127 15 0.659 

23 135 6 0.587 141 12 0.658 

TOTAL 9083 1433 9998 1492 
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Using representative SNP selection algorithm we managed to decrease the 
dimensions considerably. For example for w = 0.5 the number of SNPs is 
decreased from 9,083 to 651 for RA data set and from 9,998 to 822 for AD data 
set. Average prediction accuracy (over not selected) of the selected SNP set for 
RA data is 0.605 and it is 0.698 for AD data. This means that although we 
decrease the dimension more than 90%, we do not introduce a considerably high 
information loss. To observe the classification performance of the selected set 
over the disease phenotype, we compared the performance against two filtering 
based attribute selection scheme from WEKA9 tool set (Relief-F and Chi-Square) 
and randomly selected set of SNPs. In order to achieve that, we have selected the 
same set of SNPs for the test sets to that of training sets and applied a 10-fold 
Cross Validation (CV) run using Naive Bayes classifer as the supervised learning 
scheme. Results are presented in Tables 4-5 below:  

 
Table 4 10-Fold CV Results for AD Data 

 

Table 5 10-Fold CV Results for RA Data 

Measure SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F

Accuracy 0,5728 0,5607 0,6432 0,5558 0,5607 0,6189 0,5728 0,5607 0,4587

Recall 0,1713 0,0000 0,9227 0,0829 0,0000 0,9834 0,0497 0,0000 1,0000

NPV 0,5775 0,5607 0,8750 0,5632 0,5607 0,9625 0,5689 0,5607 1,0000

Precision 0,5439 NA 0,5567 0,4688 NA 0,5361 0,6923 NA 0,4480

Specificity 0,8874 1,0000 0,4242 0,9264 1,0000 0,3333 0,9827 1,0000 0,0346

w = 0.3, 322 SNPs w = 0.5, 650 SNPs w = 0.7,  1433 SNPs

 

 

 Results reveal that our algorithm performs considerably better against well 
known filtering based attribute selection schemes especially when prediction 
accuracy is favored against minimizing cardinality of SNP set.  

6 Conclusion 

In this paper, we have presented a novel representative SNP Selection algorithm 
based on the idea of maximizing prediction accuracy of selected SNP set over 
non-selected. We have developed a methodology based on simulated annealing to 
help prioritize SNPs according to biological relevance alongside with p-value of 
association. We have performed biological prioritization and SNP selection on 
real life data belonging to Rheumatoid Arthritis and Alzheimer’s disease and got 
promising results by reducing the dimension without much information loss. We 
have performed a comparative study with two well known attribute selection 
schemes. Our algorithm performed reasonably well against filtering based 
approaches. We hope that our work will facilitate reliable identification of SNPs 
that are involved in the etiology of complex diseases ultimately supporting timely 

                                                 
9 http://www.cs.waikato.ac.nz/~ml/weka 

Measure SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F

Accuracy 0,5000 0,6061 0,7879 0,5606 0,5152 0,8788 0,5455 0,5455 0,5303

Recall 0,0000 0,5806 0,7419 0,1290 0,1613 0,8065 0,0968 0,0968 0,0000

NPV 0,5156 0,6286 0,7838 0,5500 0,5273 0,8462 0,5410 0,5410 0,5303

Precision 0,0000 0,5806 0,7931 0,6667 0,4545 0,9259 0,6000 0,6000 NA

Specificity 0,9429 0,6286 0,8286 0,9429 0,8286 0,9429 0,9429 0,9429 1,0000

w = 0.3, 347 SNPs w = 0.5, 822 SNPs w = 0.7, 1492 SNPs
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identification of genomic disease biomarkers, and development of personalized 
medicine approaches and targeted drug discoveries. We also hope that our work 
will encourage OR community to explore research subject and to discover 
application areas of much more advanced OR methods such as conic 
programming, multi-objective optimization, stochastic programming, and 
optimization in data mining and in computational statistics. 
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